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Abstract

We prove the curious identity in the sense of formal power series:
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for m D 0; 1; : : : , where Œym�f .y/ denotes the coefficient of ym in the Taylor expansion
of f , which arises from applying the saddle-point method to derive Stirling’s formula. The
generality of the same approach (saddle-point method over two different contours) is also
examined, together with some applications to asymptotic enumeration.

Mathematics Subject Classifications: 05A16, 05A15, 41A60

1 Introduction

The following unusual identity was discovered through different manipulations of the saddle-
point method in order to derive Stirling’s formula, which has a huge literature since de Moivre’s
and Stirling’s pioneering analysis almost three centuries ago; see for example the survey [2]
(and the references therein) and the book [10] for five different analytic proofs. Denote by
Œym�f .y/ the coefficient of ym in the Taylor expansion of f .
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Then

cm D dm .m D 0; 1; : : : /: (3)

While the identity (3) can be deduced from known expansions for n! (e.g., [4, 24]), our
formulation, as well as the proof given here, is new and of independent interest per se. More
precisely, the essential differences between Theorem 1 and the results in [4] are: the proofs in
[4] rely on Cauchy’s integral representation, as we will do for c2m, and a Gamma integral for n!,
which is in contrast different from ours. Our analysis, based on Cauchy’s integral representation
for Taylor coefficients under two different types of integration contours, can be systematically
extended to more general contexts, and is of additional instructional value as the same issue has
perplexed many and has been left mostly unaddressed in the literature. We will examine, for
simplicity, two simple frameworks useful for asymptotic enumeration in the next few sections
and compare the numerical differences of the two expansions resulting from these analysis.

When m is odd, cm D dm D 0 because the coefficient of ym contains only odd powers of t .
When m D 2l is even, the identity (3) can be written explicitly as follows:
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which are modulo sign the coefficients appearing in the asymptotic expansion of Stirling’s for-
mula; see [9, ~1.18] or [23, A001164]:
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X
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These Stirling coefficients have been extensively studied in the literature; see, e.g., [7, ~8.2],
and [3, 16, 24, 19], and the references cited there.

the electronic journal of combinatorics 30 (2023), #P00 2



What if we interchange the integral and the coefficient-extraction operator Œym� in (1)? In-
deed, the integral in (1) without the operator Œym� is divergent for y 2 Rnf0g due to periodicity:Z 1
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on the other hand, the integral in (2) without Œym� is absolutely convergent for real jyj < 1:Z 1
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Proof of Theorem 1. For convenience, we write

fn ≈ gn when fn D gn CO
�
e�"n

�
;

for some generic " > 0 whose value is immaterial.

The standard asymptotic expansion. We begin with the Cauchy integral representation for
n!�1:

1
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D

1

2� i

I
jzjDn

z�n�1ez dz;

where the integration contour is the circle with radius jzj D n. The standard application of
the saddle-point method (see [10, p. 555]) proceeds by first making the change of variables
z 7! neu, giving
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If we choose " D "n D n�
2
5 , say, then n"2

n !1 and n"
j
n ! 0 for j > 3, so that the series on

the right-hand side is small on the integration path; we can then expand the exponential of this
series in decreasing powers of n, and then extending the integration limits to infinity, yielding
the expansion (4) with c2m expressed in the formal power series form (1). See [10, Ex. VIII.3;
p. 555 et seq.] for technical details.

On the other hand, a more effective means of computing c2m is to make first the change of
variables eu � 1 � u D 1

2
v2 in the rightmost integral in (5), where u D u.v/ is positive when v

is, and is analytic in jvj 6 "; see [27, ~ 3.6.3]. Then
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where g.v/ WD du
dv is analytic in jvj 6 ". By the Lagrange inversion formula (see [10, p. 732]),
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2
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Then a direct application of Watson’s Lemma (see [29, ~1.5]) gives the asymptotic expansion
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We then obtain the relation

c2m D Ng2m D g2m

.�1/m.2m/!

m!2m
: (8)

Second asymptotic expansion. It is well known that n!�1 has the alternative Laplace integral
representation (see [28, p. 246]):
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By a similar procedure described above, we then deduce the asymptotic expansion
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where dm is given in (2); compare (7).
On the other hand, by the change of variables log.1Cx/�x D �1

2
y2 (y > 0 when x > 0),

we have
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where h.y/ D dx
dy

is analytic in jyj 6 ". Again, by the Lagrange inversion formula,
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.m D 0; 1; : : : /: (10)

Although the definition of hm looks very different from that of gm (see (6)), their numerical
values coincide except for m D 1:

m 0 1 2 3 4 5 6 7 8 9

gm 1
�

1
3 1

12
�

2
135

1
864

1
2835

�
139

777600
1

25515
�

571
261273600

�
281

151559100hm
2
3

We thus deduce the relation

d2m WD h2m

.�1/m.2m/!

m!2m
;

which is easily computable by (10).

Equality of the two expansions. We next prove that

gm D hm .m > 0Im ¤ 1/; (11)

where gm and hm are defined in (6) and (10), respectively. Note that for m > 0

gm D Œs
m�
'.s/mC1

1C s
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�
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� 1
2

; (12)

by a direct change of variables s D et � 1. Thus we show that
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1C s
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Since m D 0; 1 are easily checked, we assume m > 2. By the relation
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;
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we have
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D Œsm�1�'.s/m�1

D hm�1;

which proves (13), and in turn (11). Consequently, cm D dm for m > 0, implying (3).

Motivation. The observation that (see (4))
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2�e�nnnC 1
2

X
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.�1/mc2mn�m
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.nC 1/!

nC 1
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2�e�n�1.nC 1/nC
1
2

X
m>0

.�1/mc2m.nC 1/�m

led us to investigate the different scales used in the saddle-point method, which turned out to
correspond to the choice of different contours. Then we discovered the identity (3).

Asymptotics of g2m. It is known that (see [7, ~8.2] and [3])

g2m � .�1/lC1
p

2�.4�/�2l
�

(
1

24
l�

3
2 ; if m D 2l I

2l�
1
2 ; if m D 2l � 1:

This type of asymptotic behaviors is unusual for functions of Lagrangean type; see [14] or ~ 3.

2 Asymptotic expansions by the saddle-point method

Quoted from [10, p. 551]

Saddle-point methodD Choice of contourC Laplace’s method.

Similar to its real-variable counterpart, the saddle-point method is a general strategy rather
than a completely deterministic algorithm, since many choices are left open in the imple-
mentation of the method concerning details of the contour and choices of its splitting into
pieces.
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2.1 z D rei� or z D R.1 C it/?

The two uses above (with z D rei� or z D R.1Ci t/) of the saddle-point method for coefficient
integrals of the form

an WD
1

2� i

Z
C

z�n�1f .z/ dz;

for some contour C are standard in the combinatorial literature and are reminiscent of the dif-
ference between moments (Œym�E.eXy/) and factorial moments (Œym�E.1Cy/X ) in probability;
the corresponding saddle-point equations are given by

rf 0.r/

f .r/
D n; and

Rf 0.R/

f .R/
D nC 1; (14)

respectively. The question is often which one to choose and which one is better (for example,
numerically)? For definiteness, consider f .z/ D eez�1 (Bell numbers [23, A000110]); then we
found both uses in the literature:

rer D n ReR D nC 1

Moser and Wyman [17]
Szekeres and Binet [26]
Odlyzko [21, Ex. 12.2]

Sachkov [25, ~ 5.8]

de Bruijn [6, ~ 6.2]
Flajolet and Sedgewick [10, pp. 560–562]

Knuth [15, pp. 422–423]

In particular, Knuth [15, pp. 422–423] considers first an�1 and then changed n � 1 to n after
deriving the corresponding asymptotic approximation.

The question of whether to use r or R in (14) has perplexed many users and is partly an-
swered in [10, p. 555, footnote]: “the choice being often suggested by computational conve-
nience.” It is also commented in [21, p. 1184] that the use of r is slightly preferred because the
manipulation of the other version is less elegant.

Apart from computational convenience, the numerical advantages of the expansion (9) over
(7) are visible because they have the same sequence of coefficients and .n C 1/�m is always
smaller than n�m; see also [5] for Stirling’s original expansion for log n! in decreasing powers
of nC 1

2
. Although the numerical difference is minor for most practical uses, the same question

can naturally be raised more generally for functions f whose Taylor coefficients are amenable to
the saddle-point method (for example, exponential of Hayman admissible functions; see [22]).
Indeed, such a numerical difference was already observed in the 1960s by Harris and Schoenfeld
in their study of idempotent elements in symmetric semigroups [11] where f .z/ D ezez

. Based
on numerical calculations, they found that the saddle-point approximation

an

n!
WD Œzn�ezez

�
R�neReRp

2�ReR.R2 C 3RC 1/
with R > 0 solving R.RC 1/eR

D nC 1, (")
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is “considerably better than the approximation”

an

n!
�

r�nererp
2�rer .r2 C 3r C 1/

with r > 0 solving r.r C 1/er
D n. (	)

Surprisingly, this is the only paper we found where such a numerical comparison between the
two versions of the saddle-point approximation was made.

In the same paper [11], Harris and Schoenfeld argued further that the reason that (") outper-
forms (	) is (we change their notations to ours) “because the derivation of (") uses a contour
which passes through the saddle point of a certain integral for an=n!. However, Hayman’s proof
of the formula yielding (	) employs a contour passing through r D r.n/ D R.n � 1/ and it
therefore misses the saddle point at R by R.n/ �R.n � 1/ � 1=n.”

However, such a comparison is not quite right. In fact, the use of r or R in each case, after
the change of variables, is optimally guided by the saddle-point principle, so that a different
choice of integration contour yields indeed a distinct expansion with non-identical asymptotic
scales. As we will see below in ~ 2.4, while the dominant term in (") is numerically closer to
the true value than that in (	) under the absolute difference measure, the use of more terms
in the corresponding asymptotic expansions may change the scenario, and which expansion is
numerically more precise depends then on the number of terms used.

In this section, we first consider the two versions of the saddle-point method for general f ,
giving the corresponding asymptotic expansions with succinct expressions for the coefficients.
Then we discuss some examples, highlighting briefly their numerical differences.

2.2 Hayman admissible functions

Hayman [13] defined a class of functions whose Taylor coefficients are amenable to the saddle-
point method, and Harris and Schoenfeld [12] later provided sufficient conditions for deriving
an asymptotic expansion for the corresponding Taylor coefficients. These functions are later
referred to as Hayman admissible and Harris-Schoenfeld admissible, respectively; see [10, 22,
21]. Here we describe only Hayman’s conditions for our use later.

Definition 2. An analytic function f .z/ in jzj < R, 0 < R < 1, is said to be Hayman
admissible if f .z/ is real for z real, maxjzjDr jf .z/j D f .r/ for 0 < R0 < r < R, and there
exists a function ı.r/ 2 .0; �/ defined in .R0;R/ such that

f .rei�/

(
� f .r/e�.r/i��

1
2
�.r/2�2

; uniformly for j� j 6 ı.r/;
D o

�
f .r/�.r/�

1
2

�
; uniformly for ı.r/ 6 j� j 6 �;

as r ! R, where �.r/ D rf 0.r/=f .r/ and �.r/2 D r�0.r/.

In particular, Odlyzko and Richmond showed in [22] that if � is Hayman admissible, then
the function e�.z/ is Harris-Schoenfeld admissible, or in other words if a function �.z/ is Hay-
man admissible, then an asymptotic expansion for the Taylor coefficients of e�.z/ can be ob-
tained by the saddle-point method.
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2.3 Two asymptotic expansions by the saddle-point method

We consider in this section the Taylor coefficient

an WD Œz
n�e�.z/ D

1

2� i

I
jzjDr

z�n�1e�.z/ dz;

where � is Hayman admissible. Asymptotic expansions for an can be derived by the saddle-
point method.

Theorem 3. If � is Hayman admissible, then we have the two asymptotic expansions

an �
r�ne�.r/p
2��2.r/

X
m>0

cm.r/�2.r/
�m;

where r > 0 solves the equation r� 0.r/ D n, �2.r/ D r� 0.r/C r2� 00.r/ and
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.�1/m.2m/!
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; (15)
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2
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2
.mC1/

I

and
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R�ne�.R/p
2��2.R/

X
m>0

dm.R/�2.R/
�m;

where R > 0 solves R� 0.R/ D nC 1, and

dm.R/ D h2m.R/
.�1/m.2m/!

m!2m
; (16)

with
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2
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�.R.1C y// � �.R/ �R� 0.R/ log.1C y/

� 1
2
.mC1/

:

Proof. For the integration on the vertical line, the asymptotic expansion follows from Harris-
Schoenfeld admissibility, as guaranteed by Odlyzko and Richmond’s theorem [22, Theorem 4]
(with different expression for the coefficients). Then

dm.R/ WD
1
p

2�

Z 1
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e�
1
2

t2

Œym� exp
�X

j>3

�j .r/

j !�2.r/
.i t/jy

1
2

j�1

�
dt;

where

�j .R/ D j !Œsj �
�
�.nC 1/ log.1C s/C �.R.1C s//

�
D .�1/j .j � 1/!R� 0.R/C j !Œsj ��.R.1C s//:
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Note that �2.t/ D �2.t/. Thus (16) follows.
For the integration on a circle, we carry out the change of variables z 7! rei� . Then, by

performing the same procedure as above, we have

cm.r/ WD
1
p

2�

Z 1
�1

e�
1
2

t2

Œym� exp
�X

j>3

�j .r/

j !�2.r/
.i t/jy

1
2

j�1

�
dt;

where

�j .r/ WD j !Œsj �
�
�ns C �.res/

�
.j D 1; 2; : : : /:

From this we derive (15); see [18, 30] for similar details.

In particular (with �j D �j .r/),

c1.r/ D
3�2�4 � 5�2

3

24�2
2

;

c2.r/ D �
24�3

2�6 � 168�2
2�3�5 � 105�2

2�
2
4 C 630�2�

2
3�4 � 385�4

3

1152�4
2

I

and (with �j D �j .R/)

d1.R/ D
3�2�4 � 5�2

3

24�2
2

;

d2.R/ D �
24�3

2�6 � 168�2
2�3�5 � 105�2

2�
2
4 C 630�2�

2
3�4 � 385�4

3

1152�4
2

;

the expressions differing from c1.r/ and c2.r/ by replacing all �j .r/ by �j .R/.

2.4 Examples.

We begin with Harris and Schoenfeld’s example �.z/ D zez [11] and let an WD n!Œzn�ezez

, the
number of idempotent mappings from a set of n elements into itself; see also [23, A000248].
Asymptotic expansions by the saddle-point method can be justified either by checking the
Harris-Schoenfeld admissibility conditions as in [11] or by showing that zez is a Hayman ad-
missible function (see [13, 22, 10]). We then compute the absolute differences between the true
values and the two asymptotic expansions with varying number of terms:

�
.c/

n;M WD
nMC1

.log n/MC1

ˇ̌̌̌
ˇ̌̌̌
ˇ

an

r�nererp
2��2.r/

�

X
06m6M

cm.r/�2.r/
�m

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

�
.v/

n;M WD
nMC1

.log n/MC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

an

R�neReRp
2��2.R/

�

X
06m6M

dm.R/�2.R/
�m

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ ;

(17)
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where r > 0 solves r.r C 1/er D n, R > 0 solves R.r C 1/eR D n C 1, and �2 and
the coefficients cm and dm can be computed by (15) and (16), respectively, with �.z/ D zez .
Note that g.2m/�2.r/

�m grows in the order n�m.log n/m for m D 0; 1; : : : . From Figure 1,

�
.v/
n;M

�
.c/
n;M

�
.c/
n;M

�
.v/
n;M

�
.c/
n;M

�
.v/
n;M

�
.v/
n;M

�
.c/
n;M

�
.c/
n;M

�
.v/
n;M

Figure 1: �.c/n;M (in red) vs �.v/n;M (in blue): 20 6 n 6 200 and M D 0; 1; 2; 3; 4 (in left to right
order).

we see that while (") is numerically better than its circular counterpart (	) (or M D 0, as
already observed in [11]), more terms in the asymptotic expansions show that both expansions
are indeed comparable, and their numerical performance depends on the number of terms used.

We also observed a very similar pattern (as Figure 1) for Bell numbers when �.z/ D ez�1;
see [23, A000110].

�
.v/
n;M

�
.c/
n;M

�
.c/
n;M

�
.v/
n;M

�
.c/
n;M

�
.v/
n;M

�
.v/
n;M

�
.c/
n;M

�
.c/
n;M

�
.v/
n;M

Figure 2: �.c/n;M (in red) vs �.v/n;M (in blue) in the case of Bell numbers: 15 6 n 6 200 and
M D 0; 1; 2; 3; 4 (in left to right order).

In the case of �.z/ D z
1�z

, an WD n!Œzn�ez=.1�z/ enumerates the number of partitions of
f1; : : : ; ng into any number of ordered subsets; see [23, A000262]. Although Theorem 3 does
not apply because z

1�z
is not Hayman admissible, the justification of an asymptotic expansion

is straightforward and similar to integer partition problems; see for example [1]. One sees that

�
.v/
n;M

�
.c/
n;M

�
.c/
n;M

�
.v/
n;M

�
.c/
n;M

�
.v/
n;M

�
.c/
n;M

�
.v/
n;M

�
.c/
n;M

�
.v/
n;M

Figure 3: �.c/n;M (in red) vs �.v/n;M (in blue) in the case of �.z/ D z
1�z

: 10 6 n 6 200 and

M D 0; 1; 2; 3; 4 (in left to right order). Here �.�/n;M is defined as in (17) but with nMC1

.log n/MC1

there replaced by n
1
2
.MC1/.
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the circular version is numerically better except for M D 0.
Finally, consider the case �.z/ D z C 1

2
z2, whose coefficients (times n!) enumerate the

number of self-inverse permutations on n elements; see [23, A000085]. Since all coefficients
of �.z/ are positive, an asymptotic expansion by the saddle-point method is possible by known
results of Moser and Wyman in the 1950s [18]; see also [21]. In this case, we plot the difference
�
.c/

n;M ��
.v/

n;M because the two curves are too close to be distinguishable.

Figure 4: �.c/n;M � �
.v/

n;M in the case of �.z/ D z C 1
2
z2: 100 6 n 6 200 (with step 5) and

M D 0; 1; 2; 3 (in left to right order). Here �.�/n;M is defined as in (17) but with nMC1

.log n/MC1 there
replaced by nMC1.

In summary, although no general theory is developed here as to which contour of the saddle-
point integral to choose when applying to concrete instances, the expressions given here can be
readily coded, which then provide effective means for further numerical comparisons. Such a
procedure will be of instructional value, in addition to its own methodological interests.

3 A Lagrangean framework

Consider now the Lagrangean form

Œzn�f .z/ with f D zG.f /;

where G.0/ > 0. By the Lagrange inversion relation, the Taylor coefficients satisfy

nŒzn�f .z/ D Œtn�1�G.t/n .n > 1/: (18)

This is one of the rare classes of functions for which both the singularity analysis and the
saddle-point method apply well (see [10, p. 590] and [14]) because of (18). Under the following
sub-criticality conditions:8̂<̂

:
�G is analytic in jzj < �, 0 < � <1;

� Œzj �G.z/ > 0 and gcdfj W Œzj �G.z/ > 0g D 1;
� the equation zG 0.z/ D G.z/ has a unique positive solution �0 2 .0; �/

(19)

it is proved in [14] via singularity analysis that

Œzn�f .z/ �
X
k>0

ck

�
n � k � 3

2

n

�
; with ck D

.�1/k

k
Œtk�1�

�
1 � .�Ct/G.�/

�G.�Ct/

t2

�� 1
2

k

;
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where � WD r
G.r/

with r > 0 solving the equation rG 0.r/ D G.r/.
Here we examine this framework from the saddle-point method viewpoint. It turns out that

the two asymptotic expressions we obtained above via two different contours are the same in
this framework, and they are related to each other by a direct change of variables.

Theorem 4. Write �.z/ D log G.z/. Under the subcriticality conditions (19),

nŒzn�f .z/ �
R1�nG.R/n
p

2�n �.R/

X
m>0

h2m

.�1/m.2m/!

2mm!
.�.R/2n/�m; (20)

where R > 0 solves the equation R� 0.R/ D 1, �.R/2 D R� 0.R/CR2� 00.R/ and

hm D Œv
m�

� 1
2
�.R/2v2

�.R.1C v// � �.R/ �R� 0.R/ log.1C v/

� 1
2
.mC1/

: (21)

The expression for the coefficients in the expansion (20) is much simpler than that given in
[14, Theorem 2].

Proof. We work out the asymptotic expansion in the circular case, the vertical line case then
following from a change of variables. As an asymptotic expansion of the form (20) can either
be justified by the singularity analysis as in [14] or by the standard saddle-point analysis as in
[8], we focus here on the (formal) calculation of the coefficients. By (18)

nŒzn�f .z/ D
1

2� i

I
jzjDr

z�nG.z/n dz

D
r1�n

2� i

Z � i

�� i

eu.e�uG.reu//n du

≈
r1�nG.r/n

2��.r/

Z "i

�"i

e
1
2

nv2

g.v/ dv;

where �.r/2 WD r� 0.r/C r2� 00.r/, r� 0.r/ D 1, g.v/ D eu du
dv D

d
dveu, and

�.reu/ � �.r/ � r� 0.r/u

�.r/2
D
v2

2
:

We then deduce that

nŒzn�f .z/ �
r1�nG.r/n
p

2�n �.r/

X
m>0

g2m

.�1/m.2m/!

2mm!
.�.r/2n/�m; (22)

where

gm D Œt
m�et

� 1
2
�.r/2t2

�.ret/ � �.r/ � r� 0.r/t

� 1
2
.mC1/

: (23)

By the change of variables v D et � 1, we obtain the expression (21), which can also be
obtained directly by beginning with the coefficient integral with the change of variables z D

R.1C v/.
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In particular, if �.z/ D z or G.z/ D ez , then

nŒzn�f .z/ D
nn�1

.n � 1/!
D Œzn�1�enz;

and we obtain the same expressions as derived above for Stirling’s formula.

3.1 Catalan numbers

For simplicity, we consider only Catalan numbers for which G.z/ D .1 � z/�1 or �.z/ D
� log.1 � z/, so that

Œzn�f .z/ D Œzn�
1 �
p

1 � 4z

2
D

1

n

�
2n � 2

n � 1

�
:

Then the positive solution of the equation r� 0.r/ D 1 is given by r D 1
2
, and from either the

equation (21) or (23), we have the asymptotic expansion (�.R/2 D 2)

1

n

�
2n � 2

n � 1

�
�

4n�1

p
�

X
m>0

h2m

.�1/m.2m/!

4mm!
n�m� 3

2 ;

and the identity

hm WD Œy
m�

�
y2

� log.1 � y2/

� 1
2
.mC1/

D Œvm�ev
�

v2

� log.2 � ev/ � v

� 1
2
.mC1/

;

for m > 0, which follows simply by the change of variables y D ev � 1. Note particularly that
h2lC1 D 0 for l > 0.

On the other hand, by singularity analysis (see [10])

1

n

�
2n � 2

n � 1

�
D Œzn�

1 �
p

1 � 4z

2
D �

4n

4� i

Z
ent
p

1 � e�t dt

� �
4n

4� i

X
m>0

bm

Z
H

ent tmC 1
2 dt � �

4n

2

X
m>0

bm

�.�m � 1
2
/

n�m� 3
2 ;

where bm D Œt
m�
�
.1 � e�t/=t

� 1
2 . Now by the relation

�
1

�.�m � 1
2
/
D

.�1/m.2mC 2/!
p
�.mC 1/!4mC1

;

we then get

1

n

�
2n � 2

n � 1

�
�

4n

2
p
�

X
m>0

bm.�1/m.2mC 2/!

.mC 1/!4mC1
n�m� 3

2 : (24)
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It follows that h2m D .2mC 1/bm, which can also be proved directly by a change of variables.
For large m, it is known (see [20, p. 39]) that

bm �
sin.1

2
m�/
p
�

.2�/�nm�
3
2 ;

implying that the expansion (24) is divergent for n > 1. Since the right-hand side is zero when
m is even, we can refine the approximation by the same singularity analysis and obtain

bm � .�1/b
1
2

mc.2�/�m
�

(
3
p
�

4
m�

5
2 ; if m is evenI

1
p
�

m�
3
2 ; if m is odd:

On the other hand, we can improve the asymptotic expansion by noting that�
1 � e�t

t

� 1
2

D e�
1
4

t
�2

t
sinh

t

2

� 1
2

D e�
1
4

t
X
m>0

b02mt2m
I

thus, by the same singularity analysis

1

n

�
2n � 2

n � 1

�
�

4n

2
p
�

X
m>0

b02m.4mC 2/!

.2mC 1/!42mC1

�
n � 1

4

��2m� 3
2 ;

an expansion containing only even terms.
Yet another way to derive an asymptotic expansion for Catalan numbers is as follows. Let

G.z/ D .1C z/2. Then
1

nC 1

�
2n

n

�
D

1

n
Œtn�1�.1C z/2n;

and we have
1

nC 1

�
2n

n

�
�

4n

p
�

X
m>0

h2m

.�1/m.2m/!

m!
n�m� 3

2 ;

where

hm WD Œv
m�

�
v2

4 log .1C 1
2
v/2

1Cv

� 1
2
.mC1/

:

By a direct change of variables, we also have the expression

h2m D 4�mŒym�.2ey
� 1/

r
y

1 � e�y
:
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