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ABSTRACT

The expected running time of the classical (1+1) EA on the ONEMaAX
benchmark function has recently been determined by Hwang et
al. (2018) up to additive errors of O((log n)/n). The same approach
proposed there also leads to a full asymptotic expansion with er-
rors of the form O(nK logn) for any K > 0. This precise result
is obtained by matched asymptotics with rigorous error analysis
(or by solving asymptotically the underlying recurrences via in-
ductive approximation arguments), ideas radically different from
well-established techniques for the running time analysis of evo-
lutionary computation such as drift analysis. This paper revisits
drift analysis for the (1+1) EA on ONEMAX and obtains that the
expected running time E (T), starting from [n/2] one-bits, is deter-
mined by the sum of inverse drifts up to logarithmic error terms,
more precisely

ln/2) Ln/2]

—— —c1logn < E(T) < —— —cylogn
= Alk) = Alk)
where A(k) is the drift (expected increase of the number of one-bits
from the state of n — k ones) and c¢1, ¢z > 0 are explicitly computed
constants. This improves the previous asymptotic error known
for the sum of inverse drifts from O(n?/3) to a logarithmic error
and gives for the first time a non-asymptotic error bound. Using
standard asymptotic techniques, the difference between E (T') and
the sum of inverse drifts is found to be (e/2) logn + O(1).
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1 INTRODUCTION

The runtime analysis of randomized search heuristics on simple,
well-structured benchmark problems has triggered the develop-
ment of analytical tools for understanding the complexity and con-
siderably contributed to their theoretical foundations. This paper
is concerned with the objective function ONEMAX(x1, . ..,Xp) =
X1 + -+ + xp, the arguably most fundamental theoretical bench-
mark problem in discrete search spaces and the (1+1) EA, probably
the most fundamental search heuristic in the theoretical runtime
analysis (see Algorithm 1).

Already the earliest analysis of the (1+1) EA [26] showed that
the (1+1) EA optimizes ONEMAX in an expected time of O(nlogn),
where time corresponds to the number of iterations. The early
interest and attempts in obtaining more precise description of the
runtime complexity were summarized in Garnier et al’s fine paper
[10] with very strong approximation results claimed. On the other
hand, it follows from the analyses in [9] that the expected time is
bounded from above by enH, < en(logn+1), where H,, = Z]'?:l 1/j
denotes the n-th harmonic number and log n the natural logarithm.
Lower bounds of the kind Q(nlog n) that hold for the much larger
class of functions with a unique optimum [9] showed that the results
were at least asymptotically tight.

From the beginning of this decade, finer analyses of the expected
runtimes have gained increasing attention. Precise expressions for
the runtime, dependent not only on the search space dimension n
but also on parameters such as the mutation rate, are vital to opti-
mize parameter settings [29] and to compare different algorithms
whose runtime only differs in lower-order terms [4].

With respect to ONEMAX, the first lower bound that explic-
itly states the leading coefficient e in an expression of the type
(1 —-o0(1))enlog n was independently derived by Doerr, Fouz and
Witt [5] and Sudholt [28] (in the finer form enlogn — 2nloglogn)
using the techniques of drift analysis and fitness levels, respec-
tively. The lower-order term was sharpened to a linear term Q(n)
in [6], and an explicit bound for the coefficient of this linear term,
was given by Lehre and Witt [23], who proved the lower bound
enlogn — 7.81791n — O(log n). The main tool to derive these re-
sults relies on increasingly refined drift theorems, most notably
on variable drift analysis. At roughly the same time, Hwang et
al. [14] presented a drastically refined analysis, which determines
the expected runtime of the (1+1) EA on ONEMAX up to terms of
order O((log n)/n): the exact expression given is

enlogn — Cin+ (e/2)logn + Cy + O((logn)/n), (1)
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where C1 = 1.89254... and C3 = 0.59789875.. .. are explicitly com-
putable constants; see also [15] for the journal version and the link
140.109.74.92/hk/?p=840 for the web version with a full asymptotic
expansion. To obtain these precise results, techniques fundamen-
tally different from drift analysis and other established methods
for the runtime analysis were used, namely matched asymptotics
with rigorous error analysis. In addition to the expected runtime,
the asymptotic variance as well as the limiting distribution are also
worked out there by similar approaches.

While the expression for the asymptotic expected runtime in (1)
represents the best of its kind, it also raises important open ques-
tions. First, from a more didactical and methodological point of
view, one may look for a more elementary derivation of the for-
mula (1), at least with respect to the linear term —Cyn. Note that one
can analyze the related search heuristic RLS, which flips exactly one
bit per iteration, on ONEMAX exactly and without any asymptotic
one-bits. The expression of the expected runtime equals nH| ;|
then and is accompanied by an intuitive proof appealing to the
coupon collector theorem. For a uniform initialization, the analysis
become more involved but still an extremely precise result (com-
ing with an asymptotic term, though) exists: nH| /2] — 1/2 + o(1).
This proof takes only a few pages and uses well-known intuitive
concepts such as the binomial distribution. The o(1)-term comes
without an explicit error bound, though, and it is not discussed how
to refine it.

Second, it would be helpful to confirm that the constant in the
O((log n)/n)-term is small so that one may call it negligible even for
small problem sizes. This question may be approached along two
different directions: one via an explicit error bound for all n, and
the other by combining exact numerical calculations and asymp-
totic expansions. The former will be realized by the drift analysis
presented in Sections 3—4 of this paper; we briefly describe here
the latter, which depends on the sample size n. If n is large enough,
say n > 50, then we can use a longer expansion of the form

dilogn + e

enlogn—Cin+
nk

0<k<K

where K is chosen large enough depending on the required toler-
ance error. In particular, by refining the analysis in [15], one has
do = %, di = % and dy = % (expressions for ej being more com-
plex). On the other hand, if n is small, one can always compute the
exact quantity by the underlying recurrence relations without in-
troducing any error. Such an exact calculation can be made efficient
even in portable computing devices such as laptops and for n in the
hundreds; it is equally helpful in measuring the error introduced
when using K terms of the asymptotic expansion.

While different approaches have their own strengths and weak-
nesses, it is possible to combine them in many cases in discrete
probabilities and algorithmics, and obtain results that are often
stronger than a single approach can achieve. The fine approxima-
tion we work out in this paper represents another testimony to this
statement.

Our contribution. In this paper, we revisit the method of drift
analysis and obtain that the expected running time E (T) of the
(1+1) EA on ONEMAZX, started from [n/2] ones, is approximated

Hsien-Kuei Hwang and Carsten Witt

by the sum of inverse drifts up to logarithmic error terms, more
precisely

Ln/2] 1 Ln/2]
_— < < _—
kZ::l A c1logn < E(T) < kZ:]l AR ¢z logn,

where A(k) is the drift (expected increase of the number of one-bits
from the state of n — k ones) and c1,cy > 0 are explicitly computed
constants. This gives not only an intuitive approximation of the ex-
pected runtime via inverse drifts but for the first time explicit error
bounds. Closest to our results, Gielen and Witt [11] used new vari-
ants of variable drift analysis and showed for the more general class
of (1+4) EAs that the expected runtime is characterized by the sum
of inverse drifts up to an additive error of O(n?/3) — we improve
further this error term to ¢ logn for an explicit constant ¢ > 0. To
prove our results, we use elementary techniques and additive drift
analysis as the only tool for the treatment of stochastic processes.
At the same time, we obtain new drift theorems dealing with error
bounds in variable drift analysis that may be of independent inter-
est. The assumption of a fixed starting point for the (1+1) EA only
introduces a difference in O(1) compared to the expected runtime
with a uniform initialization [3].

Finally, from the sum expression of A(k), we prove, by standard
asymptotic methods (generating functions and the Euler-Maclaurin
formula), that the expected runtime of the (1+1) EA on ONEMAX
equals
ln/2] e, o

o AR Tz o8nTt (1,
i.e., the sum of inverse drifts overestimates the exact expected time
only by an additive term of (e/2) logn + O(1).

This paper is structured as follows. In Section 2, we introduce the
concrete problem setting and well-known variable drift theorems.
We also revisit the well-known result that the expected runtime of
the (1+1) EA on ONEMAX is bounded by the sum of inverse drifts

over the interval {1, ..., Xy}, where Xj is the initial number of zero-
bits. Section 3 is concerned with the lower bound }} /Er:l/lzj 1/A(k) -

c1 logn for a constant ¢; > 0, which we prove using a new, self-
contained variable drift theorem. Section 4 complements this result
by bounding the expected runtime from above by }, ]EZ/IZJ 1/A(k) -
¢z log n, for another constant c; > 0, again using a novel variable
drift theorem. The following Section 5 then briefly illustrates that
drift analysis in principle allows an alternative proof of an exact
expression of the expected runtime, before we in Section 6 apply
asymptotic techniques to show that the expression }; ]EZ/IZJ 1/A(k)—
(e/2) log n gives the exact time up to additive errors of O(1).

2 PRELIMINARIES

We consider the classical randomized search heuristic (1+1) EA;
see Algorithm 1, which is intensively studied in the theory of ran-
domized search heuristics [1, 16]. It creates a new search point by
flipping each bit of the current search point independently with
probability 1/n and accepts it if it is not inferior to the previous
search point. The algorithm is formulated for pseudo-boolean max-
imization problems but can straightforwardly be applied to mini-
mization as well. The analysis of the (1+1) EA is a stepping stone
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towards the analysis of more advanced search heuristics, but al-
ready this simple framework leads to challenging analyses even
on very simple problems. In this paper, we focus exclusively on
the simple ONEMaX problem, which can be regarded as a simple
hillclimbing task.

Algorithm 1 (1+1) EA

t:=0.

Choose uniformly at random x( € {0, 1}".

repeat
Create x’ by flipping each bit in x; independently with proba-
bility 1/n.
xp41 :=x"if f(x") = f(xt), and x441 = x; otherwise.
t:=t+1

until some stopping criterion is fulfilled.

Since the (1+1) EA is unbiased, i. e., it treats one-bits and zero-
bits in the same way [21], all results in this paper hold also for the
more general Hamming distance minimization problem f;(x) =
n — H(x,z), where z € {0, 1}" is arbitrary and H(x, z) denotes the
Hamming distance of the search points x and z. We also remark
that our forthcoming analyses can be generalized to different mu-
tation rates, i. e, a (1+1) EA that flips each bit independently with
probability c¢/n for a constant ¢ > 0; however, this will not yield
new interesting insights. We emphasize that we only consider a
static mutation probability here — dynamic schemes, including self-
adjusting and self-adaptive mutation rates (e. g., [4, 7]) must usually
be analyzed via different techniques.

The runtime (synonymously, optimization time) is the smallest ¢
such that x; is optimal, i. e., the random number of iterations until
sampling an optimum. It corresponds to the number of fitness eval-
uations (plus 1 for the initialization) until the optimum is found. In
this paper, we are exclusively concerned with the expected runtime;
bounds on the tail of the runtime of (1+1) EA can be found, e. g,
in [23].

2.1 Additive Drift

Our main tool for the runtime analysis of the (1+1) EA is drift anal-
ysis, which is in fact one of the most versatile and wide-spread
techniques for this purpose [24]. Roughly speaking, drift analy-
sis translates information about the expected local change of the
process (the so-called drift) into a global statement about the first
hitting time of a target state. Drift analysis, which is well known in
the theory of stochastic processes [12], was introduced to the field
of runtime analysis of evolutionary computation by He and Yao [13]
in the form of an additive drift theorem. This theorem was con-
tinuously refined and given in different formulations. We present
it in a very general style, allowing continuous state spaces and
non-Markovian processes. As noticed by Lengler [24] and Krejca
and Kotzing [19], the process may live on a one-sided unbounded
state space if upper bounds on the expected first hitting time are
to be derived. We also integrate both variants for upper and lower
bounds on expected hitting times in one theorem, sacrificing some
generality in the second case [19].
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THEOREM 1. Let (Xt);>0 be a stochastic process, adapted to a
filtration F;, over some state space S C R>0, where 0 € S. Let
T := min{t | X; = 0} be the first hitting time of state 0.

(1) Ifthere is some § > 0 such that conditioned ont < T it holds

that
EXt = Xe41 1 F2) 26,
then
E(T1 7)< o0

(2) Ifthere is some 8 > 0 such that conditioned on t < T it holds
that both
EX: = Xev1 | F2) <6,
and X; < b for some constant b > 0 then
E(TI70) > 2.

In a nutshell, Theorem 1 estimates the first hitting time of the tar-
get 0 by the initial distance divided by the average process towards
the target. Clearly, if the worst-possible § over the state space is
very small, then the resulting bound on the expected hitting time
(in part 1) may overestimate the truth considerably. To obtain more
precise results, one may transform the actual state space X; to a
new state space g(X;) via a so-called potential (Lyapunov) function
g: S — R>Y. If the drift of the process g(X;) is similar all over
the search space then more precise bounds are obtained. This idea
of smoothing out the drift over the state space underlies most ad-
vanced drift theorems such as multiplicative drift [8] and variable
drift [17]. Since multiplicative drift is a special case of variable
drift, we will focus exclusively on additive and variable drift in the
remainder of this paper.

2.2 Variable Drift

The first theorems stating upper bounds on the hitting time using
variable drift go back to [17] and [25]. These theorems were subse-
quently generalized in [27] and [23]. Similarly to Theorem 1, we
present a general version allowing non-Markovian processes and
unbounded state spaces. We also give a self-contained proof.

THEOREM 2 (VARIABLE DRIFT, UPPER BOUND). Let (Xt);>0 be a
stochastic process, adapted to a filtration F;, over some state space
S € {0} U RZXmin where x> 0. Assume 0 € S and define
T := min{t | X; = 0}.

Let h: RZ*min — R* be a monotone increasing function and
suppose that E(X; — X¢4+1 | F¢) = h(X;) conditioned ont < T. Then
it holds that
Xo 1

h(x)

Xmin
E(T | %) S h(xmin) +f

Proof. We will apply Theorem 1 (part 1) with respect to the process
9(Xt), where the potential function g(x) be defined by

( ) Xmin " fx 1 d
X) = — dz.
I h(min)  Jy, H(Z)

We note that g is concave since 1/h is monotone decreasing by
assumption. Considering the drift of g, we have

X, 1 X1 1
E(9(Xe) — 9(Xea) | F2) = fm %dz—E(fx et ﬁ).

Xmin

min
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By Jensen’s inequality, we obtain
. Xt 1 4 EXenlF) 1 4
E(g(X;) - g(X = LI 2 g
(9(Xe) = 9(Xe+1) | F2) me ) L h)
which, since E (X¢+1 | ) < X¢ — h(X}), is at least

sz 1 X 1
—dz > f dz =1,
X, —h(x;) P(z) X, —h(x;) P(Xt)

where the inequality used that h(z) in non-decreasing. The theorem
now follows by Theorem 1, part 1. O

min

We remark that we can avoid applying Jensen’s inequality in the
above proof by splitting

E(9(Xe+1) | 1) = E(9(Xe+1)1x,,, <x, | F2)

+ E(9Xee) x5, | F2)

and estimating 1/h(z) from above by h(X;) if X;4+1 > X; by taking
a change of sign into account [22]. However, we find that this
leads to a less easily readable proof. In any case, the variable drift
theorem upper bounds the expected time to reach state 0 because
h(x) is non-decreasing by assumption. If h(x) was non-increasing,
we could conduct an analogous proof to bound E (T) from below;
however, usually the drift of a process increases with the distance
from its target.

For discrete search spaces, the variable drift theorem can be
simplified (see also [27]). We present the following version for
Markov processes on the integers.

CoRroLLARY 3. Let (X;);>0 be a Markov process on the state space
{0,...,N} for some integer N. Let A: {1,...,N} = R* be a mono-
tone increasing function such that E(X; — X¢41 | X¢ = k) = A(k).
Then it holds for the first hitting time T := min{t | X; = 0} that

Xo
1
ETIX) <y .
kZ::l Ak)

2.3 First Upper Bound for ONEMax

Corollary 3 is ready to use for our scenario of the analysis of the
(1+1) EA on ONEMAX. We identify state k with all search points
having k zero-bits (i. e., n — k one-bits), think of the (1+1) EA mini-
mizing the number of zero-bits and note that state 0 is the optimal
state. If we instantiate the corollary with

AK) = Zg(f—ﬁ(’;) (";k) (%)M (1- %)“ @

where as usual (Z) =0if b < 0 or b > a, which is the exact
expression for the expected decrease in the number of zero-bits
from k such bits, then we obtain an upper bound on the runtime of
the (1+1) EA on ONEMAX, started with X zero-bits. This result is
well known and it can easily be shown that

$
— < enHXO

= Ak)

since A(k) > %(1 —1/n)"! > e7lk/n by considering all steps

flipping exactly one bit out of the k zeros and no other bits. However,
. Xo 1 . .
no exact closed-form expression for 37| ARy 18 known in general.
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3 LOWER BOUNDS

3.1 Variable Drift with Error Bound

In light of the simple upper bound presented above in Section 2.3,
it is interesting to study how tight this bound is. Previous research
addressed this question usually by

e Proving an analytical upper bound on the expected value of
QO = Z}‘zl AL(J') (for a random starting point)

e Bounding E (T) from below by using specific variable drift
theorems for lower bounds. The sum Q. did not explicitly
show up in these bounds.

As a result, this approach estimates the error made by bounding
E(T | Xo = k) < Qg only indirectly. One notable example is the
work by Gielen and Witt [11], who prove the nesting

(1-0(n"*logn))Qx <E(T | Xo = k) < O,

which shows that the sum of inverse drifts Qy represents the ex-
pected optimization time of (1+1) EAs on ONEMAX from state k
up to polynomial lower order terms (which would be in the or-
der of O(n?/3 log? n) for those starting points from which it takes
expected time Q(nlogn)). Interestingly, this result was obtained
by a new variable drift theorem for lower bounds that can be in-
stantiated with the concrete setting of optimizing ONEMAX. In this
setting, one can identify the sum of inverse drifts Q. up to lower
order terms.

In this section, we follow an even more direct approach to re-
late E(T | Xo = k) to Q. As already mentioned, several variants of
variable drift theorems for proving lower bounds on hitting times
have been proposed; see again [11] for a recent discussion. The
main challenge proving such lower bounds is that the potential
function g(x) proposed in the proof of Theorem 2 is concave, so
Jensen’s inequality cannot be used to bound the drift of the poten-
tial function from above. However, if one can estimate the exact
drift of the potential function and bound it uniformly from below
for all non-optimal states, we get a lower bound for the expected
first hitting time. We make this explicit for discrete search spaces
in the following; however, the approach would easily generalize
to continuous spaces. We restrict ourselves to non-increasing pro-
cesses for notational convenience but note that we could allow
X¢+1 to be greater than X; by adjusting the definition of 5(k) in
the following theorem slightly.

THEOREM 4. [Variable drift, lower bound, with error bound]
Let (Xt)¢>0 be a non-increasing Markov process on the state space
{0,...,N} forsome integer N.Let A: {1,...,N} — R* bea function
satisfying E(X; — X¢+1 | X¢ = k) < A(k). Let

k 1

k) =E — | X: =k

(k) (le AR )

and

n= k:rff?’_{,N”(k)'

Then it holds for the first hitting time T := min{t | X; = 0} that

Xo

E(T|X0) > ),

k=1

-
m*Ak)
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Hence, n(k) is an error bound quantifying the relative error
incurred by using the sum of inverse drifts as an estimate for the
expected first hitting time from state k, and 5* is the worst case of
the n(k) over all non-target states.

Proof. We consider the same potential function g(k) = }; j.‘:l 1/A(G)
as in the proof of Theorem 2 and note that its drift at point k equals

k Xt
Elg(h) - 90X | X =) = ) 2o —E(Z i 1% k)
Jj=1

j=1
= n(k).

By the additive drift theorem (Theorem 1, part 2) with potential
function g(x) and upper bound #* on the drift, the theorem follows.
]

We will use the previous variable drift theorem to obtain the
following lower bound.

THEOREM 5. Let E (T) denote the expected optimization time of
the (1+1) EA on ONEMAX, started with [n/2] one-bits and let A(k) be
the drift of the number of zeros as defined in Definition (2). Then

Ln/2]
E(T) > — —c11
(T) kzl A~ Clogn

for some constant c¢1 > 0.

The proof is dealt with in the following subsection. As already
mentioned in the introduction, the assumption of a fixed starting
point of [n/2] one-bits (i. e., | n/2] zero-bits) allows us to concen-
trate on the essentials; if a uniform at random starting point was
chosen, then the expected time would at most change by a con-
stant [3].

3.2 Bounding the Error

This subsection is concerned with the proof of Theorem 5. In par-
ticular, most effort is spent on establishing the claim

n"—1<c/n

for some explicit constant ¢ > 0, i. e., we bound the additive error
of the drift of the potential function g(k) — g(Xt+1), where X; = k
is the current state, compared to the lower bound 1 = A(k)/A(k)
established for the drift of the potential function at X; = k in
Theorem 2. Here the notions of state (number of zero-bits), drift
A(k) and transition probabilities are taken over from the preceding
section.

Looking back into (2), we have already defined the drift (in terms
of the number of zero-bits) at point k and observe that A(k) is
monotone increasing in k, which we will use later. Using the no-
tation p(k, €) for the transition probability from the state of k to £
zero-bits, we note that by definition

nk) =) pk.0) ~
£=0 j AG)

={+1

and also that
k-1
k—¢ A(k)
k{)— = —= =1,
2700755 = 2
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which is why we pay attention to bounding the terms

R
p(k, ) ('_[H 20) " AR 3

with the final aim of showing that
k-1 k
1 k-¢ c
k)y-1= k¢ — - — < = 4
n(k) ;(m : >(_;+1 0 A(k))) G

for some sufficiently large constant ¢ > 0.

We shall define, as in [15], a kind of normalized drift that is easier
to handle. Here it becomes relevant to manipulate the number n,
so that we write more formally

An(k) = A(K)

S e

=1 j=0

The definition of the normalized drift A* is then as follows.

DEFINITION 6. Define, fork € {1,...,n+ 1},

80) = A ()1 )

S

Jj=0
Define, for convenience, Ay, (0) := 0.

From (4) we are brought to the task of bounding ﬁ - m,
leading to Lemma 10 below. To this end, it is crucial to bound
A(k + 1) — A(k). While this can be achieved in a tedious analysis
comparing terms in the above-given representation of A(k) as a
double sum, we follow a more elegant approach involving generat-
ing functions here. To this end, let [2"] f(z) denote the coefficient
of z" in the Taylor expansion of f(z).

LEMMA 7. Fork € {0,..

s =l ) (2

.,n+ 1} andn > 1, the relation

holds.

Proof. Rewrite the sum definition of A}, (k) as the Cauchy product
of three series:

k k -1
w0 =3 5]t e
£=1 j=0
k-1 k—€-1
= (’;)n*k”’ (k—é’—])-(n+1 k)n J
£=0 j=0
1
_ Z (I;)n K+ (14 1) (n+ k) -,
h,j,t
h+j+l=k-1
implying that
. k1 1\k 1 z\n+1-k
AL (k) = [z ](z+;) e (1+;) .
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The lemma then follows from the relation

@ = @ k). 5)
(]
We shall prove bounds on the difference A(k + 1) — A(k) via
bounding the corresponding difference of the A*-values.
LEMMA 8. Fork € {0,...,n} it holds that
1 2
S <AL+~ ALK < 2 ®)
n n
and fork € {0,...,n — 1} that
2
— < Anlk+ 1) = An(k) < ——.

Proof. We prove first (6). From Lemma 7, we have

e 11(1_1@2(“%)7“%)"_"(%-z)
1

B n[z 1]z(ll-’——zz) (1 * i)k(l * %)n_k.

Thus, by taking the coefficients of the Cauchy product, we obtain
n(Ay(k +1) = Ay (k)

k n—k
2l (e o

A%k +1) — A% (k) =

=0 Jj=0
k !
k n—k

Sl S
=0 ¢ j=0 J
Z (k/n)f Z 1—k/n)j
€20 j=0

=2 k/n+l-k/n _ 2.

On the other hand, by (7),
n(Ay(k +1) = Ay, (k)

k l
= (’;)n“’z (";k)n‘f > (1 + %)k > 1. ®)
£=0 Jj=0

This proves (6).
Recalling the definition

M) =0 (1- 1),

we finally obtain

n

Bnk+1) = An) < (1= ) 2 <
n n—1 n—1

and

a-ym" _(a-tm"t 1

- =
n—1 n en

An(k+1) = An(k) >

as claimed. ]
Recall that we want to investigate the difference
1 1 A(k) — Ak —1)

Atk — 1) Ak~ A(k-DAK)

(and later m A(k) for € > 1); thus we need bounds on A(k)

itself. The following lemma gives such bounds along with esti-
mations of the transition probabilities. We will use the notation

Hsien-Kuei Hwang and Carsten Witt

plk, <)) = Z]t;:o p(k, €) for the probability to change from state k
to state at most j.

LEMMA 9. Fork > 1,¢7!

k .
u S A(k) < 5. Moreover, fort’ 1it
holds that p(k,k — £) < p(k, <k-

o (8 < (e

Proof. This proof uses well-known standard arguments. The upper
bound on the drift follows from considering the expected number
of flipping bits among k one-bits and the lower bound from look-
ing into steps flipping one bit only. The bound on the transition
probability considers all mutations flipping at least ¢ bits. O

Intuitively, the parenthesized term in (3) estimates the error
incurred by estimating the potential function using the slope at k
for a step of size £+1. This error will below in Lemma 11 be weighted
by the probability of making a step of such size, more precisely by
the probability of jumping from k to j = k — £ — 1. Assembling the
previous lemmas, we now give a bound for the difference of 1/A(-).

LEMMA 10. Fork > 1 and € € {1, ..., k} it holds that
1 B 1 2e%0n
Ak-¢) Ak) ~ k(k-0On-1)
Proof. Using Lemma 8 and Lemma 9,
1 1 _A(k)-A(k-10)
Ak—=0) AKk) ~ AK)AK—-0)
2t/(n-1) 2e%n?
e2k(k—0)/n2  k(k—0)(n-1)"

[m]

If we jump from k > 2 to k — € — 1 then the parenthesized term
in (3) (intuitively incurred by linearizing the potential function
using the slope at k) equals

( 1 1 ) ( 1 1 ) ¢ ¢
_ e 4+l — - - — g—__.
Ak—-¢) Ak) Ak-1) AK)) S Alk=0) Ak)

Finally, we weigh these differences with the respective probabili-
ties and put everything together to bound the whole expression (4).

., Ln/2]} it holds that n(k) < 1+ 2¢%/2

LEmMMA 11. Fork € {1, T

Proof. Using Lemma 9 and Lemma 10,

k-1 ¢ ¢
Zp(k’k'f'l)(A(k—f)’W)

£=0
k
-1 -1
:;p(k’k_f)(A(k—€+l)_A(k))
: Sl
k(n-1) {:1 k—-€+1
222 & (k\ _, €6 -1)
\k(n—l)z(é’)n k—(+1

S
1]

0
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Applying the integral representation = 1 fo 41 dt for a > 0, we

obtain
k
K\ o l-1) f k ks
Z(f) P 55(6’ n~Ctk=C qr
=0
_ 1 k-2
k<k21>f(t+1) "
n 0 n
1\k-1
< (+3)
Thus
k-1
4 4
kk—-€-1
;f’(’ )(Aac—f) A(k))
2e2n? ﬁ(l . l)k—l
k(n—-1) n2? n
2¢? 1\k  2¢9/2
= (+3)
n-—1 n n-1

We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. According to Theorem 4, we have

2l lnf2) -1
E(T | Xo =n/2) > > — (1= ,
T1Xo=ni2)> 2} i > 2 s (5 )
and by Lemma 11
285/2
<1+ .
n—1

Since ZL"/ZJ 1/A(k) < enH|p2) < enlogn as observed in Sec-
tion 2.3, we altogether obtain
Ln/2]

E(T | Xo =n/2) > ;_M

i A(k) n—1
Ln/2] -
> 4 logn,
2 A(k) — (4e’/%)logn

where the last inequality used n > 2. Altogether, the theorem has
been established with ¢; = 4e7/2 ~ 132.56. )

In conjunction with Section 2.3, we have determined the expected
runtime of the (1+1) EA on ONEMAX (starting in state [n/2], i.e.,
with [n/2] one-bits) up to an additive term bounded by c¢; log n.
As already mentioned in the introduction, terms of even lower
order down to O((logn)/n) have been determined in [15] by a
more technical analysis. Our result features a non-asymptotic error
bound.

4 IMPROVING THE Y \"/*) 1/A(k) BOUND

The upper bound DI |_n/2j 1/A(k) derived Section 2.3 precisely char-
acterizes the expected runtime of the (1+1) EA on ONEMAZX, but is
a slight overestimation resulting from the inequality 1/h(X;4+1) >
1/h(X;) in the proof of Theorem 2; intuitively this corresponds
to estimating the progress from state X; via a linearized potential
function of slope 1/h(X;), which is the derivative of g at X;.

We can improve the bound on the expected runtime by esti-
mating the error stemming from this inequality and will gain a
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logarithmic term. To this end, we study the following simple ana-
logue of Theorem 4.

THEOREM 12. [Variable drift, upper bound, with error bound]
Let (Xt)¢>0 be a non-increasing Markov process on the state space
{0,...,N} forsome integer N.Let A: {1,...,N} — R* bea function

satisfying E(X; — X¢+1 | X¢ = k) = A(k). Let
S i
T](k) =E — Xt =k
j=Xrs1+1 AG)
and
* = i k .
] kz?f_‘_r_‘,N”( )

Then it holds for the first hitting time T := min{t | X; = 0} that
Xo

1
E(T|X0)<I;m-

Proof. We proceed analogously to the proof of Theorem 12, use
1/A(j) and apply additive drift
analysis (Theorem 1, part 1) with the lower bound * on its drift. O

the potential function g(k) = Z;?zl

We state our improved result, carrying over notation from previ-
ous sections such as the definition of the drift A(k) with respect to
(1+1) EA and ONEMAX.

THEOREM 13 (IMPROVED UPPER BOUND). Let n > 4. Then the
expected optimization time of the (1+1) EA on ONEMAX (starting at
[n/2] ones) is at mostZ]E'l/lzJ 1/A(k)—cy log n for some constant cy >
0.

To prove this result, we need to invert a statement from Sec-
tion 3.2.
LEMMA 14. Fork € {2,...,n/2},
1 1 n
L
Ak —-1)  A(k) ~ ek?
Proof. We proceed similarly to the proof of Lemma 10 but aim at
lower bounds. First, we recall from Lemma 6 that

A(k) - Ak-1) > —

Now, using the upper bound A(k) < k/n from Lemma 9, we obtain

1 1 _A(k)—A(k—l)> 1 _n
Ak-1) A(k)  AKR)AGK-1) 7 en(k/n)?  ek?’
which concludes the proof. O

We can now present the proof of the improved upper bound.

Proof of Theorem 13. The aim is to apply Theorem 12 for some
n* = 1+c/n, where ¢ > 0is constant. Since state 1 is special in that it
only has one possible successor, we consider T; := min{z | X; < 1}
instead and the following straightforward generalization of the

theorem:
Xo

1
E(T X)) < D ——,\
L kZ_g A(k)
n(k). This implies
Ln/2]
A T A Al

where n* = ming—,

E(Ty | Xo =n/2) <
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since the expected transition time from state 1 to 0 is exactly 1/A(1).

We now show that n(k) > 1+ c1/n for some constant ¢c; > 0 and
k € {2,...,|n/2]}. Note that (conditioning on X; = k everywhere)

k 1
n(k) = E(} > A_o))

=X+l
k 1
:E(/ Z A—(i)lXt+1<k—l)Pr(X,+1<k—1)
i=Xry1+1
L E(k Xt+1)A|(]i§t+1 >k-1) Pr(Xpsq > k—1)
k 1
=E Z — | Xps1 < k= 1|Pr(Xee1 <k —1)
(/—Xt+1+1 AG) )

E((k = Xes) 1, >k-1)
A(k)
The first term on the right-hand side can be bounded from below
by
E((k=1-Xp41) | Xpg1 <k—1) 1
( Ak —1) +A(k) Pr(X;41 <k-—-1)

since A(k) is non-decreasing. Using Lemma 14, the last expression
is further bounded from below by

(E((k—l—Xt+1) | Xpa1 <k—1>(ﬁ+$)+ﬁ)

“Pr(Xes <k-1),
which, using
e lk(k-1) -1 1%
Pr(X;41 <k—-1) > T >e @
and
E((k=1=Xs1) | Xpy1 <k=1) 21,

is at least

E ((k - Xt+1)]1x,+1<k—1) e 2
)

Putting everything together, we have

E ((k - Xt+1)]1Xt+1>k_1)

n(k) > A0
E((k = Xes1)Ix,  <k-1)| o2
* AR "

Ak) e _ e?

= +—=1+4+—,
A(k)  4n 4n
so n* > 1+ e 2/(4n). We conclude the proof by noting that

Ln/2] 1 Ln/2] 1 Ln/2] o2
<

AR) (1 +e?/(an)) ~ L A(K) & an(i+e2/4)A(K)

s

k=2
which, using ZkZ/ZZJ ﬁ 2 n(H|pj2) — 1) = n(logn)/3 for n > 4,
amounts to

672

- ———logn.
12(1 + e72/4) oen

ln/2]
E(T|Xo=n/2) < —
(T | Xo = n/2) ];A(k)

Hsien-Kuei Hwang and Carsten Witt

Hence, we can set c; = ~ 1/91.69. m}

372
12(1+e-2/4)

5 FORMULAS FOR THE EXACT
OPTIMIZATION TIME

In light of the Theorems 4 and 12 one might wonder whether one
should try to choose a potential function that makes the “error” n*
vanish and leads to a drift of exactly 1. It is well known [20, 24]
that letting g(k) be the expected remaining optimization time from
state k actually achieves this.

In this section, we briefly investigate how to choose g(k) with
respect to our setting of (1+1) EA and ONEMaAX. We will obtain
formulas that can also be derived manually, so the result is by no
means new. However, it is still interesting to see that it can be
derived via drift analysis. This will turn out in the proof of the
following theorem.

THEOREM 15. Let (X¢);>0 be a non-increasing Markov process on
the state space {0, ..., N} for some integer N and denote by p(k, j)
the transition probability from state k to state j. Let the function g(k)
be recursively defined by g(0) = 0 and fork > 1:

1+ 287 p(k. g 0)
i plk.j)
Then it holds for the first hitting time T := min{t | X; = 0} that

g(k) ==

E(T | Xo) = 9(Xo)-

Proof. We shall use additive drift analysis (Theorem 1), which gives
the exact expected hitting time if E (9(X;) — g(X¢+1) | ) =6, i.e.,
if both the first and the second cases of the theorem hold.

We compute

k-1

E(g(k) —g(Xi41) | X¢ = k) = Zp(k,j)(g(k) -9())

Jj=0

k-1
= (1= p(k. ))g(k) = > p(k. )9 ()
j=0
1+ Zh0 plk,gl) A
— 3 plk g 0)
Sk plk.)) 2,009

k-1 k-1
=1+ > plk () |- . plk. )g() = 1,
=0 j=0
with the the definition of g(k) plugged in the third equality. Hence,

by Theorem 1 the expected hitting time of state 0 from state Xy
equals g(Xp)/1. O

= (1= p(k.k))

That g(k) equals the expected first hitting time from state k to
state 0 can also be proved in an elementary induction. By writing

1 plk.J)
(S ——— . LY R
T S k) 2 S50 plk, )

we realize that the first term is the expected time to leave state k and
the second term is a weighted sum of the remaining optimization
times from smaller state, weighted by the respective transition
probabilities conditional on leaving state k. Such formulas can

k-1

()
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also be derived by inverting matrices obtained from the transition
probabilities of the underlying Markov chain [2].

We note that estimations of hitting times in finite search spaces
based on the transition probabilities were recently presented in
Kotzing and Krejca [18]. These estimations are not recursively
defined and easy to evaluate. However, as the underlying scenario
does not allow big jumps towards the optimum when estimating
the hitting time from below, tight formulas for the (1+1) EA on
ONEMAX cannot be proved with this approach.

We exemplarily apply Theorem 15 to our scenario of the (1+1) EA
on ONEMAX. Using the transition probabilities

) = minig:—kl LI_CK) (n;k) (%)k—jﬂf (1 B %)n—(k—j)_zf

we obtain g(0) = 0, g(1) = n(1 — 1/n)!"", and

(3n® -8n*+6n—-1)(1-1/n)' "
2n?-2n-1

g(2) =

P 1-
(22n” - 114n° +203n° — 117n* — 38n° + 49n% = Tn +2) (1- 1) "
12n% — 36n° + 4n* + 60n® — 23n2 - 21n -2

g(3) =

While these expansions obviously reflect the well-known esti-
mate g(k) = (1 + o(1))enHy, they do not seem readily useful in
expressing the expected runtime of the (1+1) EA on ONEMAX in a
closed-form formula depending on n.

6 THE ASYMPTOTICS OF THE PARTIAL SUM

n/2]

The purpose of this section is to analyze more precisely how far

the sum of inverse drifts ), ]EZ/IZJ 1/A(k) differs from the expected
optimization time

E(T | Xo = In/2]) = enlogn —Cin + (e/2)logn + O(1)

derived in [15]. We know from the preceding analysis that the sum
of inverse drifts overestimates E (T | Xy = |n/2]) by a ©(logn)-
term. We will prove the following asymptotic approximation for
the sum of inverse drifts, which, when compared with (1), shows
their logarithmic difference.
THEOREM 16. For large n,
Ln/2]
—— =enlogn—Cin+elogn+ 0(1), 9)
L A~ ¢

where

1z 4 1
Cy = —e y—log2+f0 (Sl(t) —?) dt | ~ 1.89254... (10)

is the same linear constant appearing in (1). Here

¢ (-1

. )
s@=Y S - zezen.

il
£>0 7 j=0 J:
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Note that if we multiply the left-hand side of (9) by e~/ (@n),
then the difference with (1) is bounded, namely,

Ln/2]

e—1/(2n) Z

i An(k)

To prove Theorem 16, we use the techniques of generating func-
tions and Euler-Maclaurin summation formula, which are concep-
tually and methodologically simpler than the asymptotic resolution
of the recurrences used in [15]. The following lemma can be ob-
tained in style similar to Lemma 9. Since it is with respect to the
normalized A*, we give a self-contained proof.

=enlogn—-Cin+ glogn+0(l).

LEMMA 17. Fork € {0,...,n+ 1},

1\k-1k 1\"k
(1+—) —<A;(k)<(1+—) -. (12)
n n nl n
Proof. By definition
k-1
k k-1\ _, C+1—-j(n+1-k
A (k) = = J
n(k) n;)(f)n Z:: {+1 ( j )
k-1 l
k k-1 n+l1-k
Sl Rl
"= ¢ j=0 J
k-1 n+l1-k
gﬁ (k;l)n_[ Z (I’l+1—k) —j
= j=0 J
1\"k k
= (1 + —) - <e-—.
n/ n n
On the other hand,
k-1
N k k-1 _, 1\k-1k
> - = - —
AL (k) > HZ( , )n (1+n) -
=0
O
Note that (12) becomes an identity when k =0 and k = n + 1.
The crucial lemma we need to prove (9) is given as follows.
LEmMA 18. Lete > 0. Then for1 < k < (1 —¢&)n,
T
A% (k) = Si(a) + L@, o(n?), (13)
n
where a = k/n and
Ty(a) = 3S1(a) - 2aSo(a) — a Ip(2ya(1 - a)) (
14)

—-Ya(l-a) L (2\/0:(1 - a)).
Here the I;’s represent the modified Bessel functions.

It is possible to extend further the range in k, but we do not need
it here.

Proof. First for small k, we have, by Definition 6 and direct expan-
sion,

N k 3k(k-1
which holds uniformly for 1 < k = o(n). A simple, readily codable
procedure to derive this is as follows. Assuming k to be fixed and
expanding

k n+l-k z
(1+i) (1+5) =ez+e—(%—2(k—l)z—zz)+~-,
z

nz n 2n

+0(k*n?), (15)
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for large n. Then multiplying both sides by (1—z)~2 and computing
the coefficient of z=! term by term (corresponding to the residue of
the integrand in the Cauchy integral), giving

z

-1 (4 _
(= ](l—z
-1 eZ 2k
[z ]—Zn(l—z)z (7 -2k-1)z-2z )
z k(k k k—
[Zil]Zn(le—z)z( (Zz ~ 2k~ ) 3 ( :

On the other hand, by the Taylor expansions

S1(z) = z+%zz+%z3+~ -~ and T1(z) = _EZ Zzz—%z3+~ -+, (16)
we see that
Ti(a 3 3a -
Sl(a)+£ :a+—a2——+0(oc3+a2n 1),
n 2 n

consistent with (15). This proves (13) when k = o(n).
Now consider larger values of k and write k = an, where a €
[e,1—€]. Then

anlog(l + i) +(1- a)nlog(l + E)
n
4

a+ (1 a)z

a
= ;+(1—a)z— 72 + Ey(2),
where
(_1)3 27[71 Z€+1
Eo(z) = Z a +(1-a)
4
spom +1 +1
_ O(a|zr3 <0 —a)|z|3).
n
By the inequality
1
le? — 1] = zf etzdt‘ <zl (zeo),
0
we have

(1 + L)k(l + E)n_k _ S Hlima)z- s
nz n

a272+(1—a)22
< |Eo(2) e/ Bo@) | & +(1-az- ===

The error is then estimated by using the Cauchy integral represen-
tation

05 —12)2 (1 * i)k(l * %)nﬂ_k

1 1 1\k z\n+1-k
N
= 2ni lzl=r (1—2)2 nz n

so that (0 <r < 1)

56 |Eo (2)]e! P02
— 5 |€
|z|=r 11-2|2

B _2 7T oqr2 +(l—a)r
‘O(” f_n (1-1?

~ofi).

dz

2n -

“24(1-a)z? z
2 4 (1-q)z— 220z (1 )
n

Z cos t+(1—a)r cos t) dt

Hsien-Kuei Hwang and Carsten Witt

since r is away from 1. Thus

1+ 2 o az 2+(1-a)z?
80 =k eSHImT =S L o (n72),
4

By the same argument, we have

?+(1 a)z _ 9.3 _ 4
80 = N e (1 2t (oak ) +o(n?).
The lemma will then follow from the relations
. e;+(1 a)z
Si1(a) = [z ](1——z)2’ (17)
and
Ty(@) = [z} estl-a)z 5403 (1- a)z4. (18)

(1-2)% 222

To prove (17), we expand the factor e and take the coefficient
term by term, yielding

[z 1]eer(l a)z _ Z a_g[zt’—l] e(l—a)z
(1-2)2% &b 14l (1-2)2
ot -1
=> 5,25— ' i@,
>0 Jj=0
Similarly,
Li(l-a)z
So(a) = [Zil]l—_z, (19)
and by the decomposition,
—a+223—(1—a)z4_ 1 _ da _(l_a)_Za_a
z2(1 - z)? T (1-2?2 1-z z 2%’
we obtain
! ez t(l-a)z —a+ 223 — (1 - a)z*
(1-2z)2 222
-1
1 af 1-a)
>0 =0
4 -1 4 4
at (1-a) at (1-a)
(1 “); o -1 2 o
14 +1
104 l1-«a
o Y S
>0 ’

which equals T;(«) by properly grouping the terms. This proves
the lemma. O

As we will see below, finer calculations give

AL (k) = S1(a) + 0@ TZ(Z“) +0(n), (20)
n n
where
Tr(a) = —Sl(a) + aSo(a) + 1+6a 10(2 a(l— a))

24
1 — 10c + 4a? @)

12\/7 11(2 a(l—a)).
215 2, 13 3

In particular, when & — 0, we have Ty(a) = %a + T+ e +
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To obtain formula (21) for T>(a) we begin with the expression

Ty(@) = (et 00z, Wald)
(1-2)?
where
Wiy (2) o= 3a% +8az — 12a2° + 6a(1 — a)z* — 4(1 — a)z” +3(1 - 2a) 28
al?) = 24z4 )
By the decomposition
2
z (1-a)(1-90)

+ a(4+3a) 23

2
+ +(1—a4)1(1—3a) z

12
a(16+9a) 22
(d=a)® 2
z +—"z
+ 06<12 a) 21 B

we then derive (21) by a term-by-term translation using the rela-
tions (17), (19) and

0([(1 _ a)m+f—1

f(m+€—1)!

[Z—l]zme%+(1—a)z —

£>max{0,—-m+1}

Im-1(2va(1 = @),

1—qg\(m-1)/2
(=)
form € Z.

Proof of Theorem 16. Substituting the expansion (20) into the
partial sum
Ln/2] 1
Qln/2) = Z INGE
k=1
and using the expansion
1

S1(a) + —T‘fl“) + —Tzn(f’) + O(n‘3)

__ 1 h@ _Sl(a)TZ(a)_Tl(a)z+O(a—2n—3)
51(0!) nSl(a)Z nzsl(a)3
we obtain
n/2] n/2] k
1 1 1
Qlns2) = Z A (kn>2 E1(n),
k=1 Sl(ﬁ) k=1 51(;)
where
2
1 B s (5)(5) -ni(5)
Ei(n)=-— 3
"= 51(;)
ln/2] 2
+0 n_3 7
k=1
By the local expansion

S1(a)Tz(a) - Ti(a)? 11, 341
=——a +—+---,
S1(a)3 12 144

we deduce that

Ln/2]
Ei(n)=0[n"! Z Kl+nt= O(n_1 log n).
k=1

On the other hand, since most contribution to the sums come from
terms with small k, we deduce, by using the expansion

Ti@) 3 11 15

=——+
S1(a)? 20 4 4
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aTi(a)
Si(a)?

and the boundedness of on the unit interval, that

) Lnz) (k)

"= 51(%)2

3 3
= EHL"/ZJ +O(l) = 5 10gn+0(1).

Define
1 1
R(z) = - -,
®=56 "z
which is bounded in the unit interval. We have, by (16),
ln/2]

3
QI_n/ZJ = "HLn/ZJ + kZ_:l R(;)+ EH\_’I/ZJ +O(1).

In view of the bounded derivative of R in the unit interval, we then
deduce, by a standard application of the Euler-Maclaurin summa-
tion formula (approximating the sum by an integral), that

3
Qlnj2) =nlogn+Con+ 510gn+0(1),

where

B i1 1)
Co =y —log2 +f0 (Sl(t) - ?) dt ~ —0.6962272155. ..
By the relation Ap(k) = A%_ (k)(1- 1), we then deduce (9),
proving the theorem. O

See Figure 2 for the graphical rendering of the various approxi-
mations derived.

A% (k) - Sy (@) A% () = Sy (e) - 1D

01 03 05 07 09 03
03

-0 0.2!
-1 0.2

0.1
0.1 ——
0.0

01 03 05 07 09

1 Ty («)

1 _ _ale)
1 . T (0~ S1@ sy ()
(k) S S. 2
a0 @ s @ gy @5y (@)
n2S (a)?

15
il 0.0
1 | 00!
\\ 0.02

05
\ 0.0t

=

1 1
&5,(0) ~ Si(@)

P N N -]

ol =
01 03 05 07 09 0 02 04 06 08 1 01 03 05 07 09

Figure 1: Differences between A, (k), m and their asymp-
totic approximations for n = 2,...,50 (in increasing order of
the density of the curves) and k = 1, ..., n (normalized in the
unit interval).

CONCLUSIONS

We have revisited drift analysis for the fundamental problem of
bounding the expected runtime of the (1+1) EA on the ONEMAX
problem. Using novel drift theorems involving error bounds, we
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Figure 2: Differences between the exact expected running
time and ) << 12 A;(k) without (left) and with (right) the
X n
correction term £ logn.

have bounded the expected runtime when starting from [n/2] ones,
up to additive terms of logarithmic order; more precisely we have

ln/2]

m —E(T | Xo = Ln/2]) € [c1logn, czlogn]

k=1

for explicitly computed constants ci, ¢z > 0. This for the first time

gives an absolute error bound for the expected runtime. Then by
ln/2] 1
k=1 A(K)

overestimates the exact expected runtime by a term (e/2) logn + O(1).

standard asymptotic methods, we have found that },
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