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Abstract

We study linear recurrences of Eulerian type of the form

Pn.v/ D .˛.v/nC 
 .v//Pn�1.v/C ˇ.v/.1 � v/P
0
n�1.v/ .n > 1/;

with P0.v/ given, where ˛.v/; ˇ.v/ and 
 .v/ are in most cases polynomials of low degrees.
We characterize the various limit laws of the coefficients of Pn.v/ for large n using the method
of moments and analytic combinatorial tools under varying ˛.v/; ˇ.v/ and 
 .v/, and apply our
results to more than two hundred of concrete examples when ˇ.v/ ¤ 0 and more than three
hundred when ˇ.v/ D 0 that we gathered from the literature and from Sloane’s OEIS database.
The limit laws and the convergence rates we worked out are almost all new and include normal,
half-normal, Rayleigh, beta, Poisson, negative binomial, Mittag-Leffler, Bernoulli, etc., show-
ing the surprising richness and diversity of such a simple framework, as well as the power of
the approaches used.
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1. Introduction

The Eulerian numbers, first introduced and presented by Leonhard Euler in 1736 (and pub-
lished in 1741; see [90] and [91, Art. 173–175]) in series summations, have been widely studied
because of their natural occurrence in many different contexts, ranging from finite differences
to combinatorial enumeration, from probability distribution to numerical analysis, from spline
approximation to algorithmics, etc.; see the books [18, 101, 153, 200, 212, 221, 225] and
the references therein for more information. See also the historical accounts in the papers
[27, 144, 231, 238]. Among the large number of definitions and properties of the Eulerian
numbers

˝
n

k

˛
, the one on which we base our analysis is the recurrence

Pn.v/ D .vnC 1 � v/Pn�1.v/C v.1 � v/P
0
n�1.v/ .n > 1/; (1)

with P0.v/ D 1, where Pn.v/ D
P

06k6n

˝
n

k

˛
vk . In terms of the coefficients, this recurrence

translates into �
n

k

�
D .k C 1/

�
n � 1

k

�
C .n � k/

�
n � 1

k � 1

�
.n; k > 1/; (2)

with
˝
n

k

˛
D 0 for k < 0 or k > n except that

˝
0

0

˛
WD 1. We extend the recurrence (1) by

considering the more general Eulerian recurrence

Pn.v/ D .˛.v/nC 
 .v//Pn�1.v/C ˇ.v/.1 � v/P
0
n�1.v/ .n > 1/; (3)

with P0.v/, ˛.v/; ˇ.v/ and 
 .v/ given (they are often but not limited to polynomials). We
are concerned with the limiting distribution of the coefficients of Pn.v/ for large n when the
coefficients are nonnegative. Both normal and non-normal limit laws will be mostly derived
by the method of moments under varying ˛.v/; ˇ.v/ and 
 .v/. While the extension (3) seems
straightforward, the study of the limit laws is justified by the large number of applications and
various extensions. We will also solve the corresponding partial differential equation (PDE)
satisfied by the exponential generating function (EGF) of Pn whenever possible, and show
how the use of EGFs largely simplifies the classification of the extensive list of examples we
compiled, as well as the finer approximation theorems established by the complex analysis, in
addition to the quick limit theorems offered by the method of moments.

The history of Eulerian numbers is notably marked by many rediscoveries of previously
known results, often in different guises, which is indicative of their importance and usefulness.
In particular, Carlitz pointed out in his 1959 paper [27] that “an examination of Mathematical
Reviews for the past ten years will indicate that they [Eulerian numbers and polynomials] have
been frequently rediscovered.” Later Schoenberg [215, p. 22] even described in his book on
spline interpolation that “[Eulerian-Frobenius polynomials] were rediscovered more recently
by nearly everyone working on spline interpolation.” We will give a simple synthesis of the
approaches used in the literature capable of establishing the asymptotic normality of the Eule-
rian numbers, showing partly why rediscoveries are common. We do not aim to be exhaustive
in this synthesis of approaches (very difficult due to the large literature), but will rather content
ourselves with a methodological and comparative discussion.
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nnk 0 1 2 3 4 5

0 1

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

Table 1: The first few rows of
˝
n

k

˛
.

In addition to their first appearance in series
summation or successive differentiationX

j>0

j nvj
D .vDv/n

1

1 � v
D

vPn.v/

.1 � v/nC1
;

the Eulerian numbers also emerge in many statis-
tics on permutations such as the number of descents
(or runs) whose first few rows are given on the right
table; see [61, 120, 225] and Sloane’s OEIS pages
on A008292, A123125 and A173018 for more in-
formation and references. The earliest reference we
found dealing with descents (called “inversions élémentaires”) in permutations is André’s 1906
paper [5]; see also [176, 235]. On the other hand, von Schrutka’s 1941 paper [235] mentions the
connection between descents in permutations and a few other known expressions for Eulerian
numbers; although he does not cite explicitly Euler’s work, the references given there, notably
Frobenius’s 1910 paper [106] and Saalschütz’s 1893 book [210], indicate the connecting link,
which was later made explicit in Carlitz and Riordan’s 1953 paper [35]. Moreover, Carlitz and
his collaborators have made broad contributions to Eulerian numbers and permutation statistics,
leading to more unified and extensive developments of modern theory of Eulerian numbers; see
[200, 225].

Each row sum in Table 1 is equal to n!. It is natural to define the random variable Xn by

P.Xn D k/ D
1

n!

�
n

k

�
; or E

�
vXn

�
D

Pn.v/

Pn.1/
;

where Pn.v/ satisfies (1). Here E.vXn/ denotes the probability generating function of Xn.
From a distributional point of view, we observe a distinctive feature of Eulerian numbers here:
they have a higher concentration near the middle when compared for example with the bino-
mial coefficients (which is also symmetric). In particular, the fifth row (in the above table)
of the probability distribution reads . 1

24
; 11

24
; 11

24
; 1

24
/, while that of the corresponding binomial

distribution reads .1
8
; 3

8
; 3

8
; 1

8
/; see Figure 1 for a graphical illustration.

Such a high concentration in distribution may be ascribed to the large multiplicative factors
k C 1 and n� k when k is near 1

2
n in (2), leading to the “rich gets richer” effect for terms near

the mode of the distribution. More precisely, it is known that Xn is asymptotically normally
distributed (in the sense of convergence in distribution) with mean asymptotic to 1

2
n and vari-

ance to 1
12

n; the variance is smaller than the binomial variance 1
4
n, which partially reflects the

high concentration. For brevity, we will write (CLT standing for central limit theorem)

Xn � N
�

1
2
n; 1

12
n
�

for the CLT sup
x2R

ˇ̌̌̌
ˇ̌̌P
0B@Xn �

1
2
nq

1
12

n

6 x

1CA �ˆ.x/
ˇ̌̌̌
ˇ̌̌! 0; (4)

and E.Xn/ �
1
2
n and V.Xn/ �

1
12

n, where ˆ.x/ denotes the standard normal distribution
function

ˆ.x/ WD
1
p

2�

Z x

�1

e�
1
2

t2

dt .x 2 R/:
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Eulerian distribution 1
n!

˝
n

k

˛
Binomial distribution 1

2n�1

�
n�1

k

�
˝
n

k

˛
D .k C 1/

˝
n�1

k

˛
C .n � k/

˝
n�1

k�1

˛ �
n

k

�
D
�

n�1

k

�
C
�

n�1

k�1

�

Figure 1: A comparison between Eulerian and binomial distributions for 2; : : : ; 50 (magnified
by standard variations and normalized into the unit interval). The higher concentration of
Eulerian distributions near their mean values is visible.

Such an asymptotic normality with small variance will be constantly observed throughout the
examples we will examine.

Due to the multifaceted appearance of Eulerian numbers, it is no wonder that the limit result
(4) has been proved by many different approaches in miscellaneous guises; see Table 2 for some
of them.

Approach First reference Year See also
Sum of UniformŒ0; 1� Laplace [158] 1812 [126, 233]
Sum of% or& indicators Wolfowitz [241] 1944 [81, 88]
Method of moments Mann [182] 1945 [72]
Spline & characteristic functions Curry & Schoenberg [68] 1966 [48, 245]
Real-rootedness Carlitz et al. [34] 1972 [202, 238]
Complex-analytic Bender [14] 1973 [100, 133]
Stein’s method Chao et al. [40] 1996 [58, 62, 107]

Table 2: A list of some approaches used to establish the asymptotic normality (4) of Eulerian
numbers.

The normal limit law (4) in the form of descents in permutations appeared first in 1945 by
Mann [182] where a method of moments based on the recurrence (2) was employed, proving the
empirical observation made in [189]. A similar approach was worked out in David and Barton
[72] where they showed that all cumulants of Xn are linear with explicit leading coefficients.
A more general treatment of runs up and down in permutations had already been given by
Wolfowitz [241] in 1944, where he relied instead his analysis on decomposing the random
variables Xn into a sum of indicators and then on applying Lyapunov’s criteria for CLT by
computing the fourth central moments; see [95]. These publications have remained little known
in combinatorics literature mainly because they were published in a statistical journal.

On the other hand, the asymptotic normality (4) had been established earlier than 1944
in other forms, although the links to Eulerian numbers were only known later. The earliest
connection we found is in Laplace’s Théorie analytique des probabilités, first version published
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in 1812 [158]. The connection is through the expression (already known to Euler [91, Art. 173])

1

n!

�
n

k

�
D

1

n!

X
06j6kC1

�
nC 1

j

�
.�1/j .k C 1 � j /n .n > 0/;

and the distribution of the sum of n independent and identically distributed uniform Œ0; 1� ran-
dom variables U1; : : : ;Un:

P.U1 C � � � C Un 6 t/ D
1

n!

X
06j6t

�
n

j

�
.�1/j .t � j /n: (5)

It then follows that (see [126, 144, 202, 222, 233])

P.Xn 6 t/ D P.U1 C � � � C Un 6 t C 1/;

and the asymptotic normality of Xn follows from that of the sum of uniform random variables,
which was first derived by Laplace in [158] by large powers of characteristic functions, Fourier
inversion and a saddle-point approximation (or Laplace’s method).

Concerning the expression (5) (the sum on the right-hand side already appeared in [91]),
sometimes referred to as Laplace’s formula (see for example [75]), we found that it appears
(up to a minor normalization) in Simpson’s 1756 paper [219] where the sum of continuous
uniforms is treated as the limit of sum of discrete uniforms; see also his book [220]. The
underlying question, closely connected to the counts of repeated tossing of a general dice,
has a very long history and rich literature in the early development of probability theory. In
particular, Simpson’s treatment finds its roots in de Moivre’s extension of Bernoulli’s binomial
distribution, “which in turn was derived from Newton’s binomial theorem and before that from
Pascal’s arithmetic triangle—this approach may have the most impressive provenance of any
in probability theory” (quoted from Stigler [228, P. 92]). Interestingly, de Moivre’s approach
also constitutes one of the very early uses of generating functions; see [228, Ch. 2]. The
same expression (5) was derived in the 1770s by Lagrange, Laplace and later by many others,
notably in spline and related areas; see [56, 215]. See also the books [95, 122, 200] for more
information. Coincidentally, expressions very similar to (5) also emerged in Laplace’s analysis
of series expansions; see [157]. But he did not mention the connection to Eulerian numbers.

The sum-of-indicators approach used by Wolfowitz is very useful due to its simplicity but
the more classical Lyapunov condition is later replaced by limit theorems for 2-dependent indi-
cators; see [81, 88, 131]. Also it is possible to derive finer properties such as large deviations;
see [88].

Instead of decomposing the Eulerian distribution as a sum of dependent Bernoulli variates,
a much more successful and fruitful approach in combinatorics is to express it as a sum of
independent Bernoullis based on the property that all roots of its generating polynomial Pn.v/

(see (1)) are real and negative; see [34, 106, 238]. More precisely, Pn.v/ has the decomposition
[106]

Pn.v/ D
Y

16j6n

.�n;j C v/;

where �n;j 2 RC. It follows that Xn D
P

16j6n �n;j , where �n;j is a Bernoulli with prob-
ability 1

1C�n;j
of assuming 1. Then Harper’s approach [123] to establishing the asymptotic

7



normality (4) consists in showing that the variance tends to infinity, which amounts to checking
Lyapunov’s condition because the summands are bounded. This was carried out for Eulerian
distribution by Carlitz et al. in [34]. For a slightly more general context (all roots lying in the
negative half-plane), see Hayman’s influential paper [125] and Rényi’s synthesis [206, 207].
See also the surveys [21, 22, 24, 163, 202, 223] for the usefulness of this real-rootedness ap-
proach.

We describe two other approaches listed in Table 2 that are closely connected to our study
here, leaving aside other ones such as spline functions, matched asymptotics, and Stein’s
method; see [40, 48, 58, 62, 68, 107, 115, 245] for more information. For the connection
to Pólya’s urn models, see [96, 105, 196] and Section 9.6. See also the very recent papers
[108, 150, 149] for a kind of saddle-point approach and [198] for an approach via martingales.

A general study of asymptotic normality based on complex-analytic approach was initiated
by Bender [14] where in the particular case of Eulerian numbers he used the relation for the
exponential generating function (EGF)

F.z; v/ WD
X
n>0

Pn.v/

n!
zn
D

1 � v

e.v�1/z � v
; (6)

and observes that the dominant simple pole z D �.v/ WD 1
1�v

log 1
v

(�.1/ WD 1) provides the
essential information we need for establishing the asymptotic normality (4) since for large n

Pn.e
s/

n!
D e�s

�
es � 1

s

�nC1

C exponentially smaller terms;

uniformly for jsj 6 ". The uniformity then guarantees that the characteristic functions of
the centered and normalized random variables tend to that of the standard normal distribution,
implying (4) by Lévy’s continuity theorem (see [99, ~ C.5]). This approach provides not only a
limit theorem, but also much finer properties such as local limit theorems and large deviations
in many situations, as already clarified in [14] and later publications such as [100, 109, 133]. In
general, the characterization of limit laws or other stochastic properties through a detailed study
of the singularities of the corresponding generating functions, coupling with suitable analytic
tools, proved very powerful and successful; see [26, 99, 109, 133, 197] for more information.
Note that F satisfies the PDE

.1 � vz/@zF � v.1 � v/@vF D F;

the resolution of which adding another interesting dimension to the richness of Eulerian recur-
rences, which we will briefly explore in Section 3.1.

While each of these approaches has its own strengths and weaknesses, a large portion of the
asymptotic normality results for recursively defined polynomials in the combinatorics literature
rely on Harper’s real-rootedness approach. Also many powerful criteria for justifying the real-
rootedness of a sequence of polynomials have been developed over the years; see for example
[21, 22, 24, 163, 202, 223]. However, the real-rootedness property is an exact one and is very
sensitive to minor changes. For example, if we change the factor vnC1�v to vnC .1Cv/2 in
the recurrence (1), then all coefficients remain positive but complex roots are abundant as can
be seen from Figure 2. On the other hand, by our theorem below, the coefficients still follow
the same CLT (4) (with the same asymptotic mean and asymptotic variance). Historically, the

8



Figure 2: Left: zero distributions of the polynomials Rn.v/ D .vn C .1 C v/2/Rn�1.v/ C

v.1 � v/R0n�1.v/ for n > 1 with R0.v/ D 1; right: the corresponding histograms. Here

n D 2; 3; : : : ; 50. The EGF equals
�

1�v
1�ve.1�v/z

�5
e.1�v/z�ve.1�v/zCv; see Section 3.1.

proof of the first moment convergence theorem by Markov relies on the (real) zeros of Hermite
polynomials; see [104].

On the other hand, the closed-form expression (6) for the EGF represents another exact
property and may not be available in more general cases (3), especially when the corresponding
PDE is difficult to solve. A simple example is the sequence OEIS A244312 for which

Pn.v/ D

(
.vn � 1/Pn�1.v/C v.1 � v/P

0
n�1.v/; if n is even;

.vn � v/Pn�1.v/C v.1 � v/P
0
n�1.v/; if n is odd;

.n > 2/; (7)

with P1.v/ D v. The same N
�

1
2
n; 1

12
n
�

can be proved by the method of moments (see Sec-
tion 4.5), but it is less clear how to solve the corresponding PDE (F being the EGF of Pn)

.1 � vz/@zF.z; v/C .1 � v/
F.z; v/ � F.�z; v/

2
D v.1 � v/@vF.z; v/C v: (8)

One of our aims of this paper is to show the usefulness of the method of moments for general
recurrences such as (3). More precisely, we will derive in the next section a CLT for (3) under
reasonably weak conditions on ˛.v/; ˇ.v/ and 
 .v/. While our limit result seems conceptually
less deep (when compared with, say the real-rootedness properties), it is very effective and easy
to apply; indeed, its effectiveness will be testified by more than three hundred of polynomials
in later sections. The list of examples we compiled is by far the most comprehensive one
(although not exhaustive).

On the other hand, although the method of moments has been employed before in similar
contexts (see [8, 72, 105, 182]), our manipulation of the recurrence (via developing the “asymp-
totic transfer”) is simpler and more systematic; see also [135] for the developments for other
divide-and-conquer recurrences. In addition to the method of moments, we will also explore
the usefulness of the complex-analytic approach for Eulerian recurrences. In particular, we ob-
tain optimal convergence rates in the CLTs, using tools developed in Flajolet and Sedgewick’s
authoritative book [99] on Analytic Combinatorics. We will then extend the same method of
moments to characterize non-normal limit laws in Sections 6 with applications given in later
sections. Extensions along many different directions are discussed in Section 9, and the sim-
pler framework when ˇ.v/ D 0 (in (3)) in Section 10 for completeness, some examples of this
framework being collected in Appendix B. Section 11 concludes this paper.
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Notations. Throughout this paper, Pn.v/ is a generic symbol whose expression may differ from
one occurrence to another, and Qn.v/ always denotes the reciprocal polynomial (reading each
row coefficients of Pn.v/ from right to left) of Pn.v/, except in Section 9.9. The EGF of Pn is
always denoted by F.z; v/. For convenience, the Eulerian recurrence(

Pn.v/ D an.v/Pn�1.v/C bn.v/.1 � v/P
0
n�1.v/ .n > 1/

P0.v/ given
(9)

will be abbreviated as Pn 2 E hhan.v/; bn.v/ii or Pn 2 E hhan.v/; bn.v/IP0.v/ii if we want to
specify the initial condition. When the initial condition on Pr .v/, say Pr .v/ D 1C v, is given
with r > 1, we write Pn 2 Er hhan.v/; bn.v/I 1C vii, with the understanding that the recurrence
starts from n > r C 1.

Web forms. All examples in this paper (with a total of 628 items in which 594 are in OEIS)
are compiled and maintained at the two webpages [137] ((9) with bn.v/ ¤ 0) and [136] ((9)
with bn.v/ D 0), with types, links, numerical tables and other properties.

2. A normal limit theorem

We consider in this section the limiting distribution (for large n) of the coefficients of linear
type Eulerian recurrence Pn.v/:

E hh˛.v/nC 
 .v/; ˇ.v/IP0.v/ii;

where ˛.v/; ˇ.v/, 
 .v/ and P0.v/ are any functions analytic in jvj 6 1, and we assume that all
Taylor coefficients Œvk �Pn.v/ are nonnegative for k; n > 0. If Œvk �Pn.v/ > 0 for n > n0 with
n0 > 0, then we can consider the shifted functions Rn.v/ WD PnCn0

.v/, which satisfy the same
form (9) but with 
 .v/ replaced by n0˛.v/C 
 .v/. So without loss of generality, we assume
that n0 D 0 and Pn.1/ > 0 for n > 0 for which a sufficient condition is Œvk �Pn.v/ > 0 and
Pn.v/ ¥ 0 for k; n > 0.

For simplicity, we write ˛ D ˛.1/ and similarly for ˇ and 
 . By (3), we see that

Pn.1/ D .˛nC 
 /Pn�1.1/ D P0.1/
Y

16j6n

.˛j C 
 / D P0.1/˛
n
�
�
nC 1C 


˛

�
�
�
1C 


˛

� I
thus Pn.1/ is independent of ˇ.v/, and the factor “1 � v” in front of P 0n�1.v/ in (9) makes the
recurrence satisfied by the moments easier to handle. Note that the assumption that Pn.1/ > 0

for n > 0 implies that ˛ C 
 > 0.
Define the random variables Xn by

P.Xn D k/ D
Œvk �Pn.v/

Pn.1/
.k; n > 0/: (10)

Theorem 1 (Asymptotic normality of Xn). Assume that the sequence of functions Pn.v/ is
defined recursively by (9) satisfying (i) Œvk �Pn.v/ > 0 and Pn.v/ ¥ 0 for k; n > 0, and (ii)
P0.v/, ˛.v/, ˇ.v/ and 
 .v/ analytic in jvj 6 1. If, furthermore,

˛ C 2ˇ > 0 and �2 > 0; (11)

10



where

� WD
˛0.1/

˛ C ˇ
and �2

WD �C
˛00.1/ � 2�ˇ0.1/ � ˛�2

˛ C 2ˇ
; (12)

then the sequence of random variables Xn, defined by (10), satisfies Xn � N .�n; �2n/,
namely, Xn is asymptotically normally distributed with the mean and the variance asymptotic
to �n and �2n, respectively.

Indeed, we will prove convergence of all moments.
Observe first that P0.v/, ˛.v/; ˇ.v/ and 
 .v/ need not be polynomials, although in almost

all our examples they are; see ~ 4.5.5 for an example with 
 .v/ D 1�v
1Cv

. Also the two constants
� and �2 depend only on ˛.v/ and ˇ.v/, but not on 
 .v/; neither do they depend on the initial
condition P0.v/. This offers the flexibility of varying 
 .v/ without changing the normal limit
law, as we did in Introduction (Figure 2), provided that Œvk �Pn.v/ > 0. Furthermore, our
conditions are very easy to check in all cases we will discuss. Finally, recurrences similar to
ours have been studied in the literature; see for example [78, 80, 130, 237] and the references
therein.

The same method of proof can be extended to the cases when the factor ˛.v/n C 
 .v/ of
Pn�1.v/ in (9) also contains higher powers of n. See Section 9 for extensions along many
different lines.

In connection with the inequalities in (11), we have the order relations for the mean and the
variance: (

if ˛ C ˇ < 0 or � ˇ

˛
> 1; then E.Xn/ � C n�

ˇ
˛ ;

if ˛ C 2ˇ < 0 or � ˇ

˛
> 1

2
; then V.Xn/ � C 0n�

2ˇ
˛ ;

where C and C 0 are constants depending on P0.v/; ˛.v/; ˇ.v/ and 
 .v/. In general, we expect
that the limit law is no more normal when ˛ C 2ˇ < 0. The same moments approach can be
extended to such a case, but we leave this aside in this paper for simplicity of presentation (also
because of few examples). For similar contexts in urn models, see [8, 142, 179].

We will prove Theorem 1 by the method of moments. We assume, throughout this section,
that ˛ > 0.

2.1. Mean value of Xn

Consider now the moment generating function

Mn.s/ WD
Pn.e

s/

Pn.1/
:

By (9), for n > 1

Mn.s/ D
˛.es/nC 
 .es/

˛nC 

Mn�1.s/ �

ˇ.es/.1 � e�s/

˛nC 

M 0

n�1.s/; (13)

with M0.s/ D
P0.e

s/

P0.1/
. The mean value can then be computed by the recurrence

�n WDM 0
n.0/ D

�
1 �

ˇ

˛nC 


�
�n�1 C

˛0.1/nC 
 0.1/

˛nC 

.n > 1/; (14)

with �0 DM 0
0.0/ D

P 0
0
.1/

P0.1/
.

For our asymptotic purpose, we will use the following approximations.
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Proposition 1 (Asymptotics of �n). The mean �n of Xn can be approximated as follows.

� If �ˇ
˛
< 1, then

�n D
˛0.1/

˛ C ˇ
nC

(
O
�
1C n�

ˇ
˛

�
; if ˇ ¤ 0I

O
�
log n

�
; if ˇ D 0:

(15)

� If �ˇ
˛
D 1, then

�n D
˛0.1/

˛
n log nC C0nCO.log n/;

where ( denoting the digamma function)

C0 WD
u0˛ C 


0.1/

˛ C 

�
˛0.1/



�
˛0.1/

˛

�
1C  

�

˛

��
:

� If �ˇ
˛
> 1, then

�n D C1n�
ˇ
˛

�
1CO

�
n�1

��
CO.n/;

where

C1 WD
�
�
1C 


˛

�
�
�
1C 
�ˇ

˛

� ��0 �

 0.1/

ˇ
�
˛0.1/.ˇ � 
 /

ˇ.˛ C ˇ/

�
:

Proof. We can solve the first-order difference equation (14) and obtain for n > 0:

� if ˇ.˛ C ˇ/ ¤ 0, then

�n D
˛0.1/

˛ C ˇ
nC


 0.1/

ˇ
C
˛0.1/.ˇ � 
 /

ˇ.˛ C ˇ/

C
�
�
1C 


˛

�
�
�
nC 1C 
�ˇ

˛

�
�
�
1C 
�ˇ

˛

�
�
�
nC 1C 


˛

� ��0 �

 0.1/

ˇ
�
˛0.1/.ˇ � 
 /

ˇ.˛ C ˇ/

�
I

(16)

� if ˇ D 0, then

�n D
˛0.1/

˛
nC

˛
 0.1/ � ˛0.1/


˛2

�
 
�
nC 1C




˛

�
�  

�
1C




˛

��
C �0I

� if ˛ C ˇ D 0, then

�n D .˛.nC 1/C 
 /

�
˛0.1/

˛2

�
 
�
nC 1C




˛

�
�  

�
1C




˛

��
C

�0

˛ C 


�
C

�

 0.1/

˛ C 

�
˛0.1/

˛

�
n:

The asymptotic approximations of the Proposition then follow from these relations. Note that
�
ˇ

˛
T 1 is equivalent to ˛ C ˇ S 0.

Corollary 1. The asymptotic estimate �n � �n is equivalent to �n � �n�1 � �.
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Proof. Note that in general situations �n � �n�1 � � implies �n � �n but not vice versa. In
our setting, this follows from rewriting (14) as

�n � �n�1 D �
ˇ�n�1

˛nC 

C
˛0.1/nC 
 0.1/

˛nC 

;

which, by the assumption �n � �n, yields

�n � �n�1 � �
ˇ

˛
�C

˛0.1/

˛
D �:

2.2. Recurrence relation for higher central moments
Assume from now on ˛ C 2ˇ > 0. Then ˛ C ˇ > 0 (since ˛ > 0), so that �n is linear by

(15) with �n ��n�1 D O.1/. The higher moments can then be computed through the moment
generating function of the centered random variables

M n.s/ WDMn.s/e
��ns;

which, by (13), satisfies the recurrence

M n.s/ D
e��ns

˛nC 


��
˛.es/nC 
 .es/

��n�1ˇ.e
s/.1 � e�s/

�
M n�1.s/ � ˇ.e

s/.1 � e�s/M 0

n�1.s/

�
;

(17)

for n > 1, where �n WD �n � �n�1 D O.1/ by Corollary 1. Write now

M n.s/ D
X
m>0

Mn;m

m!
sm;

where Mn;m D E.Xn � �n/
m, and

e��ns˛.es/ D
X
j>0

j̨

j !
sj ; e��nsˇ.es/.1 � e�s/ D

X
j>1

ǰ

j !
sj ; e��ns
 .es/ D

X
j>0


j

j !
sj ;

(18)

where all the coefficients depend on n and are bounded. Note that we have the relations Mn;0 D

1, Mn;1 D 0, ˛0 D ˛; ˇ1 D ˇ and 
0 D 
 .

Lemma 1. The mth central moment Mn;m of Xn satisfies the recurrence

Mn;m D

�
1 �

mˇ

˛nC 


�
Mn�1;m CNn;m .m > 2/; (19)

where

Nn;m WD
1

˛nC 


0@ X
26j6m

�
m

j

��
. j̨nC 
j � ǰ�n�1

�
Mn�1;m�j

�

X
26j<m

�
m

j

�
ǰMn�1;mC1�j

1A :
(20)
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Proof. By extracting the coefficient of sm on both sides of (17), we obtain (19) with

Nn;m D
1

˛nC 


0@ X
16j6m

�
m

j

�
. j̨n � ǰ�n�1 C 
j /Mn�1;m�j

�

X
26j<m

�
m

j

�
ǰMn�1;mC1�j

1A :
Since Nn;1 D 0, we have the relation

˛1n � ˇ1�n�1 C 
1 D .˛
0.1/ � ˛�n/n � 
�n � ˇ�n�1 C 


0.1/ D 0;

which is nothing but (14). Then (20) follows.

We now consider the general recurrence

xn D

�
1 �

mˇ

˛nC 


�
xn�1 C yn .n > n0 C 1/; (21)

with xn0
¤ 0 and fyngn>n0

given. Without loss of generality, we assume that

j˛ �mˇ C 
 ¤ 0 .j > n0/:

If this fails, then we can find a larger n0 such that this holds. The solution of this recurrence is
easily obtained by iteration.

Lemma 2. The solution to the recurrence (21) is given by

xn D xn0

�
�
n0 C 1C 


˛

�
�
�
nC 1C 
�mˇ

˛

�
�
�
n0 C 1C 
�mˇ

˛

�
�
�
nC 1C 


˛

� C �
�
nC 1C 
�mˇ

˛

�
�
�
nC 1C 


˛

� X
n0<k6n

�
�
k C 1C 


˛

�
�
�
k C 1C 
�mˇ

˛

� yk ;

for n > n0.

Corollary 2. Assume m > 1. If yn � cn� , where c ¤ 0, then

xn �

8̂̂̂<̂
ˆ̂:

c

1C � C mˇ

˛

n1C� ; if � > �1 � mˇ

˛
;

xn0

�
�
n0 C 1C 


˛

�
�
�
n0 C 1C 
�mˇ

˛

� n�
mˇ
˛ ; if � < �1 � mˇ

˛
:

(22)

Proof. By (2) using the asymptotic approximation to the ratio of Gamma functions (see [86,
~ 1.18])

�.nC x/

�.nC y/
D nx�y

�
1CO

�
n�1

��
; (23)

for large n and bounded x and y.
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2.3. Asymptotics of V.Xn/

To prove Theorem 1, we assume that condition (11) holds. Consider the variance. We
examine first the term ((20) with m D 2)

Nn;2 D
˛2nC 
2 � ˇ2�n�1

˛nC 

�
˛2 � ˇ2�

˛
;

where, by the definition (18),

˛2 D ˛
00.1/ � .2�n � 1/˛0.1/C�2

n˛;

ˇ2 D 2ˇ0.1/ � .2�n C 1/ˇ:

Since we assume that ˛ C 2ˇ > 0 (condition (11)), we can apply the asymptotic transfer (22)
(first case with � D 0), and obtain

Mn;2 D V.Xn/ � �
2n;

where, by Corollary 1,

�2
WD lim

n!1

˛2 � ˇ2�

˛ C 2ˇ
D �C

˛00.1/ � 2�ˇ0.1/ � ˛�2

˛ C 2ˇ
:

Note that the condition �2 > 0 is equivalent to

ˇ
�
˛00.1/C 2˛0.1/.˛0.1/C ˇ0.1//

�
> 0;

because ˛ C 2ˇ > 0.

2.4. Asymptotics of higher central moments
We now prove by induction that8<: Mn;2` �

.2`/!

`!2`
�2`n`;

Mn;2`�1 D O
�
n`�1

�
;

(24)

for ` > 1. This will imply particularly that Mn;m D O
�
nb

m
2
c
�

for m > 0. Since (24) with
` D 1 has already been proved, we now prove (24) for ` > 2. Consider first the odd case
m D 2`C 1. By (20) and induction hypothesis,

Nn;2`C1 D O

� X
26j62`C1

nb
2`C1�j

2
c

�
D O

�
n`�1

�
;

implying that Mn;2`C1 D O
�
n`
�
. When m D 2`, only the term with j D 2 in the first sum on

the right-hand side of (20) is dominant, and we see that

Nn;2` �

�
2`

2

�
˛2n � ˇ2�n�1

˛n
Mn�1;2`�2

�

�
2`

2

�
.2` � 2/!

2`�1.` � 1/!
�
˛2 � ˇ2�

˛
�2`�2n`�1

D
.2`/!

2`.` � 1/!
�
˛2 � ˇ2�

˛
�2`�2n`�1:
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By the asymptotic transfer (22) with m D 2` and � D ` � 1, we then have

Mn;2` �
˛2 � ˇ2�

`.˛ C 2ˇ/
�

.2`/!

2`.` � 1/!
�2`�2n`;

which proves the first claim in (24). This completes the proof of (24) and Theorem 1 by
Frechet-Shohat’s convergence theorem (see [55, 104]), which, for the reader’s convenience, is
included here: it states that if the kth moment of a sequence of random variables Zn tends to a
finite limit �k as n!1, and the f�kg’s are the moments of a uniquely determined distribution
function Z, then Zn converges in distribution to Z. This completes the proof of (24), and in
turn that of Theorem 1.

From the proof it is obvious that the analyticity of ˛.v/; ˇ.v/ and 
 .v/ on jvj 6 1 can be
replaced by that in jvj < 1 and the existence of all derivatives at unity. This will be needed in
Section 4.5.5.

2.5. Mean and variance in a more general setting
In general, for the framework (9) Pn 2 E hhan.v/; bn.v/IP0.v/ii, we have

Pn.1/ D P0.1/
Y

16j6n

aj .1/;

(assuming each factors positive). Normalizing both sides by Pn.1/ gives

NPn.v/ WD
Pn.v/

Pn.1/
D

an.v/

an.1/
NPn�1.v/C

bn.v/

an.1/
.1 � v/ NP 0n�1.v/:

Then the mean �n WD
NP 0n.1/ satisfies

�n D

�
1 �

bn.1/

an.1/

�
�n�1 C

a0n.1/

an.1/
;

and the variance �2
n satisfies, by the same shifting-the-mean technique used above,

�2
n D

�
1 �

2bn.1/

an.1/

�
�2

n�1 C
a00n.1/C 2a0n.1/ � 2b0n.1/�n�1

an.1/
��2

n ��n;

where �n WD �n � �n�1. These will be used later (see Section 9.8 when an.v/ is not a linear
function of n).

3. A complex-analytic approach

In addition to the method of moments, which is elementary in nature, we describe briefly
a complex-analytic approach in this section, which is equally useful in proving most of the
CLTs we derive in this paper but has remained less explored in the combinatorics literature.
Following Bender’s pioneering work [14], this approach is based on the EGF F.z; v/ of Pn.v/

(satisfying (9)) and relies on complex analysis (notably the singularity analysis [98]). It turns
out that a simple asymptotic framework in the form of quasi-powers [99, ~ IX.5] [134] proves
particularly useful for establishing the asymptotic normality of the coefficients of Pn.v/.
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3.1. The partial differential equation and its resolution
We begin with the PDE satisfied by the EGF of Pn.v/ (defined in (9))(

.1 � ˛.v/z/@zF � ˇ.v/.1 � v/@vF � .˛.v/C 
 .v//F D 0;

F.0; v/ D P0.v/:
(25)

Such a first-order equation can often be solved by the method of characteristics (see [92, 192]),
which first reduces a PDE to a family of ordinary DEs and then integrate the solutions with the
initial or boundary conditions. For (25), we start with the characteristic equation

dz

1 � ˛.v/z
D �

dv
ˇ.v/.1 � v/

D
dF

.˛.v/C 
 .v//F
: (26)

The first equation can be written as

dz

dv
�

˛.v/

ˇ.v/.1 � v/
z C

1

ˇ.v/.1 � v/
D 0; (27)

which is not always exactly solvable. In the special case when ˛.v/ D ˇ.v/ (as in Sections 4
and 5), the above DE becomes

.1 � v/
dz

dv
� z D

d
dv
..1 � v/z/ D �

1

ˇ.v/
:

Since ˇ.v/ is in most cases a polynomial of low degree, this DE can often be solved explicitly.
Such a simplification does not apply in general when ˛.v/ ¤ ˇ.v/, but we can still follow the
standard procedure to characterize the solution (mostly in implicit forms).

From (27), we see that either we have an ODE of separable type, or we have an explicit
form for the integrating factor

I.v/ WD exp
�
�

Z
˛.v/

ˇ.v/.1 � v/
dv
�
;

the function in the exponent is taken as an antiderivative (or indefinite integral), which is then
used to solve the DE (27) by quadrature as

d
dv

�
I.v/z C

Z
I.v/

ˇ.v/.1 � v/
dv
�
D 0” �.z; v/ D C:

Here the first integral �.z; v/ can be made explicit in many cases we study in this paper. For
example, when ˛.v/ D ˇ.v/, we have

�.z; v/ D .1 � v/z C

Z
dv
ˇ.v/

; (28)

where the integral is again an antiderivative. We then have the first characteristics, which, after
the changes of variables u D �.z; v/, w D v and H.u; w/ D F.z; v/, leads to the ODE

@

@w
H.u; w/C

˛.w/C 
 .w/

ˇ.w/.1 � w/
H.u; w/ D 0;

17



which is the second equation of (26). This first-order DE is then solved and we obtain the
general relations

g.w/H.u; w/ D G.u/” g.v/F.z; v/ D G.�.z; v//;

where the integrating factor g has the form

g.v/ D exp
�Z

˛.v/C 
 .v/

ˇ.v/.1 � v/
dv
�
:

The last step is to specify G by using the initial value at z D 0:

g.v/P0.v/ D G.�.0; v//:

We then conclude that

F.z; v/ D
G.�.z; v//

g.v/
: (29)

This standard approach works for almost all cases we examine in this paper and has also been
used in the combinatorics literature; see for example, [4, 10, 52, 239].

Consider for example the Eulerian recurrence of type E hhqvnCpC .qr �p� q/v; qvI 1ii;
see (35) below. Then we have

I.v/ D exp
�
�

Z
dv

1 � v

�
D 1 � v

g.v/ D exp
�Z

p.1 � v/C qrv

qv.1 � v/
dv
�
D v

p
q .1 � v/�r ;

and, by P0.v/ D 1,

G
�
q�1 log v

�
D g.v/; or G.w/ D epw

�
1 � eqw

��r
:

Finally, by (29),

F.z; v/ D v�
p
q .1 � v/rep.1�v/zC 1

q
log v�1 � veq.1�v/z

��r
D ep.1�v/z

�
1 � v

1 � veq.1�v/z

�r

:

When the integrals involved have no explicit forms such as the recurrence E hh.pC qv/nC

1 � p � qv; vI 1ii (see [209] or Section 5.2 below), we can still apply the same procedure and
get a solution in implicit form:

F.z; v/ D
1 � v

v
�

T
�
S.v/C .1�v/pCqz

vp

�
1 � T

�
S.v/C .1�v/pCqz

vp

� ; (30)

where T .S.v// D v and

S.v/ D

Z
v�p�1.1 � v/pCq�1 dv: (31)

18



The form (30) is understood in the following formal power series sense:

T

�
S.v/C

.1 � v/pCqz

vp

�
D

X
m>0

T .m/.S.v//

m!

�
.1 � v/pCq

vp

�m

zm;

where T .S.v// D v and T .m/.S.v// are expressible in terms of S .j/.v/ for m; j > 1, which
in turn are well-specified by

S 0.v/ D v�p�1.1 � v/pCq�1;

and then S .m/ D .S .m�1//0 for m > 2.
It is also possible to extend the approach when the non-homogeneous terms are present; see

the examples in Sections 5.1.1, 5.2, 5.3, 5.4.1, 5.4.2, 5.5.1, and 5.5.3.
For ease of reference, we list the first integrals �.z; v/ in Table 3 for most examples (leading

to asymptotic normality) studied in this paper.

Section .˛.v/; ˇ.v// �.z; v/

~ 4 .qv; qv/ .1 � v/z C q�1 log v

~ 5.1 .qv; v/ .1 � v/qz C
R
v�1.1 � v/q�1 dv

~ 5.1.1 .1
2
v; v/

p
1 � vz C 1

2
log v � log

�
1C
p

1 � v
�

~ 5.2 .p C qv; v/ .1�v/pCq

vp z C
R
v�p�1.1 � v/pCq�1 dv

~ 5.3
�

1
2
.1C v/; 1

2
.3C v/

� p
.1 � v/.3C v/ z C 2 arcsin.1

2
.1C v//

~ 5.4.1 .v; 1C v/
p

1 � v2 z C arcsin.v/

~ 5.4.1 .v2; v.1C v//
p

1 � v2 z � arctanh
�p

1 � v2
�

~ 5.4.2
�

1
2
.1C v2/; 1

2
.1C v2/

�
.1 � v/z C 2 arctan.v/

~ 5.4.3 .v.1C v/; v.1C v// .1 � v/z C log v
1Cv

~ 5.4.4 .2v2; v.1C v// .1 � v2/z � log v

~ 5.5.1 .2qv; q.1C v// .1 � v2/z � 1
q
v

~ 5.5.2 .2.1C v/; 3C v/ .1 � v/.3C v/z C v

~ 5.5.3 .q.1C 3v/; 2qv/ .1�v/2
p
v

z � 1Cv
q
p
v

~ 5.5.4 .5C 3v; 2.1C v// .1�v/2
p

1Cv
z � 3Cvp

1Cv

~ 5.5.5 .1
3
.7C 2v/; 1

3
.5C 4v/ 1�vp

5C4v
z � 3

2
p

5C4v

~ 5.5.6 .1C 3v2; v.1C v// .1�v2/2

v
z � 1Cv2

v

~ 5.6 .�1C .q C 1/v; qv/ v
1
q .1 � v/z C v

1
q

Table 3: The first integrals in some exactly solvable cases of (25).
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3.2. Singularity analysis and quasi-powers theorem for CLT
Most EGFs in this paper have either algebraic or logarithmic singularities and it is possible

to study the limit laws of the coefficients by examining the singular behavior of the EGF near
its dominant singularity; see [14, 109, 100, 133]. The following theorem, from Flajolet and
Sedgewick’s book [99, p. 676, ~ IX.7.2], is very useful for all Eulerian recurrences we study
in this paper and leads to a CLT with optimal convergence rate; see also [14] for the original
meromorphic version. The proof relies on the uniformity provided by the singularity analysis
[98] coupling with the quasi-powers theorems [99, ~ IX.5].

Notation. For notational convenience, we will write Xn � N
�
�n; �2nI "n

�
, which means

Xn � N .�n; �2n/ with the convergence rate "n:

sup
x2R

ˇ̌̌̌
P
�

Xn � �n

�
p

n
6 x

�
�ˆ.x/

ˇ̌̌̌
D O."n/;

where "n ! 0. The convergence rate in the CLT is often referred to as the Berry-Esseen bound
in the probability literature. We will use interchangeably both terms.

Theorem 2 (Algebraic Singularity Schema). Let F.z; v/ be an analytic function at .z; v/ D
.0; 0/with nonnegative coefficients. Under the following three conditions, the random variables
Xn defined via the coefficients of F :

E
�
vXn

�
WD

Œzn�F.z; v/

Œzn�F.z; 1/

satisfy Xn � N .�n; �2nI n�
1
2 /, where the convergence rate is, modulo the implied constant,

optimal. The three conditions are:

1. Analytic perturbation: there exist three functions ƒ;K; ‰, analytic in a domain D WD

fjzj 6 �g � fjv � 1j 6 "g, such that, for some �0 with 0 < �0 6 �, and " > 0, the
following representation holds, � … Z60,

F.z; v/ D ƒ.z; v/CK.z; v/‰.z; v/��I (32)

furthermore, assume that, in jzj 6 �, there exists a unique root � > 0 of the equation
‰.z; 1/ D 0, that this root is simple, and that K.�; 1/ ¤ 0.

2. Non-degeneracy: one has @z‰.�; 1/ � @v‰.�; 1/ ¤ 0, ensuring the existence of a non-
constant �.v/ analytic at v D 1, such that ‰.�.v/; v/ D 0 and �.1/ D �.

3. Variability: �2.�/ WD �00.1/

�.1/
C

�0.1/

�.1/
�
�
�0.1/

�.1/

�2
¤ 0.

For our purpose, we show how the two constants .�; �2/ can be computed from the domi-
nant singularity �.v/. By the asymptotic approximation (see [99, Eq. (64), p. 678])

Œzn�F.z; v/ D g.v/n��1�.v/�n
�
1CO

�
n�1

��
; (33)

where the O-term holds uniformly in a neighborhood of v D 1, we see that

E
�
vXn

�
D

g.v/

g.1/
exp

�
n log

�.1/

�.v/

� �
1CO

�
n�1

��
;
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uniformly for jv � 1j 6 ". Thus

� D �Œs� log �.es/ D �
�0.1/

�
and �2.�/ D 2Œs2� log �.es/: (34)

Note also that

�0.1/ D �
@v‰.�; 1/

@z‰.�; 1/
;

and it is often simpler to replace the second condition (of the Theorem) by �0.1/ ¤ 0 or � ¤ 0.
We illustrate the use of these expressions by the simplest example when F has the form

(see (36))

F.z; v/ D ep.1�v/z

�
1 � v

1 � veq.1�v/z

�r

;

where q; r > 0 and p 6 qr (implying that Œznvk �F.; v/ > 0). With the notations of (32), we
take � D r , ƒ D 0, K.z; v/ D ep.1�v/z and

‰.z; v/ WD
1 � veq.1�v/z

1 � v
:

Then the dominant singularity �.v/ solves the equation 1 D veq.1�v/z and �.1/ D q�1, namely,

�.v/ D
log v

q.v � 1/
:

One checks that ��0.1/ D 1
2q
¤ 0. Also by the Taylor expansion

� log �.es/ D log q C
s

2
C

X
k>1

Bernoulli2k

.2k/ � .2k/!
s2k

D log q C
s

2
C

s2

24
�

s4

2880
C

s6

181400
CO

�
jsj8

�
;

we then obtain .�; �2/ D
�

1
2
; 1

12

�
. We see that the variance constant does not require the

calculation of the second moment and the square of the mean, making it a cancellation-free ap-
proach for computing the variance; see [133] for more information on quasi-powers framework.
Furthermore, finer results such as cumulants of higher orders and more effective asymptotic ap-
proximations can be derived. For example, in the above case, we see that all odd cumulants are
bounded, and all even cumulants are asymptotically linear; in particular, the fourth and sixth
cumulants are asymptotic to � 1

120
n and 1

252
n, respectively.

In Table 4, we list the mean and the variance constants of a few cases to be discussed below.

Section .˛.v/; ˇ.v// F.z; v/ �.v/ .�; �2/

~ 4 .qv; qv/ (36) log v
q.v�1/

�
1
2
; 1

12

�
~ 5.1 .qv; v/ (46)

R 1

v t�1.1�t/q�1 dt

.1�v/q

� q
qC1

; q2

.qC1/2.qC2/

�
~ 5.1.1 .v; 2v/ (50) 1

2
p

1�v
log 1C

p
1�v

1�
p

1�v

�
1
3
; 2

45

�
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~ 5.2 .p C qv; v/ (30)
R 1

v t�p�1.1�t/pCq�1 dt

v�p.1�t/pCq .?/

~ 5.3
�

1
2
.1C v/; 1

2
.3C v/

�
(57) 2 arccos 1Cv

2p
.1�v/.3Cv/

�
1
6
; 23

180

�
~ 5.4.1 .v; 1C v/ (60) arccos.v/

p
1�v2

�
1
3
; 8

45

�
~ 5.4.1 .v2; v.1C v// (60) log.1C

p
1�v2/�log v
p

1�v2

�
2
3
; 8

45

�
~ 5.4.2

�
1
2
.1C v2/; 1

2
.1C v2/

�
(64)

arccos
�

2v

1Cv2

�
v�1

�
1
2
; 5

12

�
~ 5.4.3 .v.1C v/; v.1C v// (66) 1

1�v
log 1Cv

2v

�
3
4
; 7

48

�
~ 5.4.4 .2v2; v.1C v// (68) � log v

1�v2

�
1; 1

3

�
~ 5.5.1 .2qv; q.1C v// (71) 1

q.1Cv/

�
1
2
; 1

4

�
~ 5.5.2 .2.1C v/; 3C v/ (73) 1

3Cv

�
1
4
; 3

16

�
~ 5.5.3 .q.1C 3v/; 2qv/ (75) 1

q.1C
p
v/2

�
1
2
; 1

8

�
~ 5.5.4 .5C 3v; 2.1C v// (76) 1

.
p

2C
p

1Cv/2

�
1
4
; 5

32

�
~ 5.5.5 .1

3
.7C 2v/; 1

3
.5C 4v/ (77) 2

3C
p

5C4v

�
1
9
; 2

27

�
~ 5.5.6 .1C 3v2; v.1C v// (78) 1

.1Cv/2

�
1; 1

2

�
~ 5.6 .�1C .q C 1/v; qv/ (79) v

� 1
q �1

1�v

�qC1
2q
; q2�1

12q2

�
Table 4: The dominant singularity �.v/ and the corresponding mean and variance constants in
some exactly solvable cases of (25). Here .?/ D

�
q

pCqC1
; q.pC1/.pCq/

.pCqC1/2.pCqC2/

�
; see ~ 5.2.

In the next two sections (and in Section 9), we will apply both Theorem 1 and Theorem 2
to polynomials whose coefficients follow asymptotically normal limit laws. The main differ-
ences between the two theorems when specializing to Eulerian recurrences are similar to those
between an elementary and an analytic approach to asymptotics (see [50, 197]): Theorem 1
is more general but gives weaker results, while Theorem 2 gives stronger approximations but
needs the availability of tractable EGFs (often from solving the corresponding PDEs). Note
that both theorems are not limited to Eulerian recurrences.

Theorem 1 Theorem 2
nature elementary complex-analytic

based on recurrence (9) generating function
CLT no rate with optimum rate

4. Applications I: .˛.v/; ˇ.v// D .qv; qv/ H) N
�

1
2
n; 1

12
n
�

We gather in this section many applications of Theorems 1 and 2, grouping them according
to the pair .˛.v/; ˇ.v// D .qv; qv/; other pairs with ˛.v/ ¤ ˇ.v/ or nonlinear ˛.v/; ˇ.v/ are
further categorized in the next section. Despite our efforts to be comprehensive, omissions may
still remain in view of the large literature on Eulerian numbers and their applications.

Before our discussions, we observe that the following three simple transformations on poly-
nomials do not change essentially the distribution of the coefficients:

� shift: Pn.v/ 7! PnCm.v/,
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� translation: Pn.v/ 7! vmPn.v/, and

� reciprocity (or row-reverse): Pn.v/ 7! Qn.v/ WD vnCmPn

�
1
v

�
, where m is properly

chosen so that Qn.v/ is a polynomial in v and is referred to as the reciprocal polynomial
of Pn.

In particular, the polynomials Qn.v/ WD vnCmPn.
1
v
/ of Pn (defined in (9)) satisfy the recur-

rence

Qn 2 E
˝̋ �
v˛
�

1
v

�
� v.1 � v/ˇ

�
1
v

��
nC v


�
1
v

�
� .m � 1/v.1 � v/ˇ

�
1
v

�
; v2.1 � v/ˇ

�
1
v

�˛̨
:

Note specially that if Xn (and Yn) is defined by the coefficients of Pn (and Qn) as in (10), then
XnC Yn D nCm. These operations sometimes provide additional computational efficiencies.
In particular, we may assume in many cases that P0.v/ D 1 and start the recurrence (9) from
n D 1.

For an easier classification of the examples, we introduce further the following definition.

Definition 1 (Equivalence of distributions). Two random variables Xn and Yn are said to be
equivalent (or have the same distribution) if Xn C dYnCm D cn for n > n0 for some constant
d ¤ 0, integers m and n0 and a deterministic sequence cn.

Eulerian numbers are the source prototype of our framework (9), and we saw in Intro-
duction that they satisfy (9) with ˛.v/ D ˇ.v/ D v. Theorem 1 applies since ˛ D ˇ D

˛0.1/ D ˇ0.1/ D 1, and, by (12), � D 1
2

and �2 D
1

12
. The literature abounds with diverse

extensions and generalizations of Eulerian numbers. It turns out that exactly the same limiting
N
�

1
2
n; 1

12
n
�

behavior appears in a large number of variants, extensions, and generalizations of
Eulerian numbers (by a direct application of Theorem 1), which we examine below. Further-
more, in almost all cases, the stronger result N

�
1
2
n; 1

12
nI n�

1
2

�
also follows from a direct use

of Theorem 2.

4.1. The class A .p; q; r/

One of the most common patterns we found with very rich combinatorial properties among
the extensions of Eulerian numbers is of the form

Pn 2 E hhqvnC p C .qr � q � p/v; qvI 1ii; (35)

which covers more than 60 examples in OEIS (and many other non-OEIS ones) and leads
always to the same N

�
1
2
n; 1

12
nI n�

1
2

�
behavior. The EGF of Pn satisfies the PDE

.1 � qvz/@zF � qv.1 � v/@vF D .p C .qr � p/v/F;

with F.0; v/ D 1, which has the closed-form solution (see Section 3.1)

F.z; v/ D ep.1�v/z

�
1 � v

1 � veq.1�v/z

�r

: (36)

For convenience, we will write this form as F 2 A .p; q; r/. We also write cA .p; q; r/ to
denote the class of polynomials whose EGFs are of the form cF.z; v/. Although it is possible
to restrict our consideration to only the case q D 1 by a simple change of variables, we keep
the form of three parameters (p; q; r ) for a more natural presentation of the diverse examples.

For later reference, we state the following result.
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Theorem 3. Assume that the EGF F of Pn is of type F 2 A .p; q; r/. If q; r > 0 and
0 6 p 6 qr , then the random variables Xn defined on the coefficients of Pn ((10)) satisfies
Xn � N

�
1
2
n; 1

12
nI n�

1
2

�
. More precise approximations to the mean and the variance are given

by

E.Xn/ D
nC r

2
�

p

q
CO.n�1/; and V.Xn/ D

nC r

12
CO.n�2/: (37)

Proof. Observe that q; r > 0 and p 6 qr imply Pn.1/ > 0 for n > 0 and Œvk �Pn.v/ > 0 for
k; n > 0. The CLT without rate N

�
1
2
n; 1

12
n
�

follows easily from Theorem 1. The stronger
version with optimal rate is proved by applying Theorem 2 (as already discussed in Section 3.2).
The finer estimates for E.Xn/ and V.Xn/ are obtained by a direct calculation using either the
recurrence E hhqvnCpC .qr � q�p/v; qvI 1ii or the EGF (by computing Œznt �F.z; 1C t/ for
the mean and 2Œznt2�F.z; 1C t/ for the second factorial moment). Note specially the smaller
error term in the variance approximation in (37); also when r D 1, both O-terms in (37) are
identically zero for n > 2.

Lemma 3. If F 2 A .p; q; r/, then
 

F2 A .qr � p; q; r/, where
 

F .z; v/ WD F.vz; 1
v
/ denotes

the EGF of the reciprocal polynomial of Pn, and if p D qr , then @zF 2 pA .p; q; r C 1/.

The proof is straightforward and omitted. Note that @zF corresponds to the EGF of PnC1.

Corollary 3. If F 2 A .p; q; r/ with p D 1
2
qr , then Pn is symmetric or palindromic, namely,

Pn.v/ D v
nPn

�
1
v

�
.

Definition 2. We write Xn.p; q; r/
d
≈ Xn.p

0; q0; r 0/ if the random variables associated with the
two types A .p; q; r/ and A .p0; q0; r 0/ (defined as in (10)), respectively, are equivalent in the
sense of Definition 1.

Corollary 4. If p ¤ qr , then Xn.p; q; r/
d
≈ Xn.qr � p; q; r/; if p D qr , then

Xn.qr; q; r/
d
≈ Xn.0; q; r/

d
≈ Xn.qr; q; r C 1/

d
≈ Xn.q; q; r C 1/: (38)

This shows partly the advantages of considering the framework (35) and the EGF (36).
We now discuss some concrete examples grouped according to increasing values of q. Most

CLTs and their optimal Berry-Esseen bounds are new.

4.2. q D 1

Eulerian numbers. By (6), the Eulerian numbers are of type A .1; 1; 1/, and, by Lemma 3, also
of types A .1; 1; 2/ and A .0; 1; 1/. The correspondence to OEIS sequences is as follows.

Description OEIS Type (in A ) Type (in E )
Eulerian numbers (1 6 k 6 n) A008292 A .0; 1; 1/ � 1 E1hhvn; vI vii

Eulerian numbers (1 6 k 6 n) A123125 A .0; 1; 1/ E hhvn; vI 1ii

Eulerian numbers (0 6 k < n) A173018 A .1; 1; 1/ E hhvnC 1 � v; vI 1ii

Note that vA .1; 1; 1/ D A .0; 1; 1/C v�1. In addition to these, with Pn defined by A123125,
the sequence A113607 equals vnC1C 1CPn.v/ (with 1’s at both ends of each row); we obtain
the same CLT.
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LI Shanlan numbers. LI Shanlan3 (1810–1882) in his 1867 book Duoji Bilei4 [160, Ch. 4]
(Series Summations by Analogies) studied A .1; 1; r C 1/, where r D 0; 1; : : : ; see [165, 246]
(in Chinese), [184, p. 350], and [240, Part II] for more modern accounts. In our format, Pn

satisfies

Pn 2 E hhvnC 1C .r � 1/v; vI 1ii: (39)

The first few rows of these LI Shanlan numbers are given in Table 5.

nnk 0 1 2 3 4

0 1

1 1 r

2 1 1C 3r r2

3 1 4C 7r 1C 4r C 6r2 r3

4 1 11C 15r 11C 30r C 25r2 1C 5r C 10r2 C 10r3 r4

Table 5: The first few rows of the polynomial E hhvnC 1C .r � 1/v; vI 1ii.

Indeed, LI derived in [160] the identityX
16j6m

j n

�
j C r � 1

j � 1

�
D

X
06k6n

�
mC n � k C r

m � 1 � k

�
Œvk �Pn.v/

only for n D 1; 2; 3 (generalizing a version of the identity later often named after Worpitzky
[242]), and mentioned the straightforward extension to higher powers, which was later carried
out in detail by Zhang [246], who also obtained many interesting expressions for Pn.v/.

By Corollary 4, we see that

Xn.1; 1; r C 1/
d
≈ Xn.0; 1; r/

d
≈ Xn.r; 1; r/

d
≈ Xn.r; 1; r C 1/: (40)

Also by a change of variables, we have for any p > 0

Xn.1; 1; r C 1/
d
≈ Xn.p;p; r C 1/: (41)

In particular, the cases r D 0; 1 correspond to Eulerian numbers (so that A .2; 2; 2/ also leads
to the same Eulerian distribution A008292), and the cases r D 2; : : : ; 5 appear in OEIS with
suitable offsets (see the table below), where they are referred to as r -Eulerian numbers whose
generating polynomials satisfy Pn 2 Er hhvnC 1 � v; vI 1ii, which equals (39) by shifting n to
n � r ; see also Section 4.5.2.

3This author’s name appeared in the western literature “under a bewildering variety of fanciful spellings such
as Li Zsen-Su or Shoo Le-Jen” (quoted from [184, Ch. 18]) or Le Jen Shoo or Li Jen-Shu or Li Renshu. We
capitalize his family name to avoid confusion.

4In LI’s context, “Duo” means some binomial coefficients, “Ji” means summation, “Bi” is “to compare” and
“Lei” is to classify (and “Bilei” means to compile and compare by types).
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Description OEIS Type Equivalent types
2-Eulerian A144696 A .1; 1; 3/ A .0; 1; 2/, A .2; 1; 2/;A .2; 1; 3/

3-Eulerian A144697 A .1; 1; 4/ A .0; 1; 3/, A .3; 1; 3/;A .3; 1; 4/

4-Eulerian A144698 A .1; 1; 5/ A .0; 1; 4/, A .4; 1; 4/;A .4; 1; 5/

5-Eulerian A144699 A .1; 1; 6/ A .0; 1; 5/, A .5; 1; 5/;A .5; 1; 6/

6-Eulerian A152249 A .1; 1; 7/ A .0; 1; 6/, A .6; 1; 6/;A .6; 1; 7/

These numbers found their later use in data smoothing techniques; see [188, ~4.3]. For more
information on r -Eulerian numbers, see [18, 171, 185] and the corresponding OEIS pages.
Combinatorial interpretation of the polynomials of type A .1; 1; r/ was discussed by Carlitz
in [30]; these polynomials were also examined in the recent paper [39] (without mentioning
Eulerian numbers). The distribution associated with A .0; 1;p/ appeared in [77] and later in a
random walk model [141].

The type A .q; 1; q/ (switching from r to q for convention) has also been studied in the
combinatorics literature, corresponding to the recurrence satisfied by the q-analogue of Eule-
rian numbers (Sn being the set of all permutations of n elements)

Pn.v/ D
X
�2Sn

qcycle.�/vexceedance.�/C1;

which is of type

Pn 2 E hhvnC q � v; vI 1iiI (42)

see Foata and Schützenberger’s book [101, Ch. IV] for a detailed study. See also [208, p. 235]
and [28, 77, 139, 178]. The type A .2; 1; 1/ (with the different initial condition P2.v/ D 2)
enumerates big (> 2) descents in permutations:

Big descents in perms. A120434 A .2; 1; 2/ E1hhvnC 2 � v; vI 2ii

Reciprocal of A120434 A199335 A .0; 1; 2/ E hhvnC v; vI 1ii

As already indicated above, these two distributions are also equivalent to those of 2-Eulerian
numbers and of A .2; 1; 3/.

By Theorem 3, the polynomials (42) with any real q > 0 lead to the same N
�

1
2
n; 1

12
nI n�

1
2

�
asymptotic behavior.

Generalized Eulerian numbers [37, 190]. Morisita [190] introduced in 1971 in statistical ecol-
ogy a class of distributions, which corresponds to A .p; 1;p C q/ in our notation, or

Pn 2 E hhvnC p C .q � 1/v; vI 1ii: (43)

By Corollary 4, Xn.p; 1;p C q/
d
≈ Xn.q; 1;p C q/. Such polynomials were also inde-

pendently studied in 1974 by Carlitz and Scoville [37], and are referred to as the generalized
Eulerian numbers; see [42, 140, 141].

The CLT for the coefficients of (43) was later derived in [42] in a statistical context by
checking the real-rootedness property and Lindeberg’s condition, as motivated by [140, 190],
where the usefulness of these numbers is further highlighted via a few concrete models. See
also [141] for more models leading to Xn.p; 1;p C q/.

In the context of random staircase tableaux, these polynomials were also examined in detail
by Hitczenko and Janson [128], where they derived not only a CLT but also an LLT. Moreover,
they also address the situation when p and q may become large with n.
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Euler-Frobenius numbers. Dwyer [82] studied A .p; 1; 1/, referred to as the “cumulative num-
bers” but better known later as the Euler-Frobenius numbers; see for example [111, 124, 144,
208] and the references therein. They are called non-central Eulerian numbers in [44, p.
538]. The coefficients of such polynomials are nonnegative if p 2 Œ0; 1�; see also [102, 147].
The asymptotic normality N

�
1
2
n; 1

12
n
�

of the coefficients is first proved in [124] and later in
[59, 111, 144] by different approaches; see also [111, 124, 133, 144] for local limit theorems.
In particular, an asymptotic expansion for p D 0 (Eulerian numbers) was derived in the Ph.D.
Thesis of the first author [133, p. 76], the approach there being based on a framework of quasi-
powers [99, 134] and a direct Fourier analysis.

This class of polynomials is more useful than it seems because the coefficients of any poly-
nomial of type A .p; q; 1/ with q > 0 have the same distribution as A .p

q
; 1; 1/, which has

nonnegative coefficients when 0 6 p 6 q; see [144] for details.

4.3. q D 2

Eulerian numbers. The sequence of polynomials A296229, which corresponds to 2n
˝
n

k

˛
, is of

type (shifting n by 1) 2A .2; 2; 2/, which has the same distribution as Eulerian numbers; see
(41).

MacMahon numbers (or Eulerian numbers of type B). MacMahon numbers (first introduced in
[177]) are generated by the recurrence Pn 2 E hh2vnC1�v; 2vI 1ii, which is of type A .1; 2; 1/;
see Figure 3. Their signed version is A138076, and a doubled-power version (with a zero
between every two entries) is A158781. The CLT N

�
1
2
n; 1

12
n
�

was proved in [49, 71, 144];
see also [76, 214]. The stronger results N

�
1
2
n; 1

12
nI n�

1
2

�
for these numbers follow readily

from Theorem 3.

Eulerian numbers of type B A060187 A .1; 2; 1/ E hh2vnC 1 � v; 2vI 1ii

A060187: v 7! v2 A158781 E hh2v2nC 1 � v2; v.1C v/I 1ii

Signed version of A060187 A138076

The signed version A138076 can on the other hand be generated by P0.v/ D 1 and

Pn.v/ D .2vn � 1 � v/Pn�1.v/ � 2v.1C v/P 0n�1.v/ .n > 1/;

whose EGF has the closed form expression A .1; 2; 1/ but with v 7! �v and z 7! �z.

Polynomials arising from higher order derivatives. Many polynomials of the Eulerian type (9)
are generated by successive differentiations of a given base function. Indeed, this is the very
first genesis of Eulerian numbers (see [91]):

.xDx/
n 1

1 � x
D

Pn.x/

.1 � x/nC1
; where Pn is of type A .0; 1; 1/:

For type B

Dn
x

ex

1 � e2x
D

exPn.e
2x/

.1 � e2x/nC1
; where Pn is of type A .1; 2; 1/:

Changing the base function to 1
p

1�x
gives

.xDx/
n 1
p

1 � x
D

Pn.x/

2n.1 � x/nC
1
2

; where Pn is of type A .0; 2; 1
2
/:
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The last Pn D A156919.n/ D vA185411.nC 1/. (The former is A .2; 2; 3
2
/ while the latter is

A .0; 2; 1
2
/). The same polynomials also appear in [170] in the form

.tan.x/Dx/
n sec x D .sec x/2nC1Pn.sin2 x/; where Pn is of type A .0; 2; 1

2
/:

By Corollary 4

Xn.0; 2;
1
2
/

d
≈ Xn.1; 2;

1
2
/

d
≈ Xn.1; 2;

3
2
/

d
≈ Xn.2; 2;

3
2
/:

In particular, A
�
1; 2; 1

2

�
(the reciprocal of A156919) also appears in [213] and corresponds to

A185410.
More generally, we have

.xDx/
n.1 � x/�r

D
Pn.x/

.1 � x/nCr
; where Pn is of type A .0; 1; r/;

and we have the equivalence relations (40).
On the other hand, Lehmer [159] shows that, with g.x/ WD x arcsin x

p
1�x2

,

.xDx/
ng.x/ D

Pn.x
2/g.x/C x2Rn.x

2/

.1 � x2/n
; where Pn is of type A .1; 2; 1

2
/; (44)

and Rn is Eulerian with a non-homogeneous term:

Rn.v/ D .2vnC 2 � 4v/Rn�1.v/C 2v.1 � v/R0n�1.v/C Pn�1.v/ .n > 1/; (45)

with R0.v/ D 0. The EGF of Rn.v/ can be solved to be (by the approach described in Sec-
tion 3.1)

e.1�v/z
arcsin

�
2ve2.1�v/z � 1

�
� arcsin.2v � 1/

2
p
v.1 � ve2.1�v/z/

:

The optimal CLT N .1
2
n; 1

12
nI n�

1
2 / for the coefficients of Lehmer’s polynomials Pn (44) and

Rn follows from an application of Theorem 2; see Figure 3 for an illustration of the histograms.
The CLT N .1

2
n; 1

12
n/ for this Pn or A .0; 2; 1

2
/ was previously derived in [170] by the real-

rootedness and unbounded variance approach. An LLT was also established by Bender [14].
See [171] for a general treatment of derivative polynomials generated by context-free gram-
mars.

.xDx/
n 1
p

1�x
A185411 A .0; 2; 1

2
/

vA185411.nC 1/ A156919 A .2; 2; 3
2
/

Lehmer’s polynomials A185410 A .1; 2; 1
2
/

Stirling permutations of the second kind [175]: A .q; 2; q

2
/. Ma and Yeh [175] extended the

Stirling permutations of Gessel and Stanley [112] and studied the so-called cycle ascent plateau,
leading to polynomials of the type A .q; 2; q

2
/. When q D 1, we get Lehmer’s polynomial

(A185410), and when q D 2, we get Eulerian numbers (up to a factor of 2n). The CLT
N
�

1
2
n; 1

12
nI n�

1
2

�
for the coefficients (for any real q > 0) follows from Theorem 3.
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Type B Eulerian Lehmer’s Pn (44) Lehmer’s Rn (45)
A060187 A .1; 2; 1/ A185410 A .1; 2; 1

2
/�

1
2
n; 1

12
nC 1

12

� �
1
2
n � 1

4
; 1

12
nC 1

24

� �
1
2
n � 11

12
; 1

12
n � 1

360

�
Figure 3: While we have the same CLT N .1

2
n; 1

12
nI n�

1
2 / for the three classes of polynomi-

als, their differences are reflected in the finer asymptotic approximations to the mean and the
variance, displayed in the last row with the format .mean, variance/; see (37).

Franssen’s A .p; 2;p/ [103]. The expansion� u � v

ue�.u�v/z � ve.u�v/z

�p

D

X
n>0

Rn.u; vIp/
zn

n!

is studied in [103]. Let Pn.v/ WD Rn.1; vIp/. Then Pn 2 E hh2vn C p C .p � 2/v; 2vI 1ii,
which is of type A .p; 2;p/. Note that when p D 1 we get type B Eulerian numbers and
when p D 2, we get 2n

˝
nC1

k

˛
. For any real p > 0, we then obtain the asymptotic normality

N
�

1
2
n; 1

12
nI n�

1
2

�
for the coefficients of Pn.

4.4. General q > 0

Savage and Viswanathan’s A
�
1; q; 1

q

�
[213]. A class of polynomials called 1=k-Eulerian is

examined in [213] (we changed their k to q for convenience) and is of type Pn 2 E hhqvnC1�

qv; qvI 1ii.
In addition to Eulerian numbers when q D 1, one gets Lehmer’s polynomials (44) (or

A185410) when q D 2. By Corollary 4

Xn

�
1; q; 1

q

� d
≈ Xn

�
0; 1; 1

q

� d
≈ Xn

�
1; q; 1

q
C 1

� d
≈ Xn

�
q; q; 1

q
C 1

�
;

for any q > 0, which is a special case of (40) and (41).

Strasser’s A
�
1; q; 2

q

�
[229]. A general framework studied in [229] is of the form Pn 2 E hhqvnC

1� .q � 1/v; qvI 1ii, where q D 1; 2; : : : . These polynomials are palindromic. Note that when
q D 0; 1 and 2, one gets binomial coefficients A007318, Eulerian numbers A008292, and
MacMahon numbers A060187, respectively.

A142458 A .1; 3; 2
3
/ A142459 A .1; 4; 1

2
/ A142460 A .1; 5; 2

5
/

A142461 A .1; 6; 1
3
/ A142462 A .1; 7; 2

7
/ A167884 A .1; 8; 1

4
/

On the other hand, the first few rows of Pn.v/ read P1.v/ D 1Cv, P2.v/ D 1C2.1Cq/vCv2

and

P3.v/ D 1C .3C 6q C 2q2/v C .3C 6q C 2q2/v2
C v3:

Numerically,
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q 1 2 3 4 5 6 7 8

3C 6q C 2q2 11 23 39 59 83 111 143 179

We see that the CLT N
�

1
2
n; 1

12
nI n�

1
2

�
remains the same for q > 0 although these coefficients

are more concentrated near the middle range for growing q.

Brenti’s q-Eulerian polynomials [25]. A different q-analogue of Eulerian numbers considered
in [25] is of the form Pn 2 E hhqvnC 1� v; qvI 1ii, which is of type A .1; q; 1/; see also [226].
These polynomials also arise in the analysis of carries processes; see [193]. The reciprocal
polynomials are of type A .q � 1; q; 1/, which appeared on the webpage [166]. In addition to
Eulerian and MacMahon numbers for q D 1 and q D 2, respectively, we also have

A225117 A .2; 3; 1/ Reciprocal of A .1; 3; 1/

A225118 A .3; 4; 1/ Reciprocal of A .1; 4; 1/

A158782 A .1; 4; 1/ v 7! v2: E hh4v2nC 1 � v2; 2v.1C v/I 1ii

The CLT and LLT when q > 1 were derived in [54] by the real-rootedness and Bender’s
approach [14], respectively.

Eulerian numbers associated with arithmetic progressions. Eulerian numbers associated with
the arithmetic progression fp;p C q;p C 2q; : : : g are considered in Xiong et al. [244], which
corresponds to the polynomials Pn 2 E hhqvnC.q�p/.1�v/; qv.1�v/I 1ii; see also [186, 205].

These polynomials are of type A .q � p; q; 1/, which have nonnegative coefficients when
0 6 p 6 q.

By Corollary 4, Xn.q � p; q; 1/
d
≈ Xn.p; q; 1/, and polynomials of the latter type arise in

the following extension of Euler’s original construction

Pn.v/ WD .1 � v/
nC1

X
j>0

.p C qj /nvj .n > 1/;

with P0.v/ D 1 for a given pair .p; q/; see [87, 205]. The polynomials associated with the
type A .p; q; 1/ were rediscovered in [211] in digital filters and those with A .q � p; q; 1/ in
[201] in connection with sums of squares. In particular, .p; q/ D .1; 0/ or .1; 1/ gives Eulerian
numbers and .p; q/ D .1; 2/ the MacMahon numbers. Furthermore, two more sequences were
found in OEIS:

A178640 A .5; 8; 1/ D reciprocal of A .3; 8; 1/ A257625 A .3; 6; 1/

A more general type is studied in Barry [11]:

Xn.q.p C r/ � p; q;p C r/
d
≈ Xn.p; q;p C r/I

Theorem 3 applies when p > 0, and q; r > 0, and we get always the same CLT N
�

1
2
n; 1

12
nI n�

1
2

�
.

See also [164] for other properties such as continued fraction expansions and q-log convexity.
Yet another type

Xn.qr � r C 1; q; r/
d
≈ Xn.r � 1; q; r/;

(referred to as the r -Eulerian-Fubini polynomials) was studied in [66]. The same CLT holds
when q > 0 and r > 1.
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OEIS: A
�
p; q; 2p

q

�
. Two dozens of OEIS sequences have the pattern

Œvk �Pn.v/ D �k Œv
k �Pn�1.v/C �n�k Œv

k�1�Pn�1.v/ .1 6 k 6 nI n > 1/;

with P0.v/ D 1, where �k D pCqk. Such polynomials Pn’s satisfy Pn 2 E hhqvnCpC .p�

q/v; qvI 1ii, which is of type A
�
p; q; 2p

q

�
. The sequences we found are listed below.

A256890 A .2; 1; 4/ A257180 A .3; 1; 6/ A257606 A .4; 1; 8/

A257607 A .5; 1; 10/ A257608 A .1; 9; 2
9
/ A257609 A .2; 2; 2/

A257610 A .2; 3; 4
3
/ A257611 A .3; 2; 3/ A257612 A .2; 4; 1/

A257613 A .4; 2; 4/ A257614 A .2; 5; 4
5
/ A257615 A .5; 2; 5/

A257616 A .2; 6; 2
3
/ A257617 A .2; 7; 4

7
/ A257618 A .2; 8; 1

2
/

A257619 A .2; 9; 4
9
/ A257620 A .3; 3; 2/ A257621 A .3; 4; 3

2
/

A257622 A .4; 3; 8
3
/ A257623 A .3; 5; 6

5
/ A257624 A .5; 3; 10

3
/

A257625 A .3; 6; 1/ A257626 A .6; 3; 4/ A257627 A .3; 7; 6
7
/

When p D 1, one obtains Strasser’s generalizations and more OEIS sequences are listed above.
Note that both .1; 1; 2/ and .2; 2; 2/ lead to Eulerian numbers and .1; 2; 1/ to MacMahon num-
bers. All these types of polynomials produce the same N

�
1
2
n; 1

12
nI n�

1
2

�
limiting behavior.

A summarizing table for generic types. We summarize the above discussions in the following
table, listing only generic types and their equivalent ones.

References Type & its equivalent types

LI Shanlan [160] A .1; 1; q C 1/IA .q; 1; q C 1/;A .0; 1; q/;A .q; 1; q/

Riordan [208]
Foata and Schützenberger [101] A .q; 1; q/IA .0; 1; q/;A .q; 1; q C 1/;A .1; 1; q C 1/

Brenti [25], Luschny [166] A .1; q; 1/IA .q � 1; 1; 1/

Dwyer [82], Harris [124] A .q; 1; 1/IA .1 � q; 1; 1/

Savage and Viswanathan [213] A .1; q; 1
q
/IA .0; 1; 1

q
/;A .1; q; qC1

q
/;A .q; q; qC1

q
/

Strasser [229] A .1; q; 2
q
/

Morisita [190]
Carlitz and Scoville [37]
Hitczenko and Janson [128]

A .p; 1;p C q/IA .q; 1;p C q/

Xiong et al. [244], OEIS
Eriksen et al. [87] A .p; q; 1/IA .q � p; q; 1/

Ma and Yeh [175] A
�
q; 2; q

2

�
IA

�
0; 2; q

2

�
;A

�
q; 2; qC2

2

�
;A

�
2; 2; qC2

2

�
Franssens [103] A .q; 2; q/

OEIS A .p; q; 2p

q
/

Oden et al. [196] A .p � q; q; 2p

q
/IA .p C q; q; 2p

q
/

Corcino et al. [66] A .pq � p C 1; q;p/IA .p � 1; q;p/

Barry [11] A .p; q; r/IA .qr � p; q; r/

Table 6: A summary of generic types of A .p; q; r/ and their equivalent ones.
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4.5. Other extensions with the same CLT and their variants
We briefly mention some other examples not of the form A .p; q; r/ but with the same CLT

N
�

1
2
n; 1

12
n
�
; more examples with the same CLT are discussed in Section 9.

4.5.1. The two examples in the Introduction
The first example (see Figure 2) is of the form E hhvnC.1Cv/2; vI 1iiwith ˛.v/ D ˇ.v/ D v

and 
 .v/ D .1 C v/2. We can directly apply Theorem 1 and get the same CLT N
�

1
2
n; 1

12
n
�

for the distribution of the coefficients. The EGF

e.1�v/zCv.1�e.1�v/z /

�
1 � v

1 � ve.1�v/z

�5

can be derived by the procedures in Section 3.1. Analytically, this is of the form A .1; 1; 5/

times the entire function ev.1�e.1�v/z /, and we get the optimal Berry-Esseen bound n�
1
2 by

applying Theorem 2.
Similarly, the second example A244312 (7) in the Introduction leads to the same CLT

N
�

1
2
n; 1

12
n
�

by the method of moments because it can be rewritten as Pn 2 E1hhvn � 1 C

.1 � v/1n is odd; vI vii, where again ˛.v/ D ˇ.v/ D v, and 
 .v/ is less important in the domi-
nant terms of the asymptotic approximations to the moments. In particular, the mean and the
variance are given respectively by

E.Xn/ D

(
n2

2.n�1/
; n > 2 is even I

nC1
2
; n > 3 is odd ;

and V.Xn/ D

(
n.n2�2n�2/

12.n�1/2
; n > 4 is evenI

.nC1/.n�3/

12.n�2/
; n > 3 is odd:

The optimal Berry-Esseen bound is expected to be of order n�
1
2 , but the analytic proof via

Theorem 2 fails due to the lack of solution to the PDE (8) satisfied by the EGF of Pn. Note that
it can be shown that

Pn.v/ D .1 � v/
n
X
j>0

j b
1
2

nc.j C 1/d
1
2

ne�1vjC1 .n > 1/:

From this expression, we can derive the optimal Berry-Esseen bound n�
1
2 ; details will be given

elsewhere.
In such a context, we see particularly that the method of moments provides more robust-

ness in the variation of 
 .v/ in the recurrence (9) as long as the coefficients Œvk �Pn.v/ remain
nonnegative, although the analytic approach is not limited to Eulerian type or nonnegativity of
the coefficients.

4.5.2. r -Eulerian numbers again
The following six OEIS sequences are all generated by the same recurrence Pn 2 E2hhvnC

1; vii, with initial conditions P2.v/ different from that (1C 4v C v2) of Eulerian numbers:

A166340 1C 8v C v2 A166341 1C 10v C v2 A166343 1C 12v C v2

A166344 1C 6v C v2 A166345 1C 2v C v2 A188587 1C v C v2

See also the paper by Conger [63] for the polynomials Er hhvn C 1 � 2v; vIAr .v/ii for fixed
r D 1; 2; : : : , where Ar .v/ is Eulerian polynomial of order r � 1. Since Theorem 1 does not
depend specially on the initial conditions, we obtain the same CLT N

�
1
2
n; 1

12
n
�

by a simple
shift of the recurrence n 7! n � r and then by applying Theorem 1. The corresponding EGF
can also be worked out, which leads to an effective version of CLT by Theorem 2.
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4.5.3. Eulerian numbers of type D

Brenti [25] (see also [51]) shows that the EGF of the Eulerian polynomials Pn.v/ of type
D is given by

F.z; v/ D
.1 � v/

�
e.1�v/z � vze2.1�v/z

�
1 � ve2.1�v/z

:

By the decomposition (Pn being palindromic)

F.z; v/ � .1 � v/z D
1 � v

1 � ve2.1�v/z

�
e.1�v/z � z

�
2 A .1; 2; 1/ � zA .0; 2; 1/;

we see that, up to the term .1 � v/z, type D is a difference of type B and type A Eulerian
numbers; see [227]. Theorem 1 does not apply because these polynomials do not have the
pattern (9). However, the coefficients do satisfy the same CLT N

�
1
2
n; 1

12
nI n�

1
2

�
by applying

Theorem 2.

4.5.4. Exponential perturbation
Polynomials of the form

Pn.v/ D .2vnC 1 � v/Pn�1.v/C 2v.1 � v/P 0n�1.v/� v.1 � v/
n�1 .n > 1/;

with P0.v/ D 0 (for “C”) and P0.v/ D 1 (for “�”) are studied in [20], which correspond to
A262226 (“�”) and A262227 (“C”), respectively. The EGF equals

.1 � v/e.1�v/z

2
�
1 � ve2.1�v/z

� � e.1�v/z

2
:

While Theorem 1 does not apply, the method of proof easily extends to this case because the
extra “exponential perturbation” term does not contribute to the dominant asymptotics of all
finite moments. We then get the same CLT N

�
1
2
n; 1

12
n
�

(as that for A .1; 2; 1/). For both
polynomials, Theorem 2 applies.

Another sequence A180246 corresponds essentially to A .2; 1; 1/ (differing by the term
.�v/n). This is a concrete polynomial with p > qr (see (35) and (36)), and thus the coeffi-
cients are not all positive. More precisely, if Pn is of type A .2; 1; 1/, then Pn is, up to minor
exponential perturbation, of type A .0; 1; 1/ (Eulerian numbers) because

e2.1�v/z 1 � v

1 � ve.1�v/z
D

1

v2

�
1 � v

1 � ve.1�v/z
C .1 � v/

�
1C ve.1�v/z

��
:

On the other hand, all coefficients Œvk �Pn.v/ are positive except the following three ones:

Œzn�Pn.v/ D .�1/n; Œzn�1�Pn.v/ D .�1/n�1.nC 1/;

Œzn�2�Pn.v/ D .�1/n
��

nC 1

2

�
C .�1/n

�
:

Thus if we consider the random variables defined via the absolute values of all coefficients, then
we still obtain the same CLT N

�
1
2
n; 1

12
nI n�

1
2

�
because the above possibly negative coefficients

are asymptotically negligible. The same argument applies to the more general type A .p; 1; 1/,
or (see [124])

Pn.v/ D
X

06k6n

vk
X

06j6k

�
nC 1

j

�
.�1/j .k C p � j /n;

33

https://oeis.org/A262226
https://oeis.org/A262227
https://oeis.org/A180246


where p > 1. For,

ep.1�v/z 1 � v

1 � ve.1�v/z
D v�p 1 � v

1 � ve.1�v/z
CO.1/;

uniformly for z � � log v
1�v

. Thus, up to a few possibly negative coefficients that are asymptoti-
cally negligible, the polynomials are essentially Eulerian polynomials.

Type D Eulerian A066094 N
�

1
2
n; 1

12
nI n�

1
2

�P
06j6k

�
nC1

j

�
.�1/j .k C 2 � j /n jA180246j N

�
1
2
n; 1

12
nI n�

1
2

�
Primary type D Eulerian A262226 N

�
1
2
n; 1

12
nI n�

1
2

�
Complementary type D Eulerian A262227 N

�
1
2
n; 1

12
nI n�

1
2

�
4.5.5. Eulerian polynomials multiplied by 1C v

Let Pn.v/ WD .1Cv/
P

06k<n

˝
n

k

˛
vk . Such polynomials arose in the study of low-dimensional

lattices (see [65]), and satisfy the recurrence

E

��
vnC

1 � v

1C v
; vI 1C v

��
:

These polynomials correspond to A008518 and are specially interesting because 
 .v/ (in the
notation of Theorem 1) is not a polynomial. The same limit law N

�
1
2
n; 1

12
n
�

holds by an
extension of Theorem 1 (because 
 .v/ D 1�v

1Cv
is not analytic in jvj 6 1). However, from

the proof of Theorem 1, it is clear that the analyticity of 
 .v/ in jvj < 1 and the finiteness of

 .j/.1/ for each j > 0 are sufficient to guarantee the same CLT. In contrast, Theorem 2 easily
applies.

5. Applications II: ˛.v/ ¤ ˇ.v/ or quadratic ˛.v/, ˇ.v/

We consider in this section other Eulerian-type polynomials for which Theorem 1 applies.
Exact solutions for the associated PDEs when ˛.v/ ¤ ˇ.v/ are still possible but they are often
of a less explicit form (especially when compared with the equal case (35)). Yet our approaches
still apply as far as the limit laws are concerned.

We discuss a few such frameworks for which explicit EGFs are available before specializing
to concrete examples. Note that in all cases we discuss below, Theorem 1 applies and we obtain
a CLT easily. Following the same spirit of Section 4, we use the special forms of EGFs for a
more synthetic discussion of the examples as well as for establishing a stronger CLT with
optimal rate by Theorem 2.

5.1. Polynomials with .˛.v/; ˇ.v// D .qv; v/ H) N
�

q

qC1
n; q2

.qC1/2.qC2/
n
�

A class of higher-order Eulerian numbers is proposed in Barbero G. et al. [10] satisfying
the recurrence Pn 2 E hhqvn C p C .r � p � q/v; vI 1ii, where q > 1 and r > p > 1 are
integers. The EGF has the closed-form expression [9]

F.z; v/ WD
X
n>0

Pn.v/
zn

n!
D

 
Tq

�
e.1�v/

qzSq.v/
�

v

!p  
1 � v

1 � Tq

�
e.1�v/

qzSq.v/
�!r

; (46)
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where Tq.Sq.v// D Sq.Tq.v// D v, Sq is a one-parameter family of functions given by

Sq.v/ D veLq.v/; with Lq.v/ D
X

16j<q

�
q � 1

j

�
.�v/j

j
:

If we change Lq.v/ to

Lq.v/ WD

Z v

0

.1 � t/q�1 � 1

t
dt; (47)

then (46) holds for real p; q; r . For convenience, we write the framework (46) as F 2 T .p; q:r/.

Theorem 4. Assume Pn 2 E hhqvnC p C .r � p � q/v; vI 1ii. If

q > 1; r > p > 0; and r C p > 0; (48)

then the coefficients of Pn satisfy the CLT

N

�
q

q C 1
n;

q2

.q C 1/2.q C 2/
nI n�

1
2

�
: (49)

Proof. By examining the corresponding recurrence for the coefficients, we see that if q > 1

and r > p > 0, then Œvk �Pn.v/ > 0; the additional condition r C p > 0 guarantees positivity
of Pn.1/. Thus under (48), Theorem 1 applies and we see that the coefficients of Pn.v/ satisfy
the CLT (49) without rate. On the other hand, Theorem 2 also applies by taking there � D r

and

‰.z; v/ WD
1 � Tq

�
e.1�v/

qzSq.v/
�

1 � v
:

The dominant singularity �.v/ is given by

�.v/ WD
log Sq.1/ � log Sq.v/

.1 � v/q
D

1

.1 � v/q

Z 1

v

t�1.1 � t/q�1 dt:

The mean and the variance constants can then be computed by the relations �0.1/ D � 1
qC1

and
�00.1/ D 2

qC2
.

In particular,

q D 1 q D 2 q D 3 q D 4

N
�

1
2
n; 1

12
n
�

N
�

2
3
n; 1

9
n
�

N
�

3
4
n; 9

80
n
�

N
�

4
5
n; 8

75
n
�

Interestingly, as a function of q, the variance coefficient q2

.qC1/2.qC2/
first increases and then

steadily decreases to 0 as q grows, the maximum occurring at q D 1C
p

17
2
� 2:56 with the

value 1
8

�
71 � 17

p
17
�
� 0:113.

The reciprocal polynomial of Pn satisfies the recurrence

Qn 2 E hh.q � 1C v/nC r C 1 � p � q � .1 � p/v; vI 1ii;

whose coefficients follow the CLT N
�

1
qC1

n; q2

.qC1/2.qC2/
nI n�

1
2

�
under the same conditions

r > p > 0, r C p > 0 and q > 1.
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5.1.1. q D 1
2
H) N

�
1
3
n; 2

45
nI n�

1
2

�
David and Barton examined in their classical book [72] the number of increasing runs of

length at least two (A008971), and the number of peaks in permutations (A008303), in addition
to Eulerian numbers. They derived the corresponding recurrences:

# .j" runsj > 2/ in permutations A008971 E hhvnC 1 � v; 2vI 1ii T
�

1
2
; 1

2
; 1
�

# peaks in permutations A008303 E1hhvnC 2.1 � v/; 2vI 1ii T
�
1; 1

2
; 1
�

The first few rows of both sequences are given in Table 7. To apply Theorem 4 (which starts
the recurrence from n D 1), we shift n in both recurrences by 1, changing 
 .v/ from “1 � v”
and “2.1 � v/” to “1” and “2 � v” respectively. Then the polynomials 2�nPn.v/ are of type
T
�

1
2
; 1

2
; 1
�

and T
�
1; 1

2
; 1
�
, respectively. We thus obtain the same CLT N

�
1
3
n; 2

45
nI n�

1
2

�
for

both statistics by Theorem 4. In particular, about two-thirds of runs have length > 2; also note
that the variance constant 2

45
is very small.

A008971

nnk 0 1 2 3 4

1 1

2 1 1

3 1 5

4 1 18 5

5 1 58 61

6 1 179 479 61

7 1 543 3111 1385

8 1 1636 18270 19028 1385

A008303

nnk 0 1 2 3

1 1

2 2

3 4 2

4 8 16

5 16 88 16

6 32 416 272

7 64 1824 2880 272

8 128 7680 24576 7936

Table 7: The first few rows of A008971 (left) and A008303 (right).

Instead of using (46), the exact solutions for the bivariate EGFs have the simpler alternative
forms

A008971 W

p
1 � v

p
1 � v cosh

�p
1 � v z

�
� sinh

�p
1 � v z

� ;
A008303 W 1C

v sinh
�p

1 � v z
�

p
1 � v cosh

�p
v � 1 z

�
� sinh

�p
1 � v z

� ; (50)

respectively, which can be derived directly by the approach of Section 3.1; see [53, 85, 169,
200, 238].

These numbers also appear in other different contexts [70, 121, 148, 181, 187, 195] (notably
[148]). See also [97] for a connection to binary search trees. Désiré André [4] seems the first
to give a detailed study of A008303 (up to a proper shift) where he examined the number of
ascending or descending runs in cyclic permutations. He derived not only the recurrence for the
polynomials and the first two moments of the distribution, but also solved the corresponding
PDE for the EGF. For more information (including asymptotic normality), see [72, 238] and
the references therein.
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5.1.2. q D 1 H) N
�

1
2
n; 1

12
nI n�

1
2

�
In this case, L1.z/ D 0, S1.v/ D T1.v/ D v, so that

F.z; v/ D ep.1�v/z

�
1 � v

1 � ve.1�v/z

�r

;

implying that T .p; 1; r/ D A .p; 1; r/, which we already discussed in Section 4.

5.1.3. q D 2 H) N
�

2
3
n; 1

9
nI n�

1
2

�
In this case, S2.z/ D ze�z and T2.z/ D zeT2.z/ D

P
n>1

nn�1

n!
zn is the Cayley tree function

(essentially the Lambert W -function; see [67] and A000169), so that

F.z; v/ D

 
T2

�
ve�vC.1�v/

2z
�

v

!p  
1 � v

1 � T2

�
ve�vC.1�v/

2z
�!r

: (51)

The simple relations

@zT .p; 2;p/ D pT .p; 2;p C 2/ and @zT .0; 2;p/ D pvT .1; 2;p C 2/; (52)

imply an equivalence relation for the underlying random variables in each case.
In particular, T .0; 2; 1/ gives the second order Eulerian numbers (or Eulerian numbers of

the second kind): Pn 2 E hh.2n � 1/v; vI 1ii.
Such polynomials arise in many different combinatorial and computational contexts; see

for example [29, 67, 110, 112, 120, 143, 156, 200] and OEIS A008517 for more information.
In addition to enumerating the number of ascents in Stirling permutations (see [19, 112, 143]),
we mention here two other relations: as derivative polynomials [67]

DnC1
x T2.e

x/ D
Pn.�T2.e

x//

.1 � T2.ex//2nC1
.n > 1/;

and as coefficients in an asymptotic expansion [29]

n!

.nv/n

0@env
�

X
06j6n

.nv/j

j !

1A D X
06j<K

.�1/jPj .v/

nj .1 � v/2jC1
CO

�
n�K

�
;

for any K D 1; 2; : : : .
The CLT N

�
2
3
n; 1

9
n
�

seems first proved in [15, 180] in the context of leaves in plane-
oriented recursive trees, and later in [19, 143], the approaches used including analytic, urn
models and real-rootedness, respectively.

The corresponding reciprocal polynomials Qn.v/ WD vnC1Pn.
1
v
/ satisfy Qn 2 E hh.1 C

v/n � 1 � 2v; vI 1ii, which is A163936. We summarize these in the following table.

Second order Eulerian (1 6 k 6 n) A008517 T .0; 2; 1/ N
�

2
3
n; 1

9
nI n�

1
2

�
Reciprocal of A008517 A112007 N

�
1
3
n; 1

9
nI n�

1
2

�
Second order Eulerian (0 6 k < n) A201637 T .1; 2; 1/ N

�
2
3
n; 1

9
nI n�

1
2

�
Reciprocal of A201637 A163936 N

�
1
3
n; 1

9
nI n�

1
2

�
EssentiallyD A163969 A288874 N

�
1
3
n; 1

9
nI n�

1
2

�
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In addition to T .0; 2; 1/ and T .1; 2; 1/, the polynomials defined on T .1; 2; 3/ also corre-
spond, by (52), to the second-order Eulerian numbers, and appeared in [89], together with two
other variants:

T .0; 2; 2/ with P0.v/ D v; and T .1; 2; 0/:

The first (T .0; 2; 2/ and T .1; 2; 4/ by (52)) leads, by Theorem 4, to the same N
�

2
3
n; 1

9
nI n�

1
2

�
as for the second order Eulerian numbers because (48) holds. The second type (T .1; 2; 0/)
contains negative coefficients but corresponds essentially to the second order Eulerian numbers
after dividing by 1 � v.

Another example with q D 2 is sequence A214406, which is the second order Eulerian
numbers of type B and counts the Stirling permutations [112, 145] by ascents. The polynomials
can be generated by Pn 2 E hh4vn C 1 � 3v; 2vI 1ii and its reciprocal transform is Qn 2

E hh.2n � 1/.1C v/; 2vI 1ii. By considering 2�nPn.v/, we see that these numbers are of type
T .1

2
; 2; 1/ and the coefficients follow a CLT with optimal convergence rate.

The last example A290595 is of a different form: Pn 2 E hh3.1 C v/n � 2 � v; 3vI 1ii,
whose reciprocal Qn satisfies Qn 2 E hh6vnC 2� 5v; 3vI 1ii and is, up to the factor 3n, of type
T
�

2
3
; 2; 1

�
. Thus the EGF of Pn is given by�

vT2

�
v�1e�

1
v
.1�3.1�v/2z/

�� 2
3

 
v � 1

v
�
1 � T2

�
v�1e�

1
v
.1�3.1�v/2z/

��! ;
and we obtain the same CLT N

�
1
3
n; 1

9
nI n�

1
2

�
for the distribution of Œvk �Pn.v/.

Second order Eulerian type B A214406 T .1
2
; 2; 1/ N

�
2
3
n; 1

9
nI n�

1
2

�
Reciprocal of A214406 A288875 N

�
1
3
n; 1

9
nI n�

1
2

�
E hh6vnC 2 � 5v; 3vI 1ii T .2

3
; 2; 1I 3z/ N

�
2
3
n; 1

9
nI n�

1
2

�
Reciprocal of T

�
2
3
; 2; 1I 3z

�
A290595 N

�
1
3
n; 1

9
nI n�

1
2

�
See also Section 9.5 for polynomials related to T

�
1
q
; 2; 1

�
.

5.1.4. q D 3 H) N
�

3
4
n; 9

80
nI n�

1
2

�
We found only one OEIS example:

Third order Eulerian (0 6 k < n) A219512 T .1; 3; 1/ N
�

3
4
n; 9

80
nI n�

1
2

�
or

Pn 2 E hh3vnC 1 � 3v; vI 1ii: (53)

For the EGF, in addition to Barbero G. et al.’s solution (46), an alternative form is as follows.
Define J.z; v/

J.z; v/ WD

Z z

0

dt

.1C t/.1C tv/3
D

log w
v
C 2.v � w/ � 1

2
.v2 � w2/

.1 � v/3
;

where w WD v.1Cz/

1Cvz
. Then the EGF F.z; v/ � 1 is the compositional inverse of J , namely, it

satisfies
F.J.z; v/; v/ � 1 D z:
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This can be readily checked by (46). Indeed, for any polynomials of type T .1; q; 1/ with
q > 0, we have F.J.z; v/; v/ � 1 D z, where

J.z; v/ WD

Z z

0

dt

.1C t/.1C tz/q
D

1

.1 � v/q

�
log

1C z

1C vz
CLq

�
v.1C z/

1C vz

�
�Lq.v/

�
;

with Lq defined in (47).
Note that the random variables associated with the coefficients of T .1; 3; 1/ are equiva-

lent to those of T .1; 3; 4/ by a simple shift n 7! n C 1 in (53). We obtain the same CLT
N
�

3
4
n; 9

80
nI n�

1
2

�
.

5.1.5. q > 1 H) N
�

q

qC1
n; q2

.qC1/2.qC2/
n
�

These higher order Eulerian numbers are discussed in [9, 10]; see also Section 9.6 on Pólya
urn models. We list the CLTs for q D 4; : : : ; 7; note that our results are not limited to integer
q.

Type CLT Type CLT

E hh4vnC 1 � 4v; vI 1ii N
�

4
5
n; 8

75
nI n�

1
2

�
E hh5vnC 1 � 5v; vI 1ii N

�
5
6
n; 25

252
nI n�

1
2

�
E hh6vnC 1 � 6v; vI 1ii N

�
6
7
n; 9

98
nI n�

1
2

�
E hh7vnC 1 � 7v; vI 1ii N

�
6
7
n; 49

576
nI n�

1
2

�
5.2. Polynomials with .˛.v/; ˇ.v// D .p C qv; v/

H)N
�

q

pCqC1
n; q.pC1/.pCq/

.pCqC1/2.pCqC2/
n
�

Rza̧dkowski and Urlińska [209] study the recurrence

Pn 2 E hh.p C qv/nC 1 � p � qv; vI 1ii; (54)

where p; q are not necessarily integers. When p D 0, we obtain higher order Eulerian numbers
T .1; q; 1/; in particular, .p; q/ D .0; 1/ gives Eulerian numbers, and .p; q/ D .0;m/ the mth
order Eulerian numbers. If Œvk �Pn.v/ > 0 for n; k > 0, then we obtain the CLT

N .�n; �2n/; where � WD
p

p C q C 1
and �2

WD
q.p C 1/.p C q/

.p C q C 1/2.p C q C 2/
; (55)

provided that the variance coefficient �2 > 0. Note that for fixed q and increasing p, the mean
coefficient � increases to unity and the variance coefficient �2 first increases and then decreases
to zero, while for fixed p and increasing q, � decreases steadily and �2 undergoes a similar
unimodal pattern as in the case of fixed q and increasing p.

By (30), we can also apply Theorem 2 by taking (assuming p C q > 0)

‰.z; v/ D
1 � T

�
S.v/C .1�v/pCqz

vp

�
1 � v

; where S.v/ D

Z 1

v

t�p�1.1 � t/pCq�1 dt;

and T .S.v// D v. With the notations of Theorem 2, since

�.v/ D
vp

.1 � v/pCq

Z 1

v

t�p�1.1 � t/pCq�1 dt;
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we obtain �0.1/ D � q

.pCq/.pCqC1/
and �00.1/ D 2q.qC1/

.pCq/.pCqC1/.pCqC2/
. We then deduce an

optimal rate n�
1
2 in the CLT (55).

If .p; q/ D .�1; 1/, then Pn.v/ D v
n�1. Another simple example for which �2 equals zero

is .p; q/ D .�1
2
; 1

2
/ and in this case

P2n.v/ D
vn�1 C vn

2
; and P2n�1.v/ D v

n;

which does not lead to a CLT.
Yet another example discussed in [209] is .p; q/ D .�1

2
; 1/ (which seems connected to

A160468 in some way). We then obtain N
�

2
3
n; 2

45
n
�

for the distributions of the coefficients.
The EGF can be solved to be of the form

F.z; v/ D
1 � v

v
�
1C sin

�p
v.1 � v/ z C arcsin.2v � 1/

�
1 � sin

�p
v.1 � v/ z C arcsin.2v � 1/

� :
To apply Theorem 2, we use the notation of (32) and take (due to a double zero)

‰.z; v/ D

s
1 � sin

�p
v.1 � v/z C arcsin.2v � 1/

�
1 � v

;

so that

�.v/ D
2 arccos

p
vp

v.1 � v/
D
� � 2 arcsin

p
vp

v.1 � v/
:

Thus Theorem 2 applies with �0.1/ D �4
3

and �00.1/ D 32
15

, and we obtain the CLT with rate
N
�

2
3
n; 2

45
nI n�

1
2

�
.

A CLT example with ˇ.1/ < 0. An example reducible to the form .˛.v/; ˇ.v// D .p C qv; v/

but slightly different from (54) is Warren’s model of two-coin trials studied in [237], leading to
the recurrence

Pn 2 E1hh.1 � �2 C �2v/.n � 1/;�.�1 � �2/vI 1 � �2 C �2vii;

where 0 < �1 ¤ �2 < 1. Since Œvk �Pn.v/ > 0 for all pairs .�1; �2/ by the original construction
(or by examining the recurrence satisfied by the coefficients), we can apply Theorem 1 and
obtain the CLT

N

�
�2

1 � �1 C �2

n;
.1 � �1/�2

.1 � 2�1 C 2�2/.1 � �1 C �2/2
n

�
;

provided that 0 < �1 < �2C
1
2

(so that 1�2�1C2�2 > 0). This example is interesting because
if �2 < �1 < �2 C

1
2
, then, putting in the form of (9), we see that the factor

ˇ.v/ D �.�1 � �2/v

becomes negative at v D 1, and this is one of the few examples in this paper with negative ˇ.1/
and the coefficients of Pn.v/ still following a CLT. See Section 5.6 and [237] for other models
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of a similar nature. By solving the corresponding PDE (with F.z; v/ D .1��2C�2v/zCO.z2/

as z ! 0), we obtain the EGF

F.z; v/ D
1

�2 � �1

log
1 � v

1 � T
�
S.v/C v

�
1��2
�2��1 .1 � v/

1
�2��1 z

�
C

1 � �2

�2 � �1

log
T
�
S.v/C v

�
1��2
�2��1 .1 � v/

1
�2��1 z

�
v

;

where T .S.v// D v and

S.v/ WD
1

�2 � �1

Z
v
�

1��2
�2��1

�1
.1 � v/

1
�2��1

�1 dv:

Another extension studied in [44] has the form Pn 2 E hhnChn.v�1/; vI 1ii for some given
sequence hn. In the case when hn D p C qn, we obtain the CLT

N

�
q

2
n;

q.2 � q/

12
n

�
;

by Theorem 1 when the coefficients are nonnegative and 0 < q < 2.

5.3. Polynomials with .˛.v/; ˇ.v// D
�

1
2
.1C v/; 1

2
.3C v/

�
H) N

�
1
6
n; 23

180
n
�

The sequence A162976 counts the number of permutations of n elements having exactly
k double and initial descents; the generating polynomials Pn satisfy the recurrence Pn 2

E1hh
1
2
.1C v/n; 1

2
.3C v/I 1ii. This recurrence can be verified by the EGF

F.z; v/ D 1 �
2

1C v �
p
.1 � v/.3C v/ cot

�
1
2
z
p
.1 � v/.3C v/

� ; (56)

obtained by using the expression in Goulden and Jackson’s book [119, p. 195, Ex. 3.3.46] after
a direct simplification; see also Zhuang [247]. The CLT N

�
1
6
n; 23

180
n
�

for the coefficients of
Pn follows easily from Theorem 1. Theorem 2 also applies with the dominant singularity at

�.v/ D
2 arccos 1Cv

2p
.1 � v/.3C v/

: (57)

Two other recurrences arise from a study of similar permutation statistics in [247]:

Pn.v/ D
.1C v/n˙ .1 � v/

2
Pn�1.v/C

.3C v/.1 � v/

2
P 0n�1.v/˙

.1 � v/.n � 1/

2
Pn�2.v/;

(58)

for n > 2 with P0.v/ D 1. These recurrences follow from the EGFs (w WD
p
.1 � v/.3C v/)

w e˙
1
2
.1�v/z

w cos
�

1
2
zw
�
� .1C v/ sin

�
1
2
zw
� ; (59)
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derived in [247]; see also [84]. Taking both plus signs on the right-hand side of (58) together
with P1.v/ D 1 gives the sequence A162975 (enumerating double ascents); the other recur-
rence with both minus signs together with P1.v/ D v gives the sequence A097898 (enumerat-
ing left-right double ascents or unit-length runs); see [113, 247] for more information. Theo-
rem 1 does not apply directly but the same method of moments do and we get the same CLT
N
�

1
6
n; 23

180
n
�
. The main reason that the method of moments works for (58) is that the last term

is asymptotically negligible after the normalization NPn.v/ WD
Pn.v/

Pn.1/
D

Pn.v/

n!
:

NPn.v/ D
.1C v/n˙ .1 � v/

2n
NPn�1.v/C

.3C v/.1 � v/

2n
NP 0n�1.v/˙

1 � v

2n
NPn�2.v/:

Alternatively, one applies the analytic method to the EGFs (59) (with the same �.v/ as (57))
and obtains additionally an optimal convergence rate in the CLT N

�
1
6
n; 23

180
nI n�

1
2

�
.

OEIS coeff. Pn�1.v/ ceoff. P 0n�1.v/ coeff. Pn�2.v/ .�n; �
2
n /

A162976 .1Cv/n

2

.3Cv/.1�v/

2
0

�
1
6
nC 1

6
; 23

180
nC 23

180

�
A162975 .1Cv/nC1�v

2

.3Cv/.1�v/

2

.n�1/.1�v/

2

�
1
6
n � 1

3
; 23

180
n � 37

180

�
A097898 .1Cv/n�1Cv

2

.3Cv/.1�v/

2
�
.n�1/.1�v/

2

�
1
6
nC 2

3
; 23

180
nC 83

180

�
We also show in this table the differences in the lower order terms of the asymptotic mean and
asymptotic variance.

5.4. Polynomials with quadratic ˛.v/
We consider in this subsection recurrences of the form (9) where ˛.v/ is a quadratic poly-

nomial.

5.4.1. .˛.v/; ˇ.v// D .v2; v.1C v// H) N
�

2
3
n; 8

45
n
�

Most of the examples we found involving quadratic ˛.v/ have the form (after a shift of n

or a change of scales) Pn 2 E hhv2nC q �pCpv � v2; v.1C v/I 1ii. For such a pattern, since
the degree of Pn is n, it proves simpler to look at its reciprocal Qn.v/ D v

nPn.
1
v
/, which then

has the simpler generic form Qn 2 E hhvn C p C .q � p � 1/v; 1 C vI 1ii. If q > p > 0,
then Œvk �Pn.v/ > 0 and Pn.1/ > 0, and we obtain, by Theorem 1, the CLTs N

�
1
3
n; 8

45
n
�

and
N
�

2
3
n; 8

45
n
�

for the coefficients of Qn and of Pn, respectively.
We now show how to enhance the CLTs by computing the corresponding EGFs. In general,

assume Qn 2 E hhvnC p C .q � p � 1/v; 1C vii. Let G.z; v/ be the EGF of Qn.v/. Then G

satisfies the PDE

.1 � vz/@zG � .1 � v2/@vG D .p C .q � p/v/G;

with G.0; v/ D Q0.v/. The solution, by the method of characteristics described in Section 3.1,
is given by (u WD

p
1 � v2 and w D arcsin.v/)

G.z; v/ D Q0

�
sin.uz C w/

� �1C sin.uz C w/

1C v

�p �
u

cos.uz C w/

�q

: (60)

Write this class of functions as Q.p; q/. Then

@zQ.q; q/ D qQ.q; q C 1/ when Q0.v/ D 1: (61)
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With (60) available, we can apply Theorem 2 when q > p > 0 with �.v/ D arccos.v/
p

1�v2
, and

the local expansion

� log �.es/ D 1
3
s C 4

45
s2
C

8
2835

s3
�

44
14175

s4
C � � � ;

giving the CLT with optimal rate N
�

1
3
n; 8

45
nI n�

1
2

�
.

Liagre’s Q.2; 3/ and Q.1; 3/. Jean-Baptiste Liagre [161] studied (motivated by a statistical
problem) as early as 1855 the combinatorial and statistical properties of the number of turning
points (peaks and valleys) in permutations, and as far as we were aware, his paper [161] is the
first publication on permutation statistics leading to an Eulerian recurrence, and contains the
two recurrences (

Pn 2 E2hhv
2nC 1C 2v � 3v2; v.1C v/I 1ii;

Pn 2 E3hhv
2nC 1C v � 3v2; v.1C v/I 1ii:

(62)

The former (A008970) counts the number of turning points in permutations of n elements
divided by two, while the latter (not in OEIS) that in cyclic permutations divided by two.

We can apply Theorem 1 by a direct shift of the two recurrences (so both has the initial
conditions P0.v/ D 1), and obtain the same CLT N

�
2
3
n; 8

45
n
�
. The CLT for A008970 can be

obtained by the general theorem of Wolfowitz in [241] although, quite unexpectedly, it was first
stated (without proof) by Bienaymé as early as 1874 in a very short note [16] (with a total of 13
lines); see also Netto’s book [194, pp. 105–116]. Bienaymé’s result is described as “far ahead
of its time” in Heyde and Seneta’s book [127]. For more historical accounts, see [12, 127, 238].
The normalized versions (with P0.v/ D 1) are given as follows.

1
2
#(n-perms. with k turning points) A008970 E hhv2nC 1C 2v � v2; v.1C v/I 1ii

1
2
#(n-cyclic perms. with k turning points) E hhv2nC 1C v; v.1C v/I 1ii

The reciprocal polynomials Qn.v/ WD vn�2Pn�2

�
1
v

�
and Qn.v/ WD vn�2Pn�3

�
1
v

�
are of

type Q.2; 3/ and Q.1; 3/, respectively, with the initial condition Q0.v/ D 1 and Q0.v/ D v,
respectively. By (60), we have the EGFs of Pn and Qn, respectively (u WD

p
1 � v2 and

w D arcsin.v/): 8̂̂̂<̂
ˆ̂:
�

1C sin.uz C w/

1C v

�2 �
u

cos.uz C w/

�3

;

sin.uz C w/
.1C sin.uz C w/

1C v

�
u

cos.uz C w/

�3

:

Note that in the first case, an alternative form for the EGF was derived by Morley [191] in 1897X
n>1

QnC1.v/

n!
zn
D

1 � v

.1C v/
�
1 � sin

�
uz C w

�� � 1

1C v
;

which can be obtained by a direct integration of Q.2; 3/. These EGFs are then suitable for
applying Theorem 2, and an optimal Berry-Esseen bound is thus implied in the corresponding
CLTs for the coefficients.

43

https://oeis.org/A008970
https://oeis.org/A008970
https://oeis.org/A008970


Alternating runs in permutations: Q.2; 2/. By (61), we see that the total number of turning
points or alternating runs (which is twice A008970) in all permutations of n elements (not
half of them) is of type Q.2; 2/. This corresponds to sequence A059427. For more details
and information, see David and Barton’s book [72, pp. 158–161], the review paper [12] and
[3, 17, 18]. The normalized version (with P0.v/ D 1) is

alternating runs in perms. A059427 E hhv2nC 2v � v2; v.1C v/I 1ii N
�

1
3
n; 8

45
nI n�

1
2

�
This sequence of polynomials has a larger literature than Liagre’s statistics. In particular, find-
ing closed-form expressions for Œvk �Pn.v/ has been the subject of many papers; see for example
[168, 169] and the references therein.

Alternating runs in up signed permutations: Q
�

3
2
; 2
�
. Extending further the alternating runs to

signed permutations, Chow and Ma [52] studied the recurrence

Pn 2 E1hh2v
2n � 1C 3v � 2v2; 2v.1C v/I vii: (63)

They also derived the closed form expression for the EGF of Pn:

1

1C v
C

v
p

1 � v

.1C v/

q
cosh

�
2z
p

1 � v2
�
� v �

p
1 � v2 sinh

�
2z
p

1 � v2
� :

The reciprocal transformation Qn D v
nPn

�
1
v

�
satisfies

Qn 2 E1hh2vnC 3.1 � v/; 2.1C v/I 1ii:

This is of type Q
�

3
2
; 2
�

after normalizing Qn.v/ by 2n. Thus the same CLT N
�

2
3
n; 8

45
nI n�

1
2

�
holds for the distribution of the number of alternating runs in signed permutations.

Derivative polynomials: Q.0; 2/. Another sequence A198895, which corresponds to the deriva-
tive polynomials of tan v C sec v, satisfies the recurrence

Pn 2 E1hhv
2nC 1 � v2; v.1C v/I 1C vii:

One gets the CLT
�

2
3
n; 8

45
nI n�

1
2

�
for the coefficients Œvk �Pn.v/, a result (without rate) also

proved in [167] by the real-rootedness approach. Its reciprocal polynomial satisfies the simpler
form

Qn 2 E hhvn; 1C vI 1C vii:

This is of type Q.0; 2/.

Up-down runs in permutations: Q.1; 2/. A very similar sequence is A186370 (number of
permutations of n elements having k up-down runs):

Pn 2 E1hhv
2nC v � v2; v.1C v/I vii:

One gets the same CLT N
�

2
3
n; 8

45
nI n�

1
2

�
. Its reciprocal polynomial satisfies the simpler form

Qn 2 E1hhvnC 1 � v; 1C vI 1ii;

which is of type Q.1; 2/. Interestingly, Q1.v/ D v generates the same sequence of polynomials
for n > 2.
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5.4.2. .˛.v/; ˇ.v// D
�

1
2
.1C v2/; 1

2
.1C v2/

�
H) N

�
1
2
n; 5

12
n
�

The generating polynomials for the numbers of alternating descents (�.i/ ≷ �.i C 1/

depending on the parity of i ) or for the number of 3-descents (either of the patterns 132, 213 or
321) satisfy (see [47, 174])

Pn 2 E1hh
1
2
.1C v2/nC v.1 � v/; 1

2
.1C v2/I 1ii:

They are palindromic and correspond to A145876.
This leads, by Theorem 1, to the CLT N

�
1
2
n; 5

12
n
�

for the coefficients. For the optimal
convergence rate n�

1
2 , we can use the EGF derived in [47] (see also [247])

1C sin..1 � v/z/ � cos..1 � v/z/
cos..1 � v/z/ � v � v sin..1 � v/z/

; (64)

and then apply Theorem 2 with

�.v/ D
arccos

�
2v

1Cv2

�
v � 1

:

A very interesting property of Pn.v/ is that all roots lie on the left half unit circle, namely,
v D ei� with 1

2
� 6 � 6 3

2
� ; see [174] for more information and Figure 4 for an illustration.

Such a root-unitary property implies an alternative proof of the CLT via the fourth moment
theorem of [138]: the fourth centered and normalized moment tends to three iff the coefficients
are asymptotically normally distributed. This is in contrast to proving the unboundedness of
the variance when all roots are real; also without the root-unitary property Theorem 1 requires
the moments of all orders.

Figure 4: Distribution of the zeros of the A145876 polynomials Pn.v/ for n D 10; 20; : : : ; 60.

5.4.3. .˛.v/; ˇ.v// D .v.1C v/; v.1C v// H) N
�

3
4
n; 7

48
n
�

In the context of tree-like tableaux, the generating polynomial for the number of symmetric
tree-like tableaux of size 2nC 1 with k diagonal cells satisfies the recurrence [7]

Pn 2 E hhv.1C v/n; v.1C v/I vii: (65)

We obtain, by Theorem 1, the CLT N
�

3
4
n; 7

48
n
�

for the coefficients. This CLT was proved
in [130] by the real-rootedness approach. The reciprocal polynomial Qn.v/ D vnC1Pn

�
1
v

�
satisfies the simpler recurrence Qn 2 E hh.1C v/n; 1C vI 1ii, where the right-hand side differs
from that of Pn only by a factor v. By the techniques of Section 3.1, the EGF has the exact
form

F.z; v/ D
v.1 � v/

.1C v/ez.v�1/ � 2v
D e.1�v/z

v.1 � v/

1C v � 2ve.1�v/z
; (66)
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which can then be used to prove an optimal Berry-Esseen bound N
�

3
4
n; 7

48
nI n�

1
2

�
by Theo-

rem 2 with �.v/ D 1
1�v

log 1Cv
2v

.
See also [6] for another recurrence of the same type Pn 2 E hhv.1Cv/nC1Cv�v2; v.1Cv/ii

whose reciprocal is of type E hh.1Cv/nC1; 1Cvii. We have the same CLT for the coefficients.

5.4.4. .˛.v/; ˇ.v// D .2v2; v.1C v// H) N
�
n; 1

3
n
�

The nth order � -derivative � WD vDv of
q

1Cv
1�v

leads to the sequence of polynomials [173]

Pn 2 E hhv.2vnC 1 � 2v/; v.1C v/I 1iiI (67)

these polynomials are palindromic and correspond to A256978. The degree of Pn is 2n � 1,
and the CLT N

�
n; 1

3
n
�

follows from Theorem 1. Furthermore, since the EGF of Pn satisfies
[173] s

.1 � v/
�
1C ve.1�v

2/z
�

.1C v/
�
1 � ve.1�v

2/z
� ; (68)

we obtain additionally the stronger CLT N
�
n; 1

3
nI n�

1
2

�
by Theorem 2 with �.v/ D � log v

1�v2 .
More generally, the same CLT holds for the � -derivative polynomials of

�
1Cv
1�v

�q (with q >

0) satisfying Pn 2 E hh2v..n�1/vCq/; v.1Cv/I 1ii. Note that the usual derivative polynomial

of
q

1Cv
1�v

leads to polynomials of the type Pn 2 E hh2vn C 1 � 2v; 1 C vI 1ii with a different
CLT; see Section 5.5.1.

Another example of the form Pn 2 E hh2v2n C 1 C v; v.1 C v/I 1 C vii appeared in [38],
which enumerates the rises (or falls) in permutations of 2n elements satisfying 2nC1��.j / D

�.2nC1�j /; see [2, 171] for a shifted version of the form Pn 2 E hh2v2nC1Cv�2v2; v.1C

v/I 1ii (enumerating the flag-descent statistic in signed permutations). The CLT N
�
n; 1

3
n
�

for
the coefficients of both polynomials holds by Theorem 1. Note that the latter Pn (from [2])
corresponds to A101842 and can be computed by

Pn.v/ D .1C v/
n
X

06k<n

�
n

k

�
vk ;

implying that the EGF is given by

e.1�v
2/z 1 � v

1 � ve.1�v
2/z
:

Then Theorem 2 applies with �.v/ D � log v
1�v2 and an optimal convergence rate n�

1
2 in the CLT is

guaranteed; see Figure 5 for the histograms and finer expressions of the mean and the variance.
More generally, all polynomials Pn of the form .1 C v/nRn.v/, where Rn.v/ is of type

A .p; q; r/ with p; q; r > 0 and qr > p > 0, are Eulerian with .˛.v/; ˇ.v// D .2qv2; qv.1C

v//, which leads to the same CLT N
�
n; 1

3
nI n�

1
2

�
. An OEIS instance of this type is A165891,

which corresponds to E hh2v2nC1C2v�v2; v.1Cv/I 1ii and is related to A101842 by a factor
of 1C v; see Figure 5.
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OEIS A256978 A101842 A165891

an.v/ 2v2nC v � 2v2 2v2nC 1C v � 2v2 2v2nC 1C 2v � v2

.E.Xn/;V.Xn///
�
n; n.n�1/.4n�5/

3.2n�1/.2n�3/

� �
n � 1

2
; 1

3
nC 1

12

� �
n; 1

3
nC 1

6

�
Figure 5: The histograms of the three OEIS polynomials of the format E hhan.v/; v.1Cv/I 1ii for
n D 2; : : : ; 50. Their coefficients all satisfy the same CLT N .n; 1

3
nI n�

1
2 / and their differences

in the exact mean and the exact variance are shown in the last row.

5.5. Polynomials with an extra normalizing factor
We discuss in this subsection polynomials of the form

Rn 2 E

��
˛.v/nC 
 .v/

en

;
ˇ.v/

en

��
; (69)

where en is a nonzero normalizing factor such as n. If we consider Pn.v/ WD Rn.v/
Q

16j6n ej ,
then Pn satisfies Pn 2 E hh˛.v/nC 
 .v/; ˇ.v/ii, which falls into our framework (9).

5.5.1. .˛.v/; ˇ.v// D .2qv; q.1C v// H) N
�

1
2
n; 1

4
n
�

Examples in this category are often periodic in the sense that Œvk �Pn.v/ D 0, say when
n� k is odd or even. In particular, if Pn.v/ is of the form Pn 2 E hh.pnC r/v; q.1C v/ii, then
Pn.v/ is periodic. For example, the derivative polynomials of arcsine function (A161119):

Pn.v/ WD .1 � v
2/nC

1
2DnC1

v arcsin.v/ .n > 0/

satisfies Pn 2 E hh.2n � 1/v; 1 C vI 1ii, and a CLT of the form N
�

1
2
n; 1

4
n
�

holds for the
coefficients. Also we have the EGF

F.z; v/ D
�
.1 � vz/2 � z2

�� 1
2 ;

yielding an optimal rate N
�

1
2
n; 1

4
nI n�

1
2

�
by Theorem 2 with �.v/ D 1

1Cv
, as well as the

expression

Pn.v/ D
X

06k6b 1
2

nc

n!2

k!2.n � 2k/!4k
vn�2k : (70)

Thus Œvk �Pn.v/ D 0 if n � k is odd. The reciprocal polynomial corresponds to A161121.
On the other hand, the polynomials Pn.v/ WD

P
06k6n.2 � .�1/n�k/

�
n

k

�
vk satisfies the

recurrence Pn 2 E1hh2v;
1Cv
n�1
I 3 C vii; see A162315. We then get the CLT N

�
1
2
n; 1

4
n
�
. Note

that we get binomial coefficients (Pascal’s triangle A007318) if P1.v/ D 1 C v. Also note
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Figure 6: The distributions of the coefficients of A162315: for n D 5; 10; : : : ; 100 (left) and
n D 100 (right). We see that they are highly oscillating in nature.

specially that despite the oscillating nature of the coefficients (see for example Figure 6), we
still have a CLT, which is a global property, not a local one.

The reciprocal polynomials Qn.v/ D v
nPn

�
1
v

�
satisfy Qn 2 E hh1Cv2; v.1Cv/

n�1
iiwith the ini-

tial condition Q1.v/ D 1C3v; see A124846. The coefficients of Qn yield the CLT N
�

1
2
n; 1

4
n
�
.

These two OEIS sequences, together with a few others leading to the same CLT N
�

1
2
n; 1

4
n
�
,

are summarized in the following table. In all cases, it is possible to derive an optimal Berry-
Esseen bound but we omit the details because these examples are comparatively simpler (put
together here mainly to show the modeling diversity of the Eulerian recurrences).

OEIS en Type Œvk �Pn.v/

A161119 1 E hh2vn � v; 1C vI 1ii (70)

A161121 1 E hh.1C v2/n � v2; v.1C v/I 1ii (70)

A162315 n � 1 E1hh2vn � 2v; 1C vI 3C vii .2 � .�1/n�k/
�

n

k

�
A007318 n � 1 E1hh2vn � 2v; 1C vI 1C vii

�
n

k

�
A124846 n � 1 E1hh.1C v

2/n � 1 � v2; v.1C v/I 1C 3vii .2 � .�1/k/
�

n

k

�
A121448 nC 2 E hh4vnC 2v; 2.1C v/I 1ii 2k

nC1

�
nC1

k

��
nC1�k

n�k
2

�
A143358 nC 1 E hh4vnC 2; 2.1C v/I 1ii 2k

�
n

k

��
n�k

b 1
2
.n�k/c

�
In particular, the sequence A121448 is also periodic because

�
nC1�k

n�k
2

�
D 0 when n � k is

odd.
On the other hand, the nth order derivative of

q
1Cv
1�v

leads to the polynomials satisfying the
recurrence Pn 2 E hh2vnC 1 � 2v; 1C vI 1ii; compare (67). The EGF is given by

.1 � .1C v/z/�
3
2 .1C .1 � v/z/�

1
2 ; (71)

from which we deduce the CLT N
�

1
2
n; 1

4
nI n�

1
2

�
by Theorem 2 with �.v/ D 1

1Cv
.

5.5.2. .˛.v/; ˇ.v// D .2.1C v/; 3C v/ H) N
�

1
4
n; 3

16
n
�

The sequence A091867, which enumerates the number of Dyck paths of semi-length n

having k peaks at odd height, has its generating polynomial satisfying the recurrence

Pn 2 E

��
2..1C v/n � 1/

nC 1
;
3C v

nC 1
I 1

��
:
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A closed-form expression is known (see A091867)

Œvn�k �Pn.v/ D
1

k C 1

�
n

k

� X
06j6k

.�1/j
�

k C 1

j

��
2k � 2j

k � j

�
: (72)

Due to the presence of the factor .�1/j , the asymptotics of this expression is less transparent;
however, we get the CLT N

�
1
4
n; 3

16
n
�

by Theorem 1 using the expression of .˛.v/; ˇ.v//. The
corresponding reciprocal polynomials A124926 satisfy

Qn 2 E

��
.1C 3v2/nC 1 � 3v2

nC 1
;
v.1C 3v/

nC 1
I 1

��
:

On the other hand, since the ordinary generating function (OGF) of Pn�1 satisfies

1

2
�

1

2

s
1 � .3C v/z

1C .1 � v/z
; (73)

an optimal Berry-Esseen bound also follows from Theorem 2 with �.v/ D 1
3Cv

. Furthermore,
by this OGF we have for n > 1

Pn�1.v/ D
1

n
Œwn�1�

�
1C vw C

w2

1 � w

�n

:

From this and Lagrange inversion formula [225], we derive the expression (without alternating
terms; cf. (72))

Œvn�k �Pn.v/ D
1

nC 1

�
nC 1

k C 1

� X
06j6b 1

2
kc

�
k C 1

j

��
k � 1 � j

j � 1

�
:

Although non-alternating, the asymptotics of the right-hand side still remains obscure.
These sequences and a few others of the same type are listed as follows.

OEIS en Type CLT

A091867 nC 1 E hh.2v C 2/n � 2; 3C vI 1ii N
�

1
4
n; 3

16
nI n�

1
2

�
A124926 nC 1 E hh.1C 3v2/nC 1 � 3v2; v.1C 3v/I 1ii N

�
3
4
n; 3

16
nI n�

1
2

�
A171128 n E hh.2v C 2/n � 1 � v; 3C vI 1ii N

�
1
4
n; 3

16
nI n�

1
2

�
A135091 n E hh.1C 3v2/nC v.1 � 3v/; v.1C 3v/I 1ii N

�
3
4
n; 3

16
nI n�

1
2

�
A091869 nC 1 E1hh.2v C 2/n � 1 � v; 3C vI 1ii N

�
1
4
n; 3

16
nI n�

1
2

�
A091187 nC 1 E1hh.1C 3v2/nC 1C 3v � 6v2; v.1C 3v/I 1ii N

�
3
4
n; 3

16
nI n�

1
2

�
A171651 nC 1 E hh.2v C 2/nC 2; 3C vI 1ii N

�
1
4
n; 3

16
nI n�

1
2

�
Here the first six are grouped in reciprocal pairs. Each of these has a closed-form expression
for their OGFs (as well as a summation formula similar to (72)); we list below only their OGFs.

A171128
1p

.1 � .1 � v/z/.1 � .3C v/z/

A091869
1 � .1C v/z �

p
.1C .1 � v/z/.1 � .3C v/z/

2z

A171651
1 � .3C v/z C

p
.1C .1 � v/z/.1 � .3C v/z/

2.1 � .3C v/z/
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5.5.3. .˛.v/; ˇ.v// D .q.1C 3v/; 2qv/ H) N
�

1
2
n; 1

8
n
�

The generating polynomials of Narayana numbers (enumerating peaks in Dyck paths; see
[230] and A090181)

Pn.v/ WD
X

16k6n

1

k

�
n

k � 1

��
n � 1

k � 1

�
vk .n > 1/;

also satisfy

.nC 1/Pn.v/ D ..1C 3v/n � 1 � v/Pn�1.v/C 2v.1 � v/P 0n�1.v/ .n > 1/ (74)

in addition to the usual three-term recurrence

.nC 1/Pn.v/ D .2n � 1/.1C v/Pn�1.v/ � .n � 2/.1 � v/2Pn�2.v/:

These polynomials are palindromic and the CLT N
�

1
2
n; 1

8
n
�

for Œvk �Pn.v/ follows easily from
Theorem 1. An essentially identical sequence A001263 corresponds to v�1Pn.v/. The OGF of
Pn satisfies

f .z; v/ WD
X
n>0

Pn.v/z
n
D

1 � .1C v/z �
p

1 � 2.1C v/z C .1 � v/2z2

2z
; (75)

from which we get an additional convergence rate n�
1
2 by Theorem 2 with �.v/ D .1 C

p
v/�2. These and a few others satisfying Pn 2 E hh .1C3v/nC
.v/

en
; 2v

en
ii, leading to the same CLT

N
�

1
2
n; 1

8
nI n�

1
2

�
, are collected in the following table.

OEIS en Type Œvk �Pn.v/

A086645 n � 1 E1hh.1C 3v/.n � 1/; 2vI 1C vii
�

2n

2k

�
A103328 n � 1 E1hh.1C 3v/n � 4v; 2vI 2ii

�
2n

2kC1

�
A091044 n E hh.1C 3v/nC 1 � v; 2vI 1ii 1

2

�
2n

2kC1

�
A001263 nC 1 E hh.1C 3v/n � 1 � v; 2vI 1ii 1

k

�
n

k�1

��
n�1

k�1

�
A090181 nC 1 E hh.1C 3v/n � 1 � v; 2vI 1ii 1

k

�
n

k�1

��
n�1

k�1

�
A131198 nC 1 E hh.1C 3v/nC 1 � 3v; 2vI 1ii 1

n�k

�
n

kC1

��
n�1

k

�
A118963 n E1hh.1C 3v/nC 1 � 3v; 2vI 2ii nC1

n

�
n

k

��
n

kC1

�
A008459 n E hh.1C 3v/n � 2v; 2vI 1ii

�
n

k

�2
In particular, we see that the coefficients

�
n

k

�2 follow asymptotically a CLT N
�

1
2
n; 1

8
n
�
, the

variance being smaller than that of
�

n

k

�
; more generally,

�
n

k

�˛ follows asymptotically the CLT
N
�

1
2
n; 1

4˛
n
�

for large n when ˛ > 0; see Figure 7.
While the generating polynomials of

�
2n

2k

�
satisfy (74), those of

�
2nC1

2k

�
and

�
2nC1

2kC1

�
satisfy

the following recurrences

A091042
�

2nC1

2k

�
E hh2.1C3v/n�1�3v

2n�1
; 4v

2n�1
I 1ii

A103327
�

2nC1

2kC1

�
E hh2.1C3v/nC1�5v

2n�1
; 4v

2n�1
I 1ii

The two sequences form a reciprocal pair.
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Figure 7: Normalized histograms of
�

n

k

�˛ for n D 1; : : : ; 50 and ˛ D 2; 3; 4 (the first three),
respectively, and the Eulerian distribution (rightmost). The variance for the second and the
fourth are both asymptotic to 1

12
n. Note that

�
n

k

�3 correspond to A181543 and
�

n

k

�4 to A202750.

5.5.4. .˛.v/; ˇ.v// D .5C 3v; 2.1C v// H) N
�

1
4
n; 5

32
n
�

The polynomials (A114608, enumerating the number of peaks in bicolored Dyck paths)

Pn.v/ D
1

n

X
06k6n

vk
X

06j6n�k

�
n

j C 1

��
n � k

j

�
2j ;

satisfy Pn 2 E hh .5C3v/n�3�v

nC1
; 2.1Cv/

nC1
I 1ii. The CLT N

�
1
4
n; 5

32
n
�

then follows from Theorem 1,
and an effective version with n�

1
2 convergence rate follows from Theorem 2 using the OGF

1C .1 � v/z �
p

1 � 2.3C v/z C .1 � v/2z2

4z
; (76)

with �.v/ D
�p

2C
p

1C v
��2.

5.5.5. .˛.v/; ˇ.v// D
�

1
3
.7C 2v/; 1

3
.5C 4v/

�
H) N

�
1
9
n; 2

27
n
�

The generating polynomial (A181371) of the pattern occurrences of “01” in ternary words
satisfies Pn 2 E hh .7C2v/nC2.1�v/

3n
; 5C4v

3n
I 1ii. This follows from the OGFX

n>0

Pn.v/z
n
D

1

1 � 3z C .1 � v/z2
: (77)

From this we deduce the CLT N
�

1
9
n; 2

27
nI n�

1
2

�
for the coefficients Œvk �Pn.v/ by Theorem 2

with �.v/ D 2

3C
p

5C4v
.

5.5.6. .˛.v/; ˇ.v// D .1C 3v2; v.1C v// H) N
�
n; 1

2
n
�

The sequence A088459 enumerates peaks in symmetric Dyck paths and the corresponding
polynomials satisfy E hh .1C3v2/nC1Cv

nC1
; v.1Cv/

nC1
I 1 C vii. One then gets the CLT N

�
n; 1

2
n
�

by
Theorem 1. This and a few other polynomials from OEIS are listed as follows.

A088459 Peaks in symmetric Dyck paths E hh .1C3v2/nC1Cv

nC1
; v.1Cv/

nC1
I 1C vii

A059064 Card-matching numbers E hh .1C3v2/n�2v2

n
; v.1Cv/

n
I 1ii

A059065 Card-matching numbers E hh.1C 3v2/n2 � 2v2n; v.1C v/nI 1ii

A152659 Turns in lattice paths E hh .1C3v2/nC1C2v�v2

nC1
; v.1Cv/

nC1
I 2ii

A247644 Even rows of A088855 E hh .1C3v2/nC1C2v�v2

nC1
; v.1Cv/

nC1
I 1ii
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A convergence rate in the CLT can be obtained by solving the corresponding PDEs and then
by applying Theorem 2. For example, the OGF for A152659 is given by

2

z.v � f .z; v2//
�

2

vz
; (78)

where f is the generating function (75) of Narayana numbers. Thus �.v/ D .1C v/�2 and the
CLT N

�
n; 1

2
nI n�

1
2

�
is implied.

5.6. Polynomials with .˛.v/; ˇ.v// D .�1C .q C 1/v; qv/ H) N
�

qC1

2q
n; q2�1

12q2 n
�

A generalization of Morisita’s model (43) proposed by Charalambides and Koutras in [45]
is of the form

Pn 2 E

��
.�1C .q C 1/v/nC 1C p C .qr � p � q � 1/v

n
;
qv

n
I 1

��
:

The OGF f .z; v/ WD
P

n>0 Pn.v/z
n is given by

�
1C .1 � v/z

�p � 1 � v

1 � v.1C .1 � v/z/q

�r

: (79)

We write this class as f 2M .p; q; r/ or f 2M .p; q; r I z/. The type M .p; q; 1/ was studied
in [41], and the type M

�
p

q
; 1

q
; 1I qz

�
in [132] in connection with degenerate Stirling numbers. It

is interesting to compare these forms with those ((35) and (36)) for A .p; q; r/ where the factor
“e.1�v/z” there is “mimicked” by “1C .1� v/z” here. If Œvk �Pn.v/ > 0 or .�1/nŒvk �Pn.v/ > 0

and jqj > 1, then we obtain the CLT N
�

qC1

2q
n; q2�1

12q2 n
�

for the coefficients by Theorem 1 and

N
�

qC1

2q
n; q2�1

12q2 nI n�
1
2

�
by Theorem 2 with �.v/ D �1�v

� 1
q

1�v
.

The reciprocal polynomial Qn.v/ WD v
nPn

�
1
v

�
satisfies

Qn 2 E

��
.1C .q � 1/v/nC qr � 1 � p C .1C p � q/v

n
;
qv

n
I 1

��
:

This gives the pair .˛.v/; ˇ.v// D .1C.q�1/v; qv/, and then the CLT N
�

q�1

2q
n; q2�1

12q2 nI n�
1
2

�
.

If f 2M .p; q; r I z/, then the reciprocal polynomial is of type M .p � qr;�q; r I �z/.

Runs in words: M .0; q; 1I z/ or M .�q;�q; 1I �z/. This class of polynomials appeared in
Carlitz’s study [32, 33] of “degenerate” Eulerian numbers (which corresponds to M .0; q; 1I z

q
/),

as well as that of rises in sequences (with repetitions) [36], and was later referred to as the Car-
litz numbers in [43, ~14.3]. Such numbers also enumerate increasing runs in q-ary words and
have the closed-form expression

Pn.v/ D
X

06k6n

vk
X

06j6k

.�1/k�j

�
nC 1

k � j

��
qj

n

�
I

see also [69] for the occurrence of these numbers in algebraic geometry. Note that when q D 2,
one gets the simpler expression

�
nC1

2n�2kC1

�
for Œvk �Pn.v/. We obtain the CLT N

�
qC1

2q
n; q2�1

12q2 nI n�
1
2

�
when q > 1 is an integer. When q D 1, we get the OGF 1

1�vz
, and the limit law is degenerate.

The cases q D 2; 3; 4 appear in OEIS:
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Description OEIS Type CLT

" runs in binary words A119900 M .0; 2; 1I z/ N
�

3
4
n; 1

16
nI n�

1
2

�
A119900 without zeros A109447 N

�
1
4
n; 1

16
nI n�

1
2

�
Reciprocal of A119900 A202064 M .�2;�2; 1I �z/ N

�
1
4
n; 1

16
nI n�

1
2

�
A202064 without zeros A034867 N

�
1
4
n; 1

16
nI n�

1
2

�
" runs in ternary words A120987 M .0; 3; 1I z/ N

�
2
3
n; 2

27
nI n�

1
2

�
Reciprocal of A120987 A120906 M .�3;�3; 1I �z/ N

�
1
3
n; 2

27
nI n�

1
2

�
" runs in quaternary words A265644 M .0; 4; 1I z/ N

�
5
8
n; 5

64
nI n�

1
2

�
Patterns in words: M .1; 2; 1/. Similar to the numbers A119900 above, we also have the fol-
lowing variants for the sequence

�
n

2k

�
.

Description OEIS Type CLT�
n

2n�2k

�
A098158 1C vzM .1; 2; 1I z/ N

�
3
4
n; 1

16
nI n�

1
2

�
2
�

n

2k

�
A119462 2M .�1;�2; 1I �z/ N

�
3
4
n; 1

16
nI n�

1
2

�
shifted version of A098158 A098157 M .1; 2; 1I z/ N

�
3
4
n; 1

16
nI n�

1
2

�
A098158 without zeros A109446 N

�
3
4
n; 1

16
nI n�

1
2

�
Reciprocal of A098158 A202023 M .�1;�2; 1I �z/ N

�
1
4
n; 1

16
nI n�

1
2

�
A202023 without zeros A034839 N

�
1
4
n; 1

16
nI n�

1
2

�
Binomial extension of Eulerian numbers: M .p; q; 1/. This class was studied in [41, 154],
where occurrences and applications are mentioned.

Description OEIS Type CLT

.1 � v/nC1
P

j>0

�
3jCn

n

�
vj A178618 M .�1;�3; 1I �z/ N

�
1
3
n; 2

27
nI n�

1
2

�
.1 � v/nC1

P
j>0

�
4jCn

n

�
vj A178619 M .�1;�4; 1I �z/ N

�
3
8
n; 5

64
nI n�

1
2

�
In general, the polynomials .1 � v/nC1

P
j>0

�
qjCn

n

�
vj are of type M .�1;�q; 1I �z/ for any

real q, and one obtains the CLT N
�

qC1

2q
n; q2�1

12q2 nI n�
1
2

�
when q > 2 is an integer.

Degenerate limit law: M .2; 1; 3/. Consider A106246 for which an;k D
�

n

k

��
2

n�k

�
. Then

Pn 2 E hh .2v�1/nC3�v

n
; v

n
I 1ii. This is of type M .2; 1; 3/. Of course, the random variable

Xn is degenerate or follows in the limit the Dirac distribution. The reciprocal polynomials
Qn.v/ WD vnPn

�
1
v

�
satisfies Qn 2 E hhn C 2v; vI 1ii. This is of the type of problems we will

examine in the next three sections.
Finally, for M .p; 1; r/, the GF becomes

.1C .1 � v/z/p

.1 � vz/r
;

which has nonnegative coefficients when 0 6 p 6 r .
See Section 9.5 for a sequence of polynomials closely related to M .0; 2; 3

2
/.
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6. Non-normal limit laws

We now work out the method of moments for the recurrence (9) when the limit laws are not
normal. It turns out all examples we found are of the simpler form

Pn 2 E

��
˛nC 
 C 
 0.v � 1/

en

;
ˇ C ˇ0.v � 1/

en

I c0 C c1.v � 1/

��
; (80)

which are polynomials in v of degree at most n C 1, where ˛; ˇ; ˇ0
; 
 0 are constants (often
integers) and fejgj>1 is a positive sequence. For this framework, if we apply naively Theorem 1
(after normalizing by

Q
16j6n ej ), then we see that � D �2 D 0 (since ˛.v/ D ˛ is a constant);

thus Theorem 1 fails but we will see that the same method of proof still applies.
It is also possible to apply the complex-analytic approach to all cases we discuss here and

quantify the convergence rates and even the asymptotic densities, but we omit this approach
here for brevity and for the following reasons: first, the EGFs or OGFs of Pn under (80) are
comparatively simpler than those in the case of normal limit laws and the application of sin-
gularity analysis is straightforward; second, the method of moments does not rely on the avail-
ability of more tractable EGFs or OGFs and is completely elementary and to some extent more
general, although the limit results are generally weaker and less easy to be further strengthened.

6.1. Recurrence for the factorial moments
Throughout this section, let Pn be defined by (80). Assume that

Œvk �Pn.v/ > 0 for all k; n > 0 and P0.1/ D c0 > 0; ˛ > 0; ˛ C 
 > 0; (81)

which then implies, by the relation

Pn.1/ D P0.1/
Y

16j6n

˛j C 


ej

;

that Pn.1/ > 0 for n > 1. Since the coefficients are nonnegative and Pn.1/ > 0, we define the
random variables Xn as in (10). In particular, P0.0/ D c0 � c1 > 0, implying that c1

c0
2 Œ0; 1�.

For convenience, introduce, throughout this section, the notations

�1 WD �
ˇ

˛
; �2 WD




˛
; and �3 WD �


 0

ˇ0
: (82)

Here �3 is defined when ˇ0 ¤ 0, and by (81), 1C �2 > 0.
To compute the factorial moments of Xn, we rewrite (80) as

P n.t/ WD
Pn.1C t/

Pn.1/
D
˛nC 
 C 
 0t

˛nC 

P n�1.t/ �

t.ˇ C ˇ0t/

˛nC 

P 0n�1.t/;

with P 0.t/ D 1C c1

c0
t .

Lemma 4. Let P n;m WD P
.m/
n .0/ denote the m-th factorial moment of Xn. Then for n;m > 1

P n;m D

�
1C

m�1

nC �2

�
P n�1;m C

m.
 0 � .m � 1/ˇ0/

˛.nC �2/
P n�1;m�1; (83)

with the initial conditions P n;0 D 1, P 0;1 D
c1

c0
, and P 0;m D 0 for m > 2.
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Asymptotics of the mean. By solving (83) for m D 1, we obtain the following exact expression
for the mean P n;1.

Lemma 5. Let n0 > 0 be the largest n for which n C �1 C �2 D 0; let n0 D 0 if no such n

exists. Then the expected value E.Xn/ D P n;1 of Xn satisfies for n > n0

E.Xn/ D

 0

ˇ
C

�
E.Xn0

/ �

 0

ˇ

�
�
�
nC �1 C �2 C 1

�
�
�
n0 C �2 C 1

�
�
�
nC �2 C 1

�
�
�
n0 C �1 C �2 C 1

� : (84)

It turns out that the sign of �1 is crucial in determining the type of the limit law being
discrete or continuous in almost all cases we discuss.

Corollary 5. If ˇ > 0 (or �1 < 0), then

E.Xn/ D

 0

ˇ
CO

�
n�1
�
I

if ˇ < 0 (or �1 > 0), then

E.Xn/ D

�
c1

c0

�

 0

ˇ

�
�
�
�2 C 1

�
�
�
�1 C �2 C 1

� n�1 CO
�
1C n�1�1

�
:

Proof. When �1 > 0, we can take n0 D 0 because of the condition 1C �1 > 0 (or ˛ C 
 > 0)
in (81). Then the approximations in both cases follow directly from (84) and E.X0/ D

c1

c0
.

The discussion of the special case when ˇ D 0 is simpler and deferred to Section 10.
Note specially that in the first case of positive ˇ the dominant term is independent of the

initial values c0 and c1, and so are all moments, as well as the limit law, as we will see later,
in contrast to the negative ˇ case in which all moments asymptotics and the limit law depend
critically on the initial values.

Dependence of the parameters. From Corollary 5 and the nonnegativity of the coefficients
Œvk �Pn.v/ (and the mean), we obtain the following relations.

Corollary 6. If ˇ > 0, then 
 0 > 0; if ˇ < 0, then 
 0 > c1

c0
ˇ.

More relations among the variables can be derived.

Lemma 6. Assume that the relations (81) hold. If ˇ0 > 0, then 
 0 D `ˇ0 for some positive
integer `; if ˇ0 < 0, then 
 0 > ˇ0 (or �3 > �1).

Proof. Consider first ˇ0 > 0. By the expression

ŒvnC1�Pn.v/ D c1

Y
16j6n


 0 � jˇ0

ej

.n > 1/;

and the nonnegativity of Œvk �Pn.v/ for all k, we deduce that 
 0 D `ˇ0 for some positive integer
`. Similarly, if ˇ0 < 0, then by induction 
 0 > ˇ0.

The situation when 
 0 D ˇ0 (or �3 D �1) leads to a Bernoulli limit law; see Theorem 5
below.
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Solution to the recurrence. We prove in what follows that the factorial moments in the first
case (�1 < 0) are all bounded, leading to a discrete limit law, and that those in the second case
(�1 > 0) all behave like powers of the mean, yielding mostly a continuous limit law.

For higher moments, we consider the following recurrence, which is Lemma 2 but specially
formatted in the current setting.

Lemma 7. Let n0 > 0 be the largest n for which nCm�1 C �2 D 0; let n0 D 0 if no such n

exists. Then the solution to the recurrence

xn D

�
1C

m�1

nC �2

�
xn�1 C

yn

˛.nC �2/
.n > n0 C 1Im > 0/; (85)

with xn0
¤ 0 is given by

xn D xn0

�
�
nCm�1 C �2 C 1

�
�.n0 C �2 C 1/

�
�
nC �2 C 1

�
�.n0 Cm�1 C �2 C 1/

C
�
�
nCm�1 C �2 C 1

�
˛�
�
nC �2 C 1

� X
n0<k6n

yk�
�
k C �2

�
�
�
k Cm�1 C �2 C 1

� : (86)

Starting with the recurrence (83) and the mean, we can derive asymptotic approximations
to P n;m successively by induction for m > 2, and then conclude the limit laws by the method
of moments. Unlike normal limit laws, there is no need to center the random variables, which
makes the calculations simpler; however, the expressions for the limiting moments are gener-
ally more involved (than those in the normal cases).

6.2. EGF and PDE
The recurrence (80) (for n > 1 with with P0.v/ D c0Cc1.v�1/) leads to the PDE satisfied

by the EGF of Pn

.1 � ˛z/F 0z � .ˇ � ˇ
0.1 � v//.1 � v/F 0v � .˛ C 
 � 


0.1 � v//F D 0;

where F.z; v/ WD
P

n>0
Pn.v/

n!
zn. The solution can be derived by the standard procedure de-

scribed in Section 3.1.

Proposition 2. Assume ˛ > 0 and ˇ ¤ 0. The EGF of Pn (satisfying (80)) is given as follows.

� If ˇ0 D 0, then

F.z; v/ D .1 � ˛z/�
˛C

˛ e�


 0

ˇ
.1�v/.1�.1�˛z/

ˇ
˛ /
�
c0 � c1.1 � v/.1 � ˛z/

ˇ
˛

�
: (87)

� If ˇ0 ¤ 0, then

F.z; v/ D
c0.ˇ � ˇ

0.1 � v//C .c0ˇ
0 � c1ˇ/.1 � v/.1 � ˛z/

ˇ
˛

ˇ.1 � ˛z/
˛C

˛

�
ˇ�ˇ0.1�v/Cˇ0.1�v/.1�˛z/

ˇ
˛

ˇ

�1�

0

ˇ0

: (88)

Note that (87) also follows from (88) by taking the limit as ˇ0 ! 0. Also if ˇ0 D 0,
then ˇ > 0 because otherwise the coefficients are not all nonnegative. By varying the seven
parameters, the simple solution (88) is capable of generating many different non-normal limit
laws, as we will examine in the next two sections but instead by an elementary approach.
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6.3. Discrete limit laws
We consider in this subsection the case when the limit law is discrete, which arises mostly

when ˇ > 0, beginning with the following asymptotic transfer.

Lemma 8. Assume that xn satisfies (85) with m > 1 and �1 < 0. Then

yn � K implies that xn �
K

mˇ
: (89)

Proof. By (86) using the asymptotic approximation (23) to the ratio of Gamma functions.

Recall that �3 D �

 0

ˇ0
; see (82).

Proposition 3. Assume �1 < 0 (or ˇ > 0). Then the m-th factorial moment of Xn satisfies

E.X m
n / � Km WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�

 0

ˇ

�m

; if ˇ0 D 0

�.mC �3/

�.�3/

�
�
ˇ0

ˇ

�m

; if ˇ0 < 0

`!

.` �m/!

�
ˇ0

ˇ

�m

; if ˇ0 > 0; 
 0 D `ˇ0;

(90)

for m > 0, where xm WD
Q

06j<m.x � j /.

Proof. By the recurrence (83), the asymptotic transfer (89) and induction.

By Corollary 6, since ˇ > 0, we have 
 0 > 0 in all cases of ˇ0.

Theorem 5 (ˇ > 0 H) discrete limit laws). Let Pn.v/ be defined by the recurrence (80).
Assume that (i) Œvk �Pn.v/ > 0 for k; n > 0, (ii) Pn.1/ > 0 for n > 0, and (iii) ˇ > 0. Define
Xn by E.vXn/ WD Pn.v/

Pn.1/
. Then

� if ˇ0 D 0, then Xn follows asymptotically a Poisson distribution with parameter 
 0

ˇ
;

� if ˇ0 < 0, then Xn follows asymptotically a negative binomial distribution with parame-
ters �3 and � ˇ0

ˇ�ˇ0
;

� if ˇ0 > 0, ˇ0 < ˇ and 
 0 D `ˇ0 for ` D 1; 2; : : : , then Xn is the sum of ` independent
and identically distributed Bernoulli random variables with parameter ˇ0

ˇ
(or binomial

with parameters ` and ˇ0

ˇ
).

Proof. If ˇ0 D 0, then by Proposition 3, we see that the probability generating function of the
limit law equals e


 0

ˇ
.v�1/, which is nothing but that of a Poisson random variable with mean 
 0

ˇ
.

Now if ˇ0 < 0, then �3 > 0 (since 
 0 > 0), and the variance is asymptotic to .ˇ�ˇ0/
 0

ˇ2 in this
case. By (90), we deduce that the probability generating function of the limit law equals�

1C ˇ0

ˇ
.v � 1/

���3
;

so we get a negative binomial with parameters �3 and � ˇ0

ˇ�ˇ0
2 .0; 1/.

Finally, if ˇ0 > 0; ˇ ¤ ˇ0 and 
 0 D `ˇ0, then we obtain the probability generating function�
1C ˇ0

ˇ
.v � 1/

�`, which is the sum of ` Bernoulli random variables with mean ˇ0

ˇ
.
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6.4. Continuous limit laws
The case when �1 > 0 (ˇ < 0) is phenomenally more interesting as the underlying ran-

dom variables have generally a wider range of variations. We may without loss of generality
assume that ˇ0 < 0 because otherwise the coefficients Œvk �Pn.v/ are not all nonnegative. From
Lemma 6, we see that �3 > �1 (the equality being already covered by Theorem 5). We derive
first the asymptotics of the factorial moments.

Proposition 4. Assume �1 > 0 (ˇ < 0). Then the mth moment of Xn is asymptotic to

E

 
Xn

ˇ0

ˇ
n�1

!m

� E

 
Xn

ˇ0

ˇ
n�1

!m

� Km .m > 0/; (91)

where

Km D
�
�
mC �3

�
�.�2 C 1/

�
�
�3 C 1

�
�
�
m�1 C �2 C 1

� � c1ˇ

c0ˇ0
mC �3

�
.m > 0/: (92)

Proof. We prove the second estimate of (91) by induction. Assume that the mth factorial
moment P n;m (see (83)) satisfies

P n;m � Km

�
ˇ0

ˇ
n�1

�m

.m > 0/;

where K0 D 1 and, by Corollary 5,

K1 D

�
c1ˇ

c0ˇ0
C �3

�
�
�
�2 C 1

�
�
�
�1 C �2 C 1

� :
So we assume now m > 2. Since �1 > 0, we can take n0 D 0 in (86) with x0 D 0 (using
P 0;m D 0 for m > 2), and have

P n;m D
m.
 0 � .m � 1/ˇ0/

˛
�
�
�
nCm�1 C �2 C 1

�
�
�
nC �2 C 1

� X
06k<n

�
�
k C �2 C 1

�
P k;m�1

�
�
k Cm�1 C �2 C 2

� ;
so that by induction for m > 2

Km

�
ˇ0

ˇ

�m

D
m!.�ˇ0/m�.mC �3/


 0˛m�1�.�3/

�

X
06k1<���<km�1<1

�
�
k1 C �2 C 1

�
P k1;1

Q
26j<m �

�
kj C j �1 C �2 C 1

�Q
26j6m �

�
kj�1 C j �1 C �2 C 2

�
D

m!.�ˇ0/m�.mC �3/

ˇ˛m�1�.�3/
S Œ1�m

C
m!.�ˇ0/m�.mC �3/�.�2 C 1/


 0˛m�1�.�3/�.�1 C �2 C 1/

�
c1

c0

�

 0

ˇ

�
S Œ2�m ;
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where the ratio �.mC�3/

�.�3/
is interpreted as zero when �3 D 0, and, by (84),

S Œ1�m D

X
06k1<���<km�1<1

�
�
k1 C �2 C 1

�
�
�
k1 C 2�1 C �2 C 2

� Y
26j<m

�
�
kj C j �1 C �2 C 1

�
�
�
kj C .j C 1/�1 C �2 C 2

� ;
S Œ2�m D

X
06k1<���<km�1<1

Y
16j<m

�
�
kj C j �1 C �2 C 1

�
�
�
kj C .j C 1/�1 C �2 C 2

� :
By induction, we prove the following identities

S Œ1�m D
�
�
�2 C 1

�
m.m � 2/!�m�1

1 �
�
m�1 C �2 C 1

�
S Œ2�m D

�
�
�1 C �2 C 1

�
.m � 1/!�m�1

1 �
�
m�1 C �2 C 1

� :
Consider first S

Œ1�
m . We have

S
Œ1�

mC1 D

X
06k1<���<km�1<1

�
�
k1 C �2 C 1

�
�
�
k1 C 2�1 C �2 C 2

�
0@ Y

26j<m

�
�
kj C j �1 C �2 C 1

�
�
�
kj C .j C 1/�1 C �2 C 2

�
1A �†m;

where

†m WD

X
km�1<km<1

�
�
km Cm�1 C �2 C 1

�
�
�
km C .mC 1/�1 C �2 C 2

� D �.km�1 Cm�1 C �2 C 2/

�1�.km�1 C .mC 1/�1 C �2 C 2/
:

It follows that

S
Œ1�

mC1 D

X
06k1<���<km�1<1

�
�
k1 C �2 C 1

�
�
�
k1 C 2�1 C �2 C 2

�
0@ Y

26j6m�2

�
�
kj C j �1 C �2 C 1

�
�
�
kj C .j C 1/�1 C �2 C 2

�
1A

�
�
�
km�1 C .m � 1/�1 C �2 C 1

�
�1�.km�1 C .mC 1/�1/C �2 C 2

;

which is a summation of a similar type. By iterating the same simplification, we see that

S
Œ1�

mC1 D
1

.m � 1/!�m�1
1

X
k1>0

�
�
k1 C �2 C 1

�
�
�
k1 C .mC 1/�1 C �2 C 2

�
D

�.�2 C 1/

.mC 1/.m � 1/!�m
1 �..mC 1/�1 C �2 C 1/

:

The proof of S
Œ2�
m is similar. This proves the second estimate of (91). Finally, since (the curly

braces denoting the Stirling numbers of the second kind)

EX m
n D

X
06j6m

�
m

j

�
E
�
X

j
n

�
� E

�
X m

n

�
;

the first estimate of (91) then follows from the second one. This proves the Proposition.
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Alternatively, the generating function (88) provides at least two different proofs of Propo-
sition 4: either by computing the asymptotics of the mth factorial moment m!Œzntm�F.z; 1C t/

for each m or by working on the characteristic function Œzn�F
�
z; ei�

�
, details being omitted

here.
Once (92) is available, we can specify the limit law according to the given values of the

parameters. Indeed, the form (92) leads generally to the mixture of two distributions of gener-
alized Mittag-Leffler type.

Recall that the Mittag-Leffler function represents one of the extensions of es as well as a
good bridge between es and 1

1�s
:

Ep;q.s/ WD
X
j>0

sj

�
�
pj C q

� .p > 0; q 2 C/:

[The extension from q D 1 in Mittag-Leffler’s original definition was due to A. Wiman.] The
Mittag-Leffler distribution can be defined either with Ep;q as the distribution function (properly
parametrized) or with Ep;q as the moment generating function (properly normalized). We use
the latter, namely, Y follows a Mittag-Leffler distribution if E

�
eY s

�
D �.q/Ep;q.s/.

Definition 3. A random variable Y is said to follow a generalized Mittag-Leffler (GML) distri-
bution, written conveniently as Y � GML.p; q; r/, if E.eY s/ D Ep;q;r .s/, where

Ep;q;r .s/ WD
�.q/

�.r/

X
j>0

�.j C r/sj

j !�
�
pj C q

� .p; r > 0; q 2 C/ (93)

represents the (normalized) three-parameter Mittag-Leffler function (a special case of the Fox-
Wright function and also known as the Prabhakar function; see [118]).

A few special cases include

� r D 0: Y is degenerate;

� p D 0, r > 0: Y is Gamma distributed;

� r D 1, p; q > 0: Y is a Mittag-Leffer distribution;

� p D 1: GML.p; q; r/ � Beta.r; q � r/.

Theorem 6. If �1 6 1, �2 > �3 > 0 and 0 6 c1ˇ

c0ˇ0
6 1, then the limit law of Xn=

�
ˇ0

ˇ
n�1
�

is a
mixture of two generalized Mittag-Leffler distributions:

Xn

ˇ0

ˇ
n�1

!
c1ˇ

c0ˇ0
GML

�
�1; �2 C 1; �3 C 1

�
C

�
1 �

c1ˇ

c0ˇ0

�
GML

�
�1; �2 C 1; �3

�
: (94)

When �1 D 1, this leads to a Beta mixture; when �1 < 1, the limit law has the density

f .x/ WD
�.�2 C 1/

�.�3 C 1/
x�3�1

X
`>0

�3 �
c1ˇ

c0ˇ0
.`C �3/

`!�.1 � .`C �3/�1 C �2/
.�x/`; (95)

where 1
�.�s/

is interpreted as zero if s D 0; 1; : : : .

60



Note specially that (95) is independent of the condition c1ˇ

c0ˇ0
6 1.

In terms of the Wright generalized Bessel function [243]

Wp;q.z/ WD
X
`>0

z`

`!�.p`C q/
.p > �1Ip 2 C/;

we have

f .x/ D

�
1 �

c1ˇ

c0ˇ0

�
�.�2 C 1/

�.�3/
x�3�1W��1;1C�2��1�3

.�x/

C
c1ˇ

c0ˇ0
�
�.�2 C 1/

�.�3 C 1/
x�3W��1;1C�2��1��1�3

.�x/:

If the limit law exists and is not degenerate then �3 D 0 iff c1 > 0.

Proof. Decomposing (92) into two parts

Km D
c1ˇ

c0ˇ0
�
�.mC �3 C 1/�.�2 C 1/

�
�
�3 C 1

�
�
�
m�1 C �2 C 1

� C �1 �
c1ˇ

c0ˇ0

�
�.mC �3/�.�2 C 1/

�
�
�3

�
�
�
m�1 C �2 C 1

� ;
where the second term is interpreted as zero if �3 D 0. This decomposition shows that the
limit law of Xn is the mixture of two distributions whose moment sequences are of the form (if
c1ˇ

c0ˇ0
6 1)

�.mC r/�.q/

�.r/�.m�1 C q/
; (96)

which is GML.�1; q; r/ distributed. Thus (94) follows. This moment sequence determines
uniquely the distribution because the corresponding moment generating function is analytic at
s D 0.

On the other hand, observe that the mth moment of a Beta.r; q/ distribution is given by

�.mC r/�.r C q/

�.r/�.mC r C q/
.m > 0/I

thus in the special case when �1 D 1, (94) leads to the mixture of two beta distributions:

Xn

ˇ0

ˇ
n
!

c1ˇ

c0ˇ0
Beta

�
1C �3; �2 � �3

�
C

�
1 �

c1ˇ

c0ˇ0

�
Beta

�
�3; 1C �2 � �3

�
: (97)

Now regarding the moment sequence (96) as the Mellin transform of some density function,
say f0, we then have, by inverse Mellin transform,

f0.x/ D
1

2� i

Z
.c/

�.s C r/�.q/

�.r/�.�1s C q/
x�s�1 ds;

when r; q > 0. Neglecting the possible cancelation from the poles of the factor �
�
s�1 C q

�
, we

compute the residues of the integrand at s D �r � `, ` D 0; 1; : : : , giving rise to the absolutely
convergent series expression (�1 < 1)

f0.x/ D
�.q/

�.r/
xr�1

X
`>0

.�x/`

`!�.��1.`C r/C q/
;

where 1
�.�s/

is interpreted as zero if s D 0; 1; : : : . This proves (95).
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The series representation (95) is in most cases useful for deriving more explicit expressions,
but becomes less transparent if one is interested in large x asymptotics. We can derive an
integral representation by Euler’s reflection formula for Gamma function as follows. We begin
with

1

�.��1.`C r/C q/
D �

1

�
�.1C �1.`C r/ � q/ sin.�.�1.`C r/ � q//I

which, together with the integral representation of Gamma function, yields

f0.x/ D
�.q/

��.r/
xr�1

X
`>0

.�x/`

`!
�.�1.`C r/C 1 � q/ sin.�.�1.`C r/ � q//

D
�.q/

��.r/
xr�1

Z 1
0

e�t t �1r�q

0@X
`>0

.�xt �1/`

`!
sin.�.�1.`C r/ � q//

1A dt

D
�.q/

��.r/
xr�1

Z 1
0

e�t�xt�1 cos.�1�/t �1r�q sin
�
.�1r � q/� � xt �1 cos.�1�/

�
dt;

whenever the integral is convergent, which is the case if �1r�q > �1. By saddle-point method,
one can then derive more precise asymptotic expansions for large x; we omit the details.

7. Applications III: non-normal discrete limit laws

We now discuss concrete polynomials (satisfying the Eulerian recurrence (80)) whose co-
efficients follow asymptotically a discrete limit law .

7.1. Poisson limit laws: ˇ0 D 0

Examples of this category have the general pattern Pn 2 E hh˛nC
C
 0.v�1/

en
; ˇ

en
ii; with ˇ a

positive constant, for some nonzero sequence en.

ˇ D 
 0 D 1 H) Poisson.1/. The generating polynomial of the number of permutations of
n elements with k fixed points (or rencontres numbers A008290) has the EGF e.v�1/z

1�z
, and

satisfies the recurrence Pn 2 E hhn � 1C v; 1I 1ii.
By Theorem 5, the coefficients converge to Poisson.1/. This and a weighted version, to-

gether with its reciprocal are listed below; they all follow asymptotically the same Poisson
distribution; see also [74, p. 117].

OEIS en Type EGF Notes

A008290 1 E hhn � 1C v; 1I 1ii e.v�1/z

1�z
Rencontres #s

A180188 n
nC1

E hhn � 1C v; 1I 1ii 1�.1�v/z.1�z/

.1�z/2
e.v�1/z

Circular successions

(Multiple of A008290)

A098825 1 E hh.n � 1/v2 C 1; v2I 1ii e.1�v/z

1�vz
Reciprocal of A008290

Similarly, the number of r -successions (�.i/ D i C r ) in permutations has the generating
polynomials satisfying (see [162, 204]) Pn 2 Er hhn � 1C v; 1I r !ii.
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r D 1 A123513 r D 2 A264027 r D 3 A264028

By considering Rn.v/ WD PnCr .v/, we then get Pn 2 E hhnC r �1Cv; 1I r !ii. The correspond-
ing EGF is r!e.v�1/z

.1�z/rC1 . All lead to Poisson.1/ limit law. Note that we also have

A010027 E hh.n � 1/v2 C 1C v; v2I 1ii e.1�v/z

.1�vz/2
Reciprocal of A123513

Finally, the sequence A193639 can be defined recursively by Pn 2 E hh2n.2n � 2 C

v/; 2nI 1ii: Normalize this sequence by considering Rn.v/ WD
Pn.v/

2nn!
, which then satisfies

Rn 2 E hh2n � 2 C v; 1I 1ii. This is identical to A079267. The same Poisson.1/ limit law
holds for the distribution of the coefficients.

A079267 E hh2n � 2C v; 1I 1ii e.v�1/.1�
p

1�2z/
p

1�2z
Short-pair matchings

A193639 E hh2n.2n � 2C v/; 2nI 1ii Consecutive rencontres

Note that in all these cases, we can derive more precise asymptotic approximations to the distri-
butions, either by the EGF using analytic means or by the explicit expression of the coefficients
using elementary arguments. We leave this to the interested readers.

ˇ D 2; 
 0 D 1 H) Poisson.1
2
/. A055140 enumerates the number of matchings of 2n people

with partners such that exactly k couples are left together; the generating polynomials satisfy
Pn 2 E hh2n� 2C v; 2I 1ii: By Theorem 5, the distribution tends to Poisson.1

2
/. This sequence

shares a common property with A008290: Œvn�Pn.v/ D 1 but Œvn�1�Pn.v/ D 0.
A sequence leading to the same limit Poisson.1

2
/ distribution is A155517, which is defined

on Pn.v/ D A055140n.v/ by b1
2
nc!2b

1
2

ncPd 1
2

ne.v/.

A055140 E hh2n � 2C v; 2I 1ii e.v�1/z
p

1�2z
Partner-matchings

A155517 b
1
2
nc!2b

1
2

ncA055140d 1
2

ne.v/

7.2. Geometric and negative-binomial limit laws: ˇ0 < 0

The examples of this category now have the general pattern

Pn 2 E

��
˛nC 
 C 
 0.v � 1/

en

;
ˇ C ˇ0.v � 1/

en

��
; (98)

with ˇ > 0; ˇ0 < 0, �3 a positive integer and � ˇ0

ˇ�ˇ0
> 0.

Consider A158815, counting the number of nonnegative paths consisting of up-steps and
down-steps of length 2n with k low peaks (a low peak has its peak vertex at height 1). Then
Pn 2 E hh4n�3Cv

n
; 3�v

n
I 1ii; which follows from the OGF

2
p

1 � 4z
�
3 �
p

1 � 4z � v
�
1 �
p

1 � 4z
�� :

By Theorem 5, �3 D 1 and � ˇ0

ˇ�ˇ0
D

1
3
; thus we obtain the geometric limit law:

P.Xn D k/! 2 � 3�k�1 .k D 0; 1; : : : /:
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The reciprocal polynomials Qn.v/ WD v
nPn

�
1
v

�
satisfy Qn 2 E hh.1C3v2/nCv.1�3v/;�v.1�

3v/I 1ii.
Similarly, the sequence A065600, counting the number of hills in Dyck paths, can be gen-

erated by Pn 2 E hh4n�4C2v
nC1

; 3�v
nC1
I 1ii. Since �3 D 2 and � ˇ0

ˇ�ˇ0
D

1
3
, we obtain, by Theorem 5,

a negative binomial limit law with parameters 2 and 1
3
:

P.Xn D k/! 4.k C 1/ � 3�k�2 .k D 0; 1; : : : /:

Finally, the sequence A202483 defined by

an;k WD Œz
n�

 
1 � .1 � 9z/

1
3

4 � .1 � 9z/
1
3

!k

;

satisfies the recurrence Pn 2 E hh9n�5C2v
nC1

; 4�v
nC1
I 1ii. We obtain a negative binomial limit law

with parameters �3 D 2 and � ˇ0

ˇ�ˇ0
D

1
4
:

P.Xn D k/! 9.k C 1/ � 4�k�2 .k D 0; 1; : : : /:

These examples are summarized as follows.

A158815 E hh4n�3Cv
n

; 3�v
n
I 1ii Geometric.2

3
/ Low peaks in paths

A065600 E hh4n�4C2v
nC1

; 3�v
nC1
I 1ii Negative-Binomial.2; 1

3
/ Hills in Dyck paths

A202483 E hh9n�5C2v
nC1

; 4�v
nC1
I 1ii Negative-Binomial.2; 1

4
/ Œzn�

�
1�.1�9z/

1
3

4�.1�9z/
1
3

�k

7.3. A Bernoulli limit law
All examples we examined so far with discrete limit laws have ˇ > 0. We now consider a

different example A103451 with ˇ < 0 and

Pn.v/ D 1C vnC1 .n > 0/:

The limit law is obviously Bernoulli
�

1
2

�
. Such polynomials satisfy the recurrence

Pn 2 E
DD
1;�

v

n
I 1C v

EE
: (99)

We see that in this case ˇ < 0 but the limit law is discrete (also following from (92)).

8. Applications IV: non-normal continuous limit laws

Polynomials satisfying (80) with ˇ < 0 whose coefficients tends to some continuous limit
law are examined in this section. In all cases we consider, since the variance tends to infinity
and the limit law is not normal, we deduce that the roots of the polynomials are not all real.
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8.1. Beta limit laws and their mixtures (ˇ
˛
D �1)

A large number of polynomials whose coefficients converge to Beta limit laws have the
same pattern

Pn 2 E

��
˛nC pv C q

en

;�
˛v

en

I h0 C h1v

��
; (100)

where h0; h1 > 0 and h0 C h1 > 0. By (88), we see that the EGF of Pn is given by

F.z; v/ D
h0.1 � ˛vz/C h1v.1 � ˛z/

.1 � ˛z/
q
˛
C1.1 � ˛vz/

p
˛
C1
;

which shows that the recurrence (100) is indeed simpler than most others treated in this paper.
Thus the discussions of the examples in this category will be brief.

Since we assume that ˛ > 0, it can be checked that

Œvn�Pn.v/ > 0 for n; k > 0 iff p; q > 0;

in contrast to the more general form (80) for which general conditions for the nonnegativity of
the coefficients remain less clear.

The following beta limit law is a special case of Theorem 6.

Corollary 7. Assume that Pn.v/ satisfies the recurrence (100). If p; q > 0, then the coefficients
of Pn.v/ follows asymptotically a mixture of two Beta distributions:

h1

h0 C h1

Beta
�

p

˛
C 1;

q

˛

�
C

h0

h0 C h1

Beta
�

p

˛
;

q

˛
C 1

�
: (101)

Proof. Since ˇ D ˇ0 D �˛, we have �1 D 1, �2 D
pCq

˛
and �3 D

q

˛
, so that (101) follows

from (97).

In particular, the mean is asymptotically linear and the variance asymptotically quadratic
with the leading constants given by

E.Xn/

n
� K1 D

ph0 C .p C ˛/h1

.h0 C h1/.p C q C ˛/
;

V.Xn/

n2
� K2 �K2

1 D ˛
p.q C ˛/h2

0 C 2.p C ˛/.q C ˛/h0h1 C q.p C ˛/h2
1

.h0 C h1/2.p C q C ˛/2.p C q C 2˛/
;

respectively.

8.1.1. Uniform (Beta.1; 1/) limit laws
Uniform distribution is a special case of Beta distributions: Beta.1; 1/. A very simple

example in OEIS with this distribution is A123110 (shifted by 1), which can be generated by
(100) with Pn 2 E hhnC1

n
;�v

n
I vii. Then Pn.v/ D v C � � � C v

nC1 for n > 0, and one obviously
has a UniformŒ0; 1� limit law for the coefficients with mean and variance asymptotic to n

2
and

n2

12
, respectively. This and other examples are listed as follows.
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OEIS Type Limit law

A000012 E hhnCv
n
;�v

n
I 1ii UniformŒ0; 1�

A123110 E hhnC1
n
;�v

n
I vii UniformŒ0; 1�

A279891 E hhnC1Cv
n

;�v
n
I 2C 2vii UniformŒ0; 1�

Note that all roots of these polynomials lie on the unit circle. Also if we change the initial
condition of A123110 to P0.v/ D 1 (instead of v), then Pn.v/ � 1 for all n > 0. This shows
the high sensitivity of the limit law on initial conditions.

8.1.2. Arcsine (Beta
�

1
2
; 1

2

�
) law

Arcsin law is another special case of Beta distribution: Beta.1
2
; 1

2
/. A classical example

in this category is Chung-Feller’s arcsine law [57]. First, the number of simple random walks
(up or down with the same probability) of length 2n with 2k steps above zero is given by�

2k

k

��
2n�2k

n�k

�
(alternatively, paths of length 2n with the last return to zero at 2k has the same

distribution), which is A067804. Then, the corresponding generating polynomials are of type
Pn 2 E hh4n�2C2v

n
;�4v

n
I 1ii. We obtain, by Corollary 7, the arcsine limit law for the coefficients.

Another essentially identical sequence leading to the same law is A059366.

OEIS Type Œvk �Pn.v/ Limit law Limit density

A059366 E hh2n � 1C v;�2vI 1ii n!
2n

�
2k

k

��
2.n�k/

n�k

�
arcsine 1

�
p

x.1�x/

A067804 E hh4n�2C2v
n

;�4v
n
I 1ii

�
2k

k

��
2.n�k/

n�k

�
arcsine 1

�
p

x.1�x/

By the connection to Legendre polynomials, all roots of Pn.v/ lie on the unit circle; see
also [138].

8.1.3. Beta.q; q/ with q > 1

Consider the expansion (A120406)

1 � 2.1C v/z �
p
.1 � 4z/.1 � 4vz/

2.1 � v/2z2
D

X
n>0

Pn.v/z
n:

Then Pn.v/ 2 E hh4nC2C6v
nC2

;� 4v
nC2
I 1ii. We obtain a Beta

�
3
2
; 3

2

�
(semi-elliptic) limit law for the

coefficients.
Another example is A091441, which counts the number of permutations of two types of

objects so that each cycle contains at least one object of each type. Shifting by one (so as to
start the recurrence from n D 1) leads to the polynomial of type E hhn C 1 C 2v;�vI 1ii. We
then obtain the limit law Beta.2; 2/ (parabolic) for the coefficients.

OEIS Type Œvk �Pn.v/ Limit law Limit density

A120406 E hh4nC2C6v
nC2

;� 4v
nC2
I 1ii

2.n
k/

2
.2nC2

n /
.2nC2

2kC1/
Beta

�
3
2
; 3

2

� 8
p

x.1�x/
�

A091441 E hhnC 1C 2v;�vI 1ii n!.k C 1/.nC 1 � k/ Beta.2; 2/ 1
6
x.1 � x/

A003991 E hhnC1C2v
n

;�v
n
I 1ii .k C 1/.nC 1 � k/ Beta.2; 2/ 1

6
x.1 � x/
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8.1.4. Beta.p; q/ with p ¤ q

A generic example is the negative hypergeometric distribution, first introduced by Con-
dorcet in 1785 (see [146, Ch. 6, Sec. 2.2]) and defined by

P.Xn D k/ D Œvk �Pn.v/ D

�
pCk�1

k

��
qCn�k�1

n�k

��
pCqCn�1

n

� .n > 0Ip; q > 0/:

Then Pn.v/ is of type E hhnCq�1Cpv

pCqCn�1
;� v

pCqCn�1
I 1ii, and the limit law of Xn is, by Corollary 7,

Beta.p; q/. See also [140] where this distribution arises in a “social attraction model”. For
clarity, we separate the factor en (see (100)) in the following table.

OEIS en Type Limit law Limit density

A162608 1 E hhnC 2v;�vI 1ii Beta.2; 1/ 2x

A002260 n E hhnC 2v;�vI 1ii Beta.2; 1/ 2x

A051683 n
nC1

E hhnC 2v;�vI 1ii Beta.2; 1/ 2x

A002262 n E hhnC 1C v;�vI vii Beta.2; 1/ 2x

A138770 1 E hhnC 1C v;�vI 2ii Beta.1; 2/ 2.1 � x/

A004736 n E hhnC 1C v;�vI 1ii Beta.1; 2/ 2.1 � x/

A212012 n E hhnC 1C v;�vI 2ii Beta.1; 2/ 2.1 � x/

A202363 n
nC2

E hhnC 1C v;�vI 1ii Beta.1; 2/ 2.1 � x/

A122774 1 E hh2n � 1C 2v;�2vI 1ii Beta.1; 1
2
/ 1

2
p

1�x

A104633 n E hhnC 2C 2v;�vI 1ii Beta.2; 3/ 12x.1 � x/2

A127779 n E hhnC 1C 3v;�vI 1ii Beta.3; 2/ 12x2.1 � x/

A033820 nC 1 E hh4n � 2C 6v;�4vI 1ii Beta.3
2
; 1

2
/

2
p

x

�
p

1�x

Here (A127779, A104633) are a reciprocal pair. In particular, A033820 is connected to the
enumeration of paths avoiding the line x D y; see [114, 218].

More OEIS sequences with Beta.2; 1/ limit law. Three simple sequences of polynomials are
also Eulerian although they are not of the form (100). We list them here for completeness.

OEIS Pn.v/ Type

A071797
P

16j62n

.j C 1/vj E hh2.2n2�.1�2vC2v2/nCv2/
2n.2n�1/

;�2v.1Cv/n�v2

2n.2n�1/
I 1ii

A074294
P

06j62nC1

.j C 1/vj E hh2n2C.1C2vC2v2/nCv.1C2v/
2n.2nC1/

;�2v.1Cv/n�v.1C2v/
2n.2nC1/

I 1C 2vii

A293497
P

06j62n

.j C 1/vj E hh4n2C2v.2Cv/nCv.1Cv/
2n.2n�1/

;�2v.1Cv/n�v2

2n.2n�1/
I vii

Without a priori information on the exact forms of the polynomials, we can still apply the
method of moments (with more complicated calculations) and get the limit law, although the
corresponding PDEs seem more difficult to solve. A simple reason these recurrences lead to
non-normal limit laws is that the dependence on v in each of the multiplicative factors is only
at the lower order terms such as O.n�1/ and smaller ones.
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8.1.5. Beta mixtures
For simplicity, we abbreviate the Beta.p; q/ distribution by Bp;q in the following table.
OEIS en Type Limit law Limit density

A051162
A134478 n E hhnC 1C v;�vI 1C 2vii 2

3
B2;1 C

1
3
B1;2

2
3
.1C x/

A294317 n E hhnC 1C v;�vI 2C vii 1
3
B2;1 C

2
3
B1;2

1
6
.2 � x/

A087401 n E hhnC 2C v;�vI v C v2ii
1
2
B3;1 C

1
2
B2;2

3
2
x.2 � x/

A141418 n E hhnC 1C 2v;�vI 1C vii 1
2
B3;1 C

1
2
B2;2

3
2
x.2 � x/

A193891 n E hhnC 1C 3v;�vI 1C 2vii 2
3
B4;1 C

1
3
B3;2

4
3
x2.3 � x/

A193892 n E hhnC 3C v;�vI 2C vii 1
3
B2;3 C

2
3
B2;4

4
3
.1 � x/2.2C x/

A193895 n E hhnC 2C 2v;�vI 2C vii 1
3
B3;2 C

2
3
B2;3 4x.1 � x/.2 � x/

A193896 n E hhnC 2C 2v;�vI 1C 2vii 2
3
B3;2 C

1
3
B2;3 4x.1 � x2/

Note that (A051162, A294317), (A193891, A193892) and (A193895, A193896) are reciprocal
pairs. See Figure 8 for the histograms of some polynomials leading to Beta limit laws.

Figure 8: Distributions of the coefficients of polynomials of type E hhn C pv C q;�vI 1ii for
n D 3; : : : ; 50: (from left to right) .p; q/ D .2;�0:5/, .2; 0/, .2; 0:5/, .2; 1/, .3; 1/.

8.2. Uniform limit laws again
We saw two occurrences of uniform limit law in the above table (being a special case of

beta distribution): A279891 and A123310. Other less trivial examples are the following.

OEIS Type OGF Limit law

A104709 E hh2nC 1C v;�.1C v/I 1ii 1
.1�2z/.1�.1Cv/z/

UniformŒ0; 1
2
�

A193851 E hh3nC 1C 2v;�.1C 2v/I 1ii 1
.1�3z/.1�.1C2v/z/

UniformŒ0; 2
3
�

A193861 E hh3nC 2C v;�.2C v/I 1ii 1
.1�3z/.1�.2Cv/z/

UniformŒ0; 1
3
�

Their reciprocal polynomials are of the same form (9) but with quadratic ˛.v/. See Figure 9
for a graphical rendering.

OEIS Type Limit law Recip. of

A054143 E hh.1C 2v � v2/nC v.1C v/;�v.1C v/I 1ii UniformŒ1
2
; 1� A104709

A193850 E hh.2C 2v � v2/nC v.2C v/;�v.2C v/I 1ii UniformŒ2
3
; 1� A193851

A193860 E hh.1C 4v � 2v2/nC v.1C 2v/;�v.1C 2v/I 1ii UniformŒ1
3
; 1� A193861
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A104709 A193851 A193861

Figure 9: The histograms corresponding to A104709, A193851 and A193861.

Other Eulerian recurrences not of the form (100) but with a uniform limit law include

A118175 Pn.v/ D
P

16j62n v
j Pn 2 E hhv.2�v/n�v.1�2v/

n
;�v

2

n
I 1ii UniformŒ0; 1�

A071028 Pn.v/ D
P

06j6n v
2j Pn 2 E hhnCv

2

n
;�v.1Cv/

2n
I 1ii UniformŒ0; 1�

Note that a very similar-looking EGF 1
.1�z/.1�.1C2v/z/

, which is A193862 (reciprocal of
A115068, enumerating elements in Coxeter group with certain descent sets), leads to the CLT
N
�

2
3
n; 2

9
n
�
, although both sequences do not satisfy the recurrence (9). This follows from a

direct calculation.

8.3. Rayleigh and half-normal limit laws (ˇ
˛
D �

1
2
)

We consider here �1 D
1
2

for which many different limit laws are possible. For example,
the polynomials with

Pn 2 E hh2n � 2C v;�vI 1C vii;

contain only nonnegative coefficients, and follow a limit law with the density 1
8
x3e�

1
4

x2

. This
is proved directly from (95). Similarly, the polynomials Pn 2 E hh2nC bv;�vI 1ii leads to the
limit law with the density

b2�b

�
�

1
2
.b C 1/

� xb�1

Z 1
x

e�
1
4

t2

dt .b > 0Ix > 0/:

Instead of describing all possible limit laws for which we have few applications, we address
the following question, based on the examples we collected: under which conditions will the
limit law of the coefficients be either Rayleigh or half-normal (two of the most common non-
normal laws in lattice paths, random trees, random mappings, etc.)? For more instances and
techniques for these two laws, see [79, 236] and the references therein. It turns out that these
are very special laws from our framework and very strong restrictions are needed. We give a
complete characterization of this question.

Recall that the Rayleigh and half-normal distributions with scale � > 0 (which corresponds
to the mode of the distribution) have the densities

x

�2
e
� x2

2�2 and

p
2

p
� �

e
� x2

2�2 .x > 0/;
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respectively. While the Taylor expansion of the former contains only odd powers, that of the
latter contains only even powers. The corresponding mth moments have the forms

p
�
�.mC 1/

�
�

m
2
C

1
2

� � �
p

2

�m

and
�.mC 1/

�
�

m
2
C 1

� � �
p

2

�m

; (102)

respectively.

8.3.1. Characterizations of Rayleigh and half-normal limit laws
To describe our characterization of the two special limit laws, we define the function

F˛.p; q; �I z/ WD .1 � ˛z/�p
��

1 � �.1 � v/
�p

1 � ˛z C �.1 � v/
��q
;

which equals ˛q times F in (88) when ˇ D �1
2
˛, ˇ0 D �1

2
�, 
 D ˛

�
p � 1C 1

2
q
�
, 
 0 D 1

2
q�,

c0 D 1 and c1 D 0. For our uses, we need the following conditions for the nonnegativity of the
coefficients Œvkzn�F˛.

Lemma 9. Let Pn.v/ WD Œzn�F˛.p; q; �I z/. Assume ˛ > 0. (i) If p D 0 and q > 0, then
Œvk �Pn.v/ > 0 for all n; k > 0 iff 0 6 � 6 1; and (ii) if p > 1

2
and 0 < q 6 2, then

Œvk �Pn.v/ > 0 for all n; k > 0 iff 0 6 � 6 3
2
.

Proof. Assume without loss of generality ˛ D 1. Consider first the case when p D 0 and
q > 0:

Pn.v/ D Œz
n�
��

1C �.v � 1/
�p

1 � z � �.v � 1/
��q
DW Œzn�.1 � g.z//�q;

where g.z/ WD Q�.v/.1 �
p

1 � z/ with Q�.v/ WD 1C �.v � 1/. Then

g D z
Q�.v/2

2 Q�.v/ � g
:

By Lagrange inversion formula [224]

Pn.v/ D Œz
n�.1 � g.z//�q

D
q

n
Œtn�1�

1

.1 � t/qC1

�
Q�.v/2

2 Q�.v/ � t

�n

D
q

n

X
16j6n

�
2n � 1 � j

n � 1

��
q C j � 1

q

�
Q�.v/j

22n�j
: (103)

Then

Œvk �Pn.v/ D
q

n
�k

X
k6j6n

�
2n � 1 � j

n � 1

��
q C j � 1

q

��
j

k

�
.1 � �/j�k

22n�j
: (104)

If 0 6 � 6 1, then all coefficients are nonnegative and we obtain Œvk �Pn.v/ > 0. On the
other hand, since P1.v/ D

1
2
q..1 � �/C �v/, we see that if Œvk �Pn.v/ > 0 for k; n > 0, then

� 2 Œ0; 1�. This proves the necessity.
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For the second case p > 1
2

and 0 < q 6 2, writing � D 1C t and Z WD 1 �
p

1 � z, we
have

Œvk �Pn.v/ D Œz
n�.1 � z/�pŒvk �.1C tZ � .1C t/vZ/�q

D

�
q C k � 1

k

�
.1C t/k Œzn�Zk.1 �Z/�2p.1C tZ/�q�k :

By using the relation Z.2 �Z/ D z, applying Lagrange inversion formula and then changing
the variables Z 7! 2w, we obtain

Œzn�Zk.1 �Z/�2p.1C tZ/�q�k

D 2k�2nŒwn�k �.1 � 2w/1�2p.1C 2tw/�q�k.1 � w/�n�1

D 2k�2nŒwn�k �.1 � 2w/1�2p ..1C 2tw/.1 � w//�q�k .1 � w/�n�1CqCk :

Since p > 1
2
, we see that Œwj �.1�w/1�2p > 0 for all j > 0; on the other hand, since 0 < q 6 2,

we have n C 1 � q � k > 0 for 0 6 k 6 n � 1, implying that Œwj �.1 � w/�n�1CqCk > 0

for j > 0 and 0 6 k 6 n � 1; also Œvn�Pn.v/ D
�

qCn�1

n

�
.1C t/�q2�n is always nonnegative.

Furthermore, for 0 6 k 6 n, if 1 � 2t > 0, then

Œwj � ..1C 2tw/.1 � w//�q�k > 0 for j > 0:

For the necessity, we observe first that Œv�P1.v/ D
1
2
q� < 0 if � < 0; also

Œvn�1�Pn.v/ D

�
q C n � 2

n � 1

�
.1C t/n�12�n�1..1 � 2t/nCO.1//;

which becomes negative if t > 1
2

or � > 3
2

for large enough n. This implies the necessity of
0 6 � 6 3

2
.

Theorem 7. Assume that Pn.v/ satisfies the recurrence (80) with �1 D
1
2

and ˇ0 < 0. Let

� WD �2
p

2ˇ0

˛
. Then the coefficients of the polynomials E.vXn/ WD Pn.v/

Pn.1/
are asymptotically

Rayleigh distributed
Xn

�
p

n

d
�! X;

where X has the density xe�
1
2

x2

for x > 0 iff the EGF F of Pn has one of the following five
forms: F 2 fR1; : : : ;R5g, where

R1.z/ WD .c0 C c1.v � 1//F˛

�
0; 1; c1

c0
I z
�
;

R2.z/ WD c0F˛

�
0; 1;�2ˇ0

˛
I z
�

with � 1
2
˛ 6 ˇ0 < 0;

R3.z/ WD .c0 C c1.v � 1//F˛

�
1
2
; 2; c1

c0
I z
�
;

R4.z/ WD c0F˛

�
1
2
; 2;�2ˇ0

˛
I z
�

with � 3
4
˛ 6 ˇ0 < 0;

R5.z/ WD c0F˛

�
3
2
; 2; 3c1

2c0
I z
�
C c1.v � 1/F˛

�
3
2
; 3; 3c1

2c0
I z
�
:

On the other hand, the sequence of random variables fXng is asymptotically half-normally
distributed

Xn

�
p

n

d
�! Y;
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where Y has the density
q

2
�

e�
1
2

x2

for x > 0 iff the EGF of Pn has one of the following three
forms: F 2 fH1;H2;H3g, where

H1.z/ WD .c0 C c1.v � 1//F˛

�
1
2
; 1; c1

c0
I z
�
;

H2.z/ WD c0F˛

�
1
2
; 1;�2ˇ0

˛
I z
�

with � 3
4
˛ 6 ˇ0 < 0;

H3.z/ WD .c0 C c1.v � 1//F˛

�
3
2
; 2; c1

c0
I z
�
:

We see that in either case the seven parameters in (80) are now reduced to only three (includ-
ing ˛) as far as the two limit laws are concerned. Also the coefficients of R1;R3;R5;H1;H3

are always nonnegative since 0 6 c1

c0
6 1, but for R2;R4;H2 one needs further restrictions on

ˇ0 using Lemma 9.

Proof. Consider first the Rayleigh limit law. Since �1 D
1
2
, we have, by Proposition 4,

E
�

Xn

�
p

n

�m

� QKm; where QKm D
�
�
mC �3

�
�.�2 C 1/.�1mC �3/

�
�
�3 C 1

�
�
�

m
2
C 1C �2

�
2

m
2

: (105)

Here � WD �2
p

2ˇ0

˛
and �1 WD �

c1˛
2c0ˇ0

. By equating QKm to the moments (102) of the Rayleigh
distribution, we are led to the identity for all m > 0

QKm D
�
�
mC �3

�
�.�2 C 1/.�1mC �3/

�
�
�3 C 1

�
�
�

m
2
C 1C �2

�
2

m
2

D
p
�

�.mC 1/

�
�

m
2
C

1
2

�
2

m
2

: (106)

If c1 D 0, then �1 D 0 and the above identity becomes

QKm D
�3�

�
mC �3

�
�.�2 C 1/

�
�
�3 C 1

�
�
�

m
2
C 1C �2

�
2

m
2

D
p
�

�.mC 1/

�
�

m
2
C

1
2

�
2

m
2

:

Since this holds for m > 0 (including m!1), we see that, by Stirling’s formula,

QKm�
m
e

�m
2

D
�3�.�2 C 1/

�.�3 C 1/
m�3��2�12�2C

1
2 .1C o.1//;

for large m, while for the Rayleigh moments
p
��.mC 1/

�
�

m
2
C

1
2

��
2
e
m
�m

2

D
p
�m.1C o.1//:

It follows that �3 D
3
2
C �2. Substituting this into (106) with m D 2, and then solving for �2,

we obtain two solutions: �2 D ˙
1
2
. If �2 D �

1
2
, then �3 D 1, and Pn has the pattern

Pn 2 E hh˛n � 1
2
˛ � ˇ0.v � 1/;�1

2
˛ C ˇ0.v � 1/I c0ii;

which implies that the EGF equals R2 by (88).
On the other hand, if �2 D

1
2
, then �3 D 2, and Pn satisfies

Pn 2 E hh˛nC 1
2
˛ � 2ˇ0.v � 1/;�1

2
˛ C ˇ0.v � 1/I c0ii;
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so that F D R4. Note that R2 and R4 are connected by a differentiation:

@zF˛.0; 1; �I z/ D
1
2
˛.1C �.v � 1//F˛

�
1
2
; 2; �I z

�
: (107)

Assume now c1 > 0. Then �1 > 0 and
QKm�

m
e

�m
2

D �1

�.�2 C 1/

�.�3 C 1/
m�3��22�2C

1
2 .1C o.1//;

for large m, implying that �3 D
1
2
C �2. Substituting this into (106) with m D 2; 4 and then

solving for �1 and �2, we get three feasible solutions:

.�1; �2/ D
˚�

1;�1
2

�
;
�
1; 1

2

�
;
�

2
3
; 3

2

�	
;

leading to the three patterns

Pn 2

8̂<̂
:

E hh˛n � 1
2
˛;�1

2
˛ � c1˛

2c0
.v � 1/I c0 C c1.v � 1/ii;

E hh˛nC 1
2
˛ C c1˛

2c0
.v � 1/;�1

2
˛ � c1˛

2c0
.v � 1/I c0 C c1.v � 1/ii;

E hh˛nC 3
2
˛ C 3c1˛

2c0
.v � 1/;�1

2
˛ � 3c1˛

4c0
.v � 1/I c0 C c1.v � 1/ii;

respectively in sequential order. These correspond to R1, R3 and R5, respectively. Note that
� D

p
2c1

c0
in the cases of R1 and R3, and � D 3c1p

2c0

in the other case, so that � equals
p

2

times the third parameter of the function F˛ in all cases R1; : : : ;R5. Also R1, R3 and R5 are
essentially connected by successive derivatives (up to change of parameters and multiplicative
factors) by the relations (107) and

@zF˛

�
1
2
; 2; �I z

�
D

3
2
˛F˛

�
3
2
; 2; �I z

�
C ˛�.v � 1/F˛

�
3
2
; 3; �I z

�
:

The proof for half-normal limit law is similar, starting from the asymptotic estimate
�.mC 1/

�
�

m
2
C 1

��
2
e
m
�m

2

D
p

2.1C o.1//;

implying either �1 D 0; �3 D 1C �2 or �1 > 0; �3 D �2. By the same arguments used above,
we then obtain �2 D 0 in the former case, and .�1; �2/ D .1; 0/ or

�
1
2
; 1
�

in the latter case,
yielding the three patterns

Pn 2

8̂<̂
:

E hh˛n � ˇ0.v � 1/;�1
2
˛ C ˇ0.v � 1/I c0ii;

E hh˛n;�1
2
˛ � c1

2c0
˛.v � 1/I c0 C c1.v � 1/ii;

E hh˛nC ˛ C c1

c0
˛.v � 1/;�1

2
˛ � c1

c0
˛.v � 1/I c0 C c1.v � 1/ii;

corresponding to H2, H1, and H3, respectively.

Another interesting property of Xn is that the difference polynomials �n.v/ WD Pn.v/ �

Pn�1.v/ have only positive coefficients and the same limit law as that for Pn.v/.

Corollary 8. Assume that Pn.v/ is as in Theorem 7, Œvk ��n.v/ > 0 and E
�
vZn

�
WD

�n.v/

�n.1/
.

Then Xn and Zn follow the same limit laws.

The result holds in more general settings but we content ourselves with the current formu-
lation due to limited applications.

Proof. By Proposition 4, we see that

P .m/
n .1/ � Pn.1/Kmnm�1 .m > 0/;

and the corollary follows from the relation Pn.1/ D .˛nC 
 /Pn�1.1/.
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8.3.2. Examples. I. Rayleigh laws
Consider the Catalan triangle A039598:

Pn.v/ WD
X

06k6n

2.k C 1/

nC k C 2

�
2nC 1

n � k

�
vk ;

which has a large number of combinatorial interpretations such as the number of leaves at level
k C 1 in ordered trees with nC 1 edges. This sequence of polynomials satisfies the recurrence

Pn 2 E

��
4nC 2v

nC 1
;�

1C v

nC 1
I 1

��
: (108)

The EGF of .nC 1/!Pn.v/ is of type R4 (with c1 D 0 and 


˛
D

1
2
) and equals F4

�
1
2
; 2; 1

2
I z
�
,

which, by an integration, gives

X
n>0

Pn.v/z
nC1
D

1 �
p

1 � 4z

.1C v/
p

1 � 4z C 1 � v
:

By Theorem 7, we see that the limit law of the coefficients is Rayleigh with � D 1
2
, which also

follows from the closed-form expression; see Figure 10. Stronger asymptotic approximations
and local limit theorems can also be derived.

This sequence has many minor variants that do not change the Rayleigh limit distribution
of the coefficients; for example (the case A122919 following from Corollary 8):

A039598 WD Pn.v/ Rayleigh
�

1
p

2

�
A039599 D

vPn.v/CPn�1.0/

1Cv
DW Rn.v/ Rayleigh

�
1
p

2

�
A050166 D Reciprocal of Pn.v/ Rayleigh

�
1
p

2

�
A122919 D Pn.v/ � Pn�1.v/ Rayleigh

�
1
p

2

�
A128899 D vPn�1.v/ Rayleigh

�
1
p

2

�
A118920 D 2Pn.v/ Rayleigh

�
1
p

2

�
A053121 D

(
vPb 1

2
nc.v

2/; n odd

R 1
2

n.v
2/; n even

Rayleigh
�

1
p

2

�
Some other OEIS sequences leading to Rayleigh limit laws are listed in the following table

(using the format (98)).

OEIS Type Œvk �Pn.v/ Limit law

A039599 E hh4nCv�3
n

;�1Cv
n
I 1ii 2kC1

nCkC1

�
2n

n�k

�
Rayleigh

�
1
p

2

�
A102625 E hh2nC v;�vI vii k.2n�kC1/!

.n�kC1/!2n�kC1 Rayleigh
�p

2
�

A108747 E hh4nC2v
nC1

;� 2v
nC1
I 2vii k2k

2nC2�k

�
2nC2�k

nC1

�
Rayleigh

�p
2
�

Their reciprocal polynomials also follow the same Rayleigh limit laws.
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Recip. of OEIS Type Limit law

A039599 A050165 E hh .1C4v�v2/n�3vCv2

n
;�v.1Cv/

n
I 1ii Rayleigh

�
1p

2

�
A102625 A193561 E hh.1C v/nC 1;�vI 1ii Rayleigh

�p
2
�

A039598 A050166 E hh .1C4v�v2/nC1Cv2

nC1
;�v.1Cv/

nC1
I 1ii Rayleigh

�
1p

2

�
Among these OEIS sequences, A102625 was one of our motivating examples of non-

normal limit laws (see Figure 10), and has many combinatorial interpretations such as the root
degree of plane-oriented recursive trees and the waiting time in a memory game; see [1, 15, 171]
and OEIS A102625 page for more information.

Yet another occurrence of A102625 and Rayleigh limit law is as follows. Consider the
Catalan triangle A009766 (or ballot numbers):

Rn.v/ WD
X

06k6n

n � k C 1

nC 1

�
nC k

k

�
vk :

Then Rn.v/ satisfies the recurrence

.nC 1/Rn.v/ D ..1C 2v/nC 1/Rn�1.v/ � v.1 � 2v/R0n�1.v/ .n > 1/;

with R0.v/ D 1. The distribution of the coefficients is negative binomial with parameters 2

and 1
2
. Also they are related to Pn.v/ of A102625 by PnC1.v/ D v

nC2Rn

�
1

2v

�
.

These sequences are rather simple in nature as they all have a neat closed-form expression
for the coefficients. Less trivial examples can be generated by using (103) with � 2

�
0; 1

2

�
, say.

8.3.3. Examples. II. Half-normal laws
Consider sequence A193229:

Pn.v/ D
X

06k6n

.2n � k/!

.n � k/!2n�k
vk
I

see [171] for a characterization via grammars. Then Pn satisfies E hh2n� 1C v;�vI 1ii, which
is of type H2, and we get a half-normal limit law for the coefficients; see Figure 10. Note that
a conjecture mentioned on the OEIS webpage for A193229 can be easily proved, stating that
Œvk �Pn.v/ is equal to the .kC1/st term in the top row of M n, where M D .mi;j /with mi;j D i

for 1 6 j 6 i C 1 and i D 0 for j > i C 2.
An essentially identical sequence connected to Banach’s matchbox problem is A164705,

which can be generated by Pn 2 E hh4;�2v
n
I

1
2
vii and has the closed-form expression

�
2n�k

n

�
2k�1.

The EGF is then of type H1, and we get the same half-normal limit law.
Interestingly, the sequence A001497, which corresponds to Bessel polynomials, differs

from A193229 by a factor of k!, namely, the EGF equals

ev.1�
p

1�2z/

p
1 � 2z

;

whose coefficients lead to a Poisson.1/ limit law.
Another instance is A111418 (right-hand side of odd-numbered rows of Pascal’s triangle):

Œvk �Pn.v/ D
�

2nC1

n�k

�
, and Pn satisfies Pn 2 E hh4n�1Cv

n
;�1Cv

n
I 1ii; again of type H1, so that the
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coefficients lead to a half-normal limit law; see Figure 10. The reciprocal polynomial of Pn

corresponds to sequence A122366, which satisfies Qn 2 E hh .1C4v�v2/n�v.1�v/

n
;�v.1Cv/

n
I 1iiI

compare with the normal examples in Section 5.5.3. A signed version of A111418 is A113187:
Rn 2 E hh�4n�1Cv

n
;�1Cv

n
I 1ii: We have .�1/nRn.�v/ D Pn.v/, and we get the same half-

normal limit law for the absolute values of the coefficients.
These examples are summarized in the following table.

OEIS Type Œvk �Pn.v/ Limit law

A193229 E hh2nC v � 1;�vI 1ii .2n�k/!

.n�k/!2n�k Half-Normal
�p

2
�

A164705 E hh4;�2v
n
I

1
2
vii

�
2n�k

n

�
2k�1 Half-Normal

�p
2
�

A111418

jA113187j
E hh4nCv�1

n
;�1Cv

n
I 1ii

�
2nC1

n�k

�
Half-Normal

�
1
p

2

�
A122366 E hh .1C4v�v2/n�v.1�v/

n
;�v.1Cv/

n
I 1ii

�
2nC1

k

�
Half-Normal

�
1
p

2

�

A039598 A102625 A193229 A111418
Figure 10: Rayleigh and half-normal limit laws: the two left histograms for n D 20; : : : ; 60

and plotted against
p

n; the two right histograms for n D 10; : : : ; 50 and plotted against n.

8.4. Other limit laws
We discuss other limit laws based on the recurrence (80) in this subsection.

8.4.1. Mittag-Leffler limit laws
Consider A202550, which is defined by (with a shift of index)

Œvk �Pn.v/ WD Œz
nC1�

 
1 � .1 � 8z/

1
4

1C .1 � 8z/
1
4

!kC1

.0 6 k 6 n/:

Then Pn.v/ satisfies the recurrence

Pn 2 E

��
8nC 2v

nC 1
;�

1C v

nC 1
I 1

��
: (109)

By Proposition 4, we see that the mth moment of Xn is asymptotic to

�.1
4
/�.mC 1/

2m�
�

m
4
C

1
4

� .m > 0/;

and thus the limit law of the coefficients is a Mittag-Leffler distribution (with the moment
generating function (93) with r D 1) with p D q D 1

4
.
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A202550 Pn 2 E hh8nC2v
nC1

;�1Cv
nC1
I 1ii Mittag-Leffler limit law

In general, replacing 8 by ˛ > 2 in (109) guarantees Œvk �Pn.v/ > 0 and leads to the moment
sequence

�
�

2
˛

�
�.mC 1/

2m�
�

2
˛
.mC 1/

� .m > 0/;

which yields a Mittag-Leffler distribution when ˛ > 2. Interestingly, the case ˛ D 2 gives the
binomial coefficients (A007318), namely, Pn.v/ D .1 C v/n, and we get a CLT N

�
1
2
n; 1

4
n
�

instead of a Mittag-Leffler distribution.
Another example leading to a Mittag-Leffler limit law is to extend the recurrence for A102625

by considering Pn 2 E hh˛n � 1;�vI vii, for ˛ > 2. We then deduce, again by Proposition 4,
that the limit law is a Mittag-Leffler distribution:

Xn

n
1
q

d
�! Xq; where E

�
eXqs

�
D

X
m>0

�
�
1 � 1

q

�
�
�
1C m�1

q

� sm:

Finally, the limit law for the coefficients of the polynomials Pn 2 E hh˛n;�.1C v/I 1C vii

with ˛ > 2 is also a Mittag-Leffler.

8.4.2. A mixture of discrete and continuous laws
An example of a similar pattern to (99) but with a completely

different behavior is A139524: Pn 2 E hh2;�1Cv
n
I 4 C 2vii. A

closed-form expression of Pn is

Pn.v/ D 2nC1
C 2.1C v/nC1 .n > 0/:

The limit law is a mixture of Dirac (at zero) and a normal: P.Xn D

0/! 1
3

and

P
�

Xn D

jn

2
C

p
n

4
x
k�
D

2

3
�
2e�

1
2

x2

p
2�n

�
1CO

�
jxj C jxj3
p

n

��
;

uniformly for x D o.n
1
6 /.

Another similar example is Pn 2 E hhnC1
n
;�v

n
I 1C vii. Then

Pn.v/ D nC 1C v C � � � C vnC1 .n > 0/;

and one gets a mixture of Dirac and uniform as the limit law. This sequence of polynomials
corresponds to the signless version of A167407. A similar variant is A130296 (Pn.v/ D nv C

v2 C � � � C vn for n > 1), but it satisfies a rather messy recurrence involving P 0n�1.v/ and
P 00n�1.v/ and is not Eulerian; its reciprocal is A051340.

9. Extensions

In view of the richness and diversity of Eulerian recurrences, many extensions have been
made; here we briefly discuss some of them and examine the extent to which the tools used in
this paper applies as far as the limit distribution of the coefficients is concerned. For simplicity,
we content ourselves with concrete examples rather than the formulation of general theorems.
Some extensions and generalizations will be elaborated elsewhere.

Throughout this section, we denote the Eulerian polynomials by An.v/ WD
P

06k<n

˝
n

k

˛
vk .
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9.1. Non-homogeneous recurrence
Eulerian recurrences containing an additional non-homogeneous term of the form

Pn.v/ D .˛.v/nC 
 .v//Pn�1.v/C ˇ.v/.1 � v/P
0
n�1.v/C Tn.v/ .n > 1/;

with P0.v/ and Tn.v/ given, already appeared in our discussions of Lehmer’s polynomials (45)
and in Section 4.5.3 on type D Eulerian numbers.

We discuss here two more examples beginning with A065826, which enumerates the de-
scents in permutations starting with an ascent:

Pn.v/ D .vn � 1/Pn�1.v/C v.1 � v/P
0
n�1.v/C vAn.v/ .n > 2/;

with P1.v/ D v. It is easy to see that

Pn.v/ D
X

16k6n

k

�
n

k � 1

�
vk .n > 1/;

so that the EGF is given by

v
@

@z

e.1�v/z � 1 � .1 � v/z

.1 � v/.1 � ve.1�v/z/
:

This implies an optimal CLT N
�

1
2
n; 1

12
nI n�

1
2

�
by Theorem 2.

The reciprocal polynomial Qn of Pn, satisfying the recurrence

Qn.v/ D .vn � 2v/Qn�1.v/C v.1 � v/Q
0
n�1.v/C vAn�1.v/ .n > 3/;

with Q2.v/ D v, appeared in a context of decoding schemes [217].
On the other hand, the derivative Rn.v/ (D A142706) of An.v/ also satisfies a similar

recurrence

Rn.v/ D .vnC 2 � 3v/Rn�1.v/C v.1 � v/R
0
n�1.v/C .n � 1/An�1.v/ .n > 1/;

with R0.v/ D 0. The same CLT N
�

1
2
n; 1

12
nI n�

1
2

�
for the coefficients hold.

v.vAn/
0 A065826 N

�
1
2
n; 1

12
nI n�

1
2

�
A0n.v/ A142706 N

�
1
2
n; 1

12
nI n�

1
2

�
Another recurrence appears in [64] (in the context of Voronoi cells of lattices):

an;k D kan�1;k C .n � k C 1/an�1;k�1 C k3

�
n � 1

k � 1

�
C .n � k C 1/3

�
n � 1

k � 2

�
:

If Pn.v/ WD
P

k anC1;kv
k , then (not in OEIS)

Pn.v/ D .vnC v/Pn�1.v/C v.1 � v/P
0
n�1.v/

C v.nC 1/3An.v/ � v.3vn.nC 1/ � 1C v/A0n�1.v/

C 3v2.vnC 1/A00n�1.v/C v
3.1 � v/A000n�1.v/;

for n > 1 with P0.v/ D v (we shift n by one). By a direct use of
our method of moments, we can prove the CLT N

�
1
2
n; 1

12
n
�
.
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9.2. Eulerian recurrences involving Pn�2.v/

Similar to the previous subsection, the framework

Pn.v/ D an.v/Pn�1.v/C bn.v/.1 � v/P
0
n�1.v/C cn.v/Pn�2.v/; (110)

is also manageable by the approaches we use in this paper. We already saw two examples in
Section 5.3. We consider more examples here.

Fibonacci-Eulerian polynomials. An example of the above type appeared in [31]:

Pn.v/ D vnPn�1.v/C v.1 � v/P
0
n�1.v/C .1 � v/

2Pn�2.v/ .n > 2/;

with P0.v/ D 1 and P1.v/ D v. The polynomial Pn.v/ is closely connected to Fibonacci
polynomials Fn.v/ D vFn�1.v/C Fn�2.v/ for n > 2 with F0.v/ D 1 and F1.v/ D v by the
relations X

k>0

Fn.k/v
k
D

Pn.v/

.1 � v/nC1
:

Note that P2.v/ D 1 � v C 2v2 (the only polynomial with negative coefficients). This (Pn)
corresponds to A259708. A CLT N

�
1
2
n; 1

12
n
�

holds for the coefficients by the method of
moments. In terms of Eulerian polynomials, we have (redefining A0.v/ WD v

�1)

Pn.v/ D v
X

06j6b 1
2

nc

�
n � j

j

�
.v � 1/2jAn�2j .v/ .n > 1/I

see [31]. This can alternatively be derived by solving the PDE of second order satisfied by the
EGF using Riemann’s method. Note that this expression of Pn is itself an asymptotic expansion
for large n and finite v; in particular,

Pn.v/ D vAn.v/
�
1CO

�
n�1

��
;

uniformly for bounded v, and the CLT N
�

1
2
n; 1

12
nI n�

1
2

�
then follows.

On the other hand, the Fibonacci polynomials Fn.v/ correspond to A168561 (integer com-
positions into odd parts); see also the Chebyshev polynomials (with signs) A049310 and A053119.
Since the OGF of Fn.v/ is given by .1� vz� z2/�1, we deduce the CLT N

�
1
p

5
n; 4

5
p

5
nI n�

1
2

�
for the coefficients of Fn.v/ by Theorem 2 with �.v/ D 1

2

�p
4C v2 � v

�
. Note that Fn also

satisfies the recurrence

2nFn.v/ D .nC 1/vFn�1.v/C .4C v
2/F 0n�1.v/ .n > 1/:

The sequence of polynomials corresponding to A102426 satisfies the same recurrence as Fn

but with different initial conditions; see also A098925, A169803, A011973, and A092865.

A168561 1
1�vz�z2 N

�
1
p

5
n; 4

5
p

5
nI n�

1
2

�
A049310 1

1�vzCz2 signed version of A168561

A053119 1
1�zCv2z2 reciprocal of A049310

A098925 1
1�vz�vz2 N

��
1
2
C

p
5

10

�
n;
p

5
25

nI n�
1
2

�
A092865 1

1CvzCvz2 signed version of A098925

A011973 1
1�z�vz2 N

��
1
2
�

p
5

10

�
n;
p

5
25

nI n�
1
2

�
A169803 1Cvz

1�z�vz2 N
��

1
2
�

p
5

10

�
n;
p

5
25

nI n�
1
2

�
A102426 z.1Cz�z2/

.1�z2/2�vz2 N
� p

5
10

n;
p

5
25

nI n�
1
2

�
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Derangement polynomials. The derangement polynomials in permutations represent another
example of (110). They enumerate for example the number of n-derangements with k ex-
ceedances, and can be defined by (see [23])

Pn.v/ D
X

06k6n

�
n

k

�
.�1/n�kAk.v/ .n > 0/; (111)

which is sequence A046739 and A271697 (see also A168423 for a signed version) and satisfies
the recurrence

Pn.v/ D .n � 1/vPn�1.v/C v.1 � v/P
0
n�1.v/C .n � 1/vPn�2.v/ .n > 2/;

with P0.v/ D 1 and P1.v/ D 0.
A CLT of the form N

�
1
2
n; 25

12
n
�

for the coefficients was given in [60] but the variance
coefficient 25

12
there should be corrected to 1

12
. See also [49] for the same CLT N

�
1
2
n; 1

12
n
�

for
a type B analogue with the recurrence

Rn.v/ D .2n � 1/vRn�1.v/C 2v.1 � v/R0n�1.v/C 2.n � 1/vRn�2.v/ .n > 2/;

with R0.v/ D 1 and R1.v/ D v. Both proofs rely on the real-rootedness of the polynomials.
In both cases, while it is possible to apply the method of moments, it is simpler to apply

Theorem 2 to the EGFs

e�vz 1 � v

1 � ve.1�v/z
; and e�vz 1 � v

1 � ve2.1�v/z
;

respectively, yielding the stronger result N
�

1
2
n; 1

12
nI n�

1
2

�
.

Binomial-Eulerian and Eulerian-binomial polynomials. The analytic approach based on EGF
has an advantage that it applies easily to other variants whose EGFs are available in manageable
forms such as sequence A046802, the binomial-Eulerian polynomials (see [203, 216]):

F.z; v/ D ez 1 � v

1 � ve.1�v/z
:

This corresponds essentially to dropping the powers of �1 in (111):

Pn.v/ D n!Œzn�F.z; v/ D 1C v
X

16k6n

�
n

k

�
Ak.v/ D 1C v

X
16k6n

�
n

k

� X
06j6k

�
k

j

�
vj :

Furthermore, exchanging the role of binomial and Eulerian numbers in the last double sum
and dropping 1 and the multiplicative factor v yield the Eulerian-binomial polynomials

Pn.v/ D
X

06k6n

�
n

k

� X
06j6k

�
k

j

�
vj (112)

whose EGF is v
1Cv�evz . This gives sequence A090582 and Pn satisfies a different type of

recurrence

Pn.v/ D ..1C v/n � v/Pn�1.v/ � v.1C v/P
0
n�1.v/ .n > 2/;
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with P1.v/ D 1. While the binomial-Eulerian polynomials lead to a CLT N
�

1
2
n; 1

12
nI n�

1
2

�
,

the Eulerian-binomial ones lead to the CLT

N

�
2 log 2 � 1

2 log 2
n;

1 � log 2

4.log 2/2
nI n�

1
2

�
;

by Theorem 2 with �.v/ D log.1Cv/
v

. Replacing
˝
n

k

˛
by
˝

n

k�1

˛
in (112) yields A130850, and the

same CLT holds.

Fibonacci-Eulerian polynomials A259708 N
�

1
2
n; 1

12
nI n�

1
2

�
Derangement polynomial

A046739
A271697 N

�
1
2
n; 1

12
nI n�

1
2

�
Binomial-Eulerian polynomial A046802 N

�
1
2
n; 1

12
nI n�

1
2

�
Eulerian-binomial polynomial A090582 N

�
2 log 2�1

2 log 2
n; 1�log 2

4.log 2/2
nI n�

1
2

�
A simple variant of A090582 A130850 N

�
2 log 2�1

2 log 2
n; 1�log 2

4.log 2/2
nI n�

1
2

�
9.3. Systems of Eulerian recurrences

The following system of recurrences(
Pn.v/ D .n � 1/vQn�1.v/C v.1 � v/Q

0
n�1.v/C vPn�1.v/I

Qn.v/ D .n � 1/vPn�1.v/C v.1 � v/P
0
n�1.v/C vQn�1.v/;

with P0.v/ D 0 and Q0.v/ D 1 appeared in [183] and enumerates the number of times �.i/ 6
i in permutations factorizable into odd and even number of transpositions, respectively; see
also [232]. Since Pn.v/CQn.v/ equals the Eulerian polynomials, we then consider Pn �Qn

for which a direct resolution of the corresponding PDE gives the solution (F for Pn and G for
Qn) 8̂̂<̂

:̂
F.z; v/ D

1

2
�
2v � 1 � ve�.1�v/z

1 � v
C

1

2
�

1 � v

1 � ve.1�v/z
;

G.z; v/ D �
1

2
�
1 � e�.1�v/z

1 � v
C

1

2
�

1 � v

1 � ve.1�v/z
:

Observe that the first terms on the right-hand side are both asymptotically negligible. Thus the
coefficients follow asymptotically the same CLT N

�
1
2
n; 1

12
nI n�

1
2

�
.

Another example of a similar type appeared in [232] of the form8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pn.v/ D

8̂<̂
:
vnPn�1.v/C v.1 � v/P

0
n�1.v/

C.vnC 1 � v/Qn�1.v/C v.1 � v/Q
0
n�1.v/; if n is evenI

.vnC 1 � v/Pn�1.v/C v.1 � v/P
0
n�1.v/; if n is oddI

Qn.v/ D

8̂<̂
:
vnQn�1.v/C v.1 � v/Q

0
n�1.v/

C.vnC 1 � v/Pn�1.v/C v.1 � v/P
0
n�1.v/; if n is even;

.vnC 1 � v/Qn�1.v/C v.1 � v/Q
0
n�1.v/; if n is oddI

with the initial conditions Pn.v/ D Qn.v/ D 0 for n < 2, P2.v/ D v and Q2.v/ D 1. The
coefficients of Pn.v/ and those of Qn.v/ correspond to A128612 and A128613, respectively,
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and they enumerate ascents in permutations of n elements with an even and odd number of
inversions, respectively. It is straightforward to check that

Pn.v/ D
An.v/C .v � 1/b

1
2

ncAd 1
2

ne.v/

2
and Qn.v/ D

An.v/ � .v � 1/b
1
2

ncAd 1
2

ne.v/

2
:

Following the same ideas of the method of moments, the terms .v�1/b
1
2

ncAd 1
2

ne.v/ are asymp-
totically negligible because they involve higher order derivatives at v D 1, and we get the same
N
�

1
2
n; 1

12
n
�

for the coefficients of both Pn and Qn.
See also [52] for the system of recurrences(

Pn.v/ D .2vnC 1 � 2v/Pn�1.v/C 4v.1 � v/P 0n�1.v/C vQn�1.v/I

Qn.v/ D .2vnC 3 � 4v/Qn�1.v/C 4v.1 � v/Q0n�1.v/C Pn�1.v/;

with P1.v/ D Q1.v/ D 1, which is closely connected to (63). Closed-form expressions for
the EGFs of both recurrences were derived in [52], and from there we can prove the CLT
N
�

1
3
n; 2

45
nI n�

1
2

�
for both recurrences.

9.4. Recurrences depending on parity
An example of this type is A231777, which is more involved than (7) in the Introduction

and enumerates the number of ascents from odd to even numbers:

Pn.v/ D

(
1
2
.1C v/nPn�1.v/C v.1 � v/P

0
n�1.v/; if n is evenI

nPn�1.v/C .1 � v/P
0
n�1.v/; if n is odd;

(113)

for n > 1 with P0.v/ D 1. These relations can be proved as follows. When n is even, the
number of odd-to-even ascents remains unchanged if n is inserted (into a permutation of n � 1

elements) after an even number or between odd-to-even ascents (say k of them) or in front of
all elements; there is a total of 1

2
nC k of them. Inserting into the remaining 1

2
n � k positions

adds an additional odd-to-even ascent. We then obtain

Œvk �Pn.v/ D
�

1
2
n � k

�
Œvk�1�Pn�1.v/C

�
1
2
nC k

�
Œvk �Pn�1.v/:

This proves the even case in (113). The proof for the odd case is similar.
From the previous analysis, the recurrence in the odd case appears “less normal-like”; com-

pare (80). However, we can still prove the CLT N
�

1
8
n; 11

192
n
�

for the coefficients of Pn.v/, the
mean and the variance being equal to

E.Xn/ D

(
nC2

8
; if n is evenI

n2�1
8n
; if n is odd;

and V.Xn/ D

(
.nC2/.11n�10/

192.n�1/
; if n is evenI

.nC1/.11n2�3/

192n2 ; if n is odd:

A related example is A232187, which enumerates descents from odd to even numbers in
parity alternating permutations:

Pn.v/ D

(
nPn�1.v/C .1 � v/P

0
n�1.v/; if n is evenI�

n
2

˘
!Ad 1

2
ne.v/; if n is odd;

(114)
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with P0.v/ D 1. To prove these recurrences, we begin with n even. Insert n at the end of a
parity alternating permutation of n � 1 elements with k odd-to-even descents, which is started
and ended with an odd element. Rotate this permutation cyclically with an arbitrary shift. Then
k such rotations decrease the number of odd-to-even descents by 1, while the other n� k ones
do not change the odd-to-even descents count. We thus obtain the recurrence relation

Œvk �Pn.v/ D .n � k/Œvk �Pn�1.v/C .k C 1/ŒvkC1�Pn�1.v/;

which proves the first recurrence in (114). On the other hand, when n is odd, we construct
b

n
2
c! parity alternating permutations of size n with k odd-to-even descents from permutations

.�1; �2; : : : ; �dn
2
e/ of dn

2
e elements with k exceedances. For any i D 1; 2; : : : ; bn

2
c, construct

the blocks .2�iC1 � 1; 2i/. Concatenate these blocks arbitrarily (there being a total of bn
2
c!

ways to permutes these blocks), and then append an element 2�dn
2
e � 1 to the tail, yielding

parity alternating permutations with the required property. Since this construction is reversible,
this proves (114) in the odd case.

Let NAn.v/ WD
An.v/

n!
. Then

Pn.v/

Pn.1/
D NAd 1

2
ne.v/C

(
1
n
.1 � v/ NA01

2
n
.v/; if n is evenI

0; if n is odd:

The term NAd 1
2

ne.v/ being asymptotically dominant, we then deduce the CLT N
�

1
4
n; 1

24
n
�

with
the mean and the variance given by

E.Xn/ D

(
.n�1/.n�2/

4n
; if n is evenI

n�1
4
; if n is odd;

and V.Xn/ D

(
.n�2/.nC6/.2nC1/

48n2 I if n is even;
nC3
24
I if n > 3 is odd:

The last example is A136718, defined as (properly shifted)

Pn.v/ D

(
nPn�1.v/C .1 � v/P

0
n�1.v/; if n � f1; 2g mod 3I

.vnC 1 � v/Pn�1.v/C v.1 � v/P
0
n�1.v/; if n � 0 mod 3;

with P0.v/ D 1. The CLT N
�

1
6
n; 1

36
n
�

can be established by the method of moments.

9.5. 1 � v 7! 1 � sv

There exist dozens of examples satisfying a recurrence similar to (9) but with “1 � v”
replaced by “1 � sv” for some constant s > 0. We content ourselves with a brief discussion of
some examples that can be dealt with by simple modifications of our approach.

9.5.1. From N
�

1
2
n; 1

12
n
�

to N
��

2 � 1
log 2

�
n;
�

1
.log 2/2

� 2
�
n
�

Consider A156920, which corresponds to the recurrence

Pn.v/ D .2vnC 1 � v/Pn�1.v/C v.1 � 2v/P 0n�1.v/ .n > 1/;

with P0.v/ D 1. This is not of the form (35), but is so after a simple change of variables
Rn.v/ WD Pn

�
1
2
v
�
:

Rn.v/ D
�
vnC 1 � 1

2
v
�
Rn�1.v/C v.1 � v/R

0
n�1.v/ .n > 1/;
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which is then of type A .1; 1; 3
2
/ in the notation of Section 4. By changing back v 7! 2v, we

then obtain the EGF for A156920X
n>0

Pn.v/

n!
zn
D e.1�2v/z

�
1 � 2v

1 � 2ve.1�2v/z

� 3
2

:

Note that @zA .0; 1; 1
2
/ D vA .1; 1; 3

2
/, and the former with v 7! 2v corresponds to sequence

A211399 whose reciprocal is sequence A102365.
Although the coefficients of Rn.v/ follows the same CLT N

�
1
2
n; 1

12
nI n�

1
2

�
as in Section 4,

those of Pn follow a CLT with (see Figure 11)

E.Xn/ �

�
2 �

1

log 2

�
n and V.Xn/ �

�
1

.log 2/2
� 2

�
n;

by applying Theorem 2 with �.v/ D log.2v/
2v�1

. Numerically, both 2 � 1
log 2
� 0:557 and 1

.log 2/2
�

2 � 0:0813 are close to 1
2

and 1
12

, respectively.

A156920 A .1; 1; 3
2
I v 7! 2v/ N

��
2 � 1

log 2

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
A211399 A .0; 1; 1

2
I v 7! 2v/ N

��
2 � 1

log 2

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
A102365 reciprocal of A211399 N

��
1

log 2
� 1

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
More generally, consider the recurrence (s 2 RC)

Pn.v/ D .qsvnC p C s.qr � p � q/v/Pn�1.v/C qv.1 � sv/P 0n�1.v/ .n > 1/;

with P0.v/ D 1. Then Rn.v/ WD Pn

�
v
s

�
satisfies

Rn.v/ D
�
qvnC p C .qr � p � q/v

�
Rn�1.v/C qv.1 � v/R0n�1.v/ .n > 1/;

which is then of type A .p; q; r/. We then deduce that the EGF of Pn is given by

ep.1�sv/z

�
1 � sv

1 � sveq.1�sv/z

�r

:

It follows, by Theorem 2 with �.v/ D � log.sv/
q.1�sv/

, that the CLT

N

��
s

s � 1
�

1

log s

�
n;

�
1

log2 s
�

s

.s � 1/2

�
nI n�

1
2

�
(115)

holds as long as p > 0; q; r > 0 and qr > p. Note that the two coefficients (of the mean and
the variance) are positive for s > 0 and equal to

�
1
2
; 1

12

�
when s D 1.

Some other examples are listed as follows.

A141660 2k
˝

n

k�1

˛
A .0; 1; 1I v 7! 2v/ N

��
2 � 1

log 2

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
A142075 2k

˝
n

k

˛
A .1; 1; 2I v 7! 2v/ N

��
2 � 1

log 2

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
A156365 2k

˝
n

k

˛
A .1; 1; 1I v 7! 2v/ N

��
2 � 1

log 2

�
n;
�

1
.log 2/2

� 2
�
nI n�

1
2

�
A156366 3k

˝
n

k

˛
A .1; 1; 1I v 7! 3v/ N

��
3
2
�

1
log 3

�
n;
�

1
.log 3/2

�
3
4

�
nI n�

1
2

�
A142963 .?/ A .0; 1; 1

2
I v 7! 4v/ N

��
4
3
�

1
2 log 2

�
n;
�

1
4.log 2/2

�
4
9

�
nI n�

1
2

�
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Here .?/ D Œvk �.1 � 4v/nC
1
2 .vDv/n 1

p
1�4v

.
Along another direction, the � -derivative polynomials

Pn.v/ WD .1 � sv/nCr .vDv/n.1 � sv/�r .s > 0I r > 0/;

are of type A .0; 1; r I v 7! sv/ and satisfy the CLT (115). The same CLT holds for the coeffi-
cients sk

˝
n

k

˛
with s > 0.

A156920 A055151 A290315 A290316

Figure 11: Normalized histograms (by their standard deviations or by
p

n) of A156920,
A055151, A290315, and A290316 in the unit interval (namely, Œv�n�Pn.v/ with � 2 Œ0; 1�).

9.5.2. From N
�

1
4
n; 1

16
n
�

to N
�

1
3
n; 1

18
n
�

Consider A055151, which enumerates Motzkin paths of length n with k up steps. This
sequence of polynomials satisfies the recurrence

.nC 2/Pn.v/ D ..1C 4v/nC 2 � 4v/Pn�1.v/C 2v.1 � 4v/P 0n�1.v/ .n > 1/;

with P0.v/ D 1. Changing v 7! 1
4
v and then considering the reciprocal, we are led to the

polynomials of type M .0; 2; 3
2
/ (see ~ 5.6), which has the CLT N

�
1
4
n; 1

16
nI n�

1
2

�
. Reversing

these two steps back and then integrating twice (due to the factor .nC 2/!), we deduce that the
OGF of Pn is of the form

X
n>0

Pn.v/z
n
D

1 � z �
p
.1 � z/2 � 4vz2

2vz2
;

yielding the CLT N
�

1
3
n; n

18
I n�

1
2

�
by Theorem 2 with �.v/ D

�
1C 2

p
v
��1; see Figure 11.

An essentially the same sequence is A080159, and the reciprocal of Pn corresponds to A107131.

Up steps in Motzkin paths A055151 (DA080159) N
�

1
3
n; 1

18
nI n�

1
2

�
Reciprocal of A055151 A107131 N

�
2
3
n; 1

18
nI n�

1
2

�
Recurrences of a similar form can be found in [169, 172, 173].
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9.5.3. From N
�

2
3
n; 1

9
n
�

to

N
��

2q

q�1
�

q�1

q�1�log q

�
n;
�
.q�1/2�q.q�1�log q/

.q�1�log q/2
�

2q

.q�1/2

�
n
�

The polynomials defined by (see Section 5.1 for the class T )

Pn.v/ WD n!Œzn�T
�
q�1; 2; 1I v 7! qv; z 7! qz

�
.q > 1/;

satisfy the recurrence

Pn.v/ D .2q2vnC 1 � q.q C 1/v/Pn�1.v/C qv.1 � qv/P 0n�1.v/ .n > 1/;

with P0.v/ D 1. The coefficients are nonnegative when q > 1. When q D 1, the Pn’s generate
the second order Eulerian numbers A008517, and when q D 2; 3, they correspond to A290315
and A290316, respectively, which appeared in [156]. Since the EGF of Pn equals (by (51)) 

T2

�
qve�qvCq.1�qv/2z

�
qv

! 1
q

1 � qv

1 � T2

�
qve�qvCq.1�qv/2z

� ;
we deduce, by Theorem 2 with �.v/ D qv�1�log qv

q.qv�1/2
, the CLT (see Figure 11)

N

��
2q

q � 1
�

q � 1

q � 1 � log q

�
n;

�
.q � 1/2 � q.q � 1 � log q/

.q � 1 � log q/2
�

2q

.q � 1/2

�
nI n�

1
2

�
;

in contrast to the CLT N
�

2
3
n; 1

9
nI n�

1
2

�
for T

�
1
q
; 2; 1

�
. Note that q > 1 need not to be an

integer.

A290315 N
�

3�4 log 2

1�log 2
n; �5C10 log 2�4 log2 2

.1�log 2/2
nI n�

1
2

�
A290316 N

�
4�3 log 3

2�log 3
n; �16C18 log 3�3 log2 3

2.2�log 3/2
nI n�

1
2

�
9.5.4. Non-normal limit laws

Concrete examples with the factor “1�v” replaced by “1� sv” in the derivative term of (9)
and leading to non-normal limit laws also exist and most of them are much simpler in nature.
For example, the following sequences all lead to geometric limit laws.

OEIS en Type Œvk �Pn.v/

A059268 n E hhnC 2v;�v.1 � 2v/ii 2k

A152920 n � 1 E hhnC 2v;�v.1 � 2v/ii .2n � k/2k�1

A118413 n.2n�1/

2nC1
E hhnC 2v;�v.1 � 2v/ii .2n � 1/2k�1

A233757 n.2n�1/

2nC1�1
E hhnC 2v;�v.1 � 2v/ii .2n � 1/2k�1

A130128 n E hhnC 1C 2v;�v.1 � 2v/ii .n � k C 1/2k�1

A100851 1
2
n E hhnC 3v;�v.1 � 3v/ii 2n3k
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9.6. Pólya urn models
Pólya’s urn schemes [179] are simple yet very useful in many modeling applications and

are based on the ball-replacement matrix

ball color white black

white a b

black c d

and the initial configuration with s0 > 1 balls in the urn. At each stage draw a ball uniformly at
random from the urn, and then return the ball together with a white and b black balls if its color
is white, or c white and d black balls if its color is black. Repeat this procedure n times and we
are interested in the number Xn of white balls after stage n. Assume aC b D c C d D q > 1

and a ¤ c. Then the probability generating function Wn.v/ of Xn satisfies the recurrence

Wn.v/ D v
cWn�1.v/C

vaC1 � vcC1

s0 C q.n � 1/
W 0

n�1.v/ .n > 1/;

with W0.v/ D vX0 , where 0 6 X0 6 s0 is a constant. This fits into our framework (9) if we
consider Pn.v/ D Wn.v/

Q
06j<n.s0 C qj /, leading to the recurrence

Pn.v/ D v
c.s0 C q.n � 1//Pn�1.v/C

�
vaC1

� vcC1
�
P 0n�1.v/ .n > 1/; (116)

with P0.v/ D v
s0 , which, in terms of the notations of (9), gives ˛.v/ D qvc , ˇ.v/ D vaC1�vcC1

1�v

and 
 .v/ D .s0 � q/vc . To apply our Theorem 1 on normal limit laws, we require ˛.v/; ˇ.v/
and 
 .v/ to be analytic in jvj 6 1, which forces a; c > �1. Then the condition (11) becomes

˛.1/C 2ˇ.1/ D aC b C 2.c � a/ > 0 H)
a � c

aC b
<

1

2
;

and

�2
D

.aC b/bc.c � a/2

.b C c/2.2c C b � a/
> 0;

which requires that b; c > 1 (if both b; c < 0, then a > 0, which would imply 2cC b� a < 0).
Thus if

a > 0; a ¤ c; aC b D c C d > 1 and b; c; 2c C b � a > 1;

then the number of white balls follows the CLT

N

�
c.aC b/

b C c
n;

.aC b/bc.c � a/2

.b C c/2.2c C b � a/
n

�
:

This result was derived in [8] by the method of moments but with a manipulation different from
ours; see also [105] for the case when a D d and b D c. The condition a > 0 can be relaxed
but then additional conditions are needed to guarantee that Œvk �Pn.v/ > 0; see [8] for details.

On the other hand, it is also possible to solve the PDE associated with the EGF of (116),
and we obtain, in particular,

�.v/ D
�
1 � vc�a

��aCb
c�a

Z 1

v

t�a�1
�
1 � t c�a

�aCb
c�a
�1 dt:
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We then deduce not only the same CLT but also a convergence rate. See also [96] for an analytic
approach, [142, 151] for probabilistic approaches and [179] for a general introduction and more
information.

If a D 0, c D 1, then, with r D X0, Pn.v/ is essentially (up to a factor vr ) of type
T .r; q; r/ (see Section 5.1); in particular, we obtain the Eulerian numbers when q D r D 1.
Many other cases (normal or non-normal) can be further examined; we omit the details here.

9.7. P 0n.v/ D .˛.v/nC 
 .v//Pn�1.v/C ˇ.v/.1 � v/P
0
n�1.v/

When the left-hand side of the Eulerian recurrence (9) is replaced by P 0n.v/ (together with
some boundary conditions), the same method of moments still applies, as already described in
[129]. Note that in such cases, the presence of the crucial factor “1�v” in Eulerian recurrences
is not essential for the application of the method of moments. We briefly consider two examples
from [155] in the context of tree-like tableaux; see also [130]. The first one is of the form

P 0n.v/ D nPn�1.v/C 2.1 � v/P 0n�1.v/ .n > 1/; (117)

with P0.v/ D 1 and Pn.1/ D n!, where Œvk �Pn.v/ equals the number of tree-like tableaux of
size n with k occupied corners. By a direct calculation of the factorial moments, we see that

Pn.v/ D
X

06m6d 1
2

ne

�
n �mC 1

m

�
.n �m/!.v � 1/m .n > 0/:

Thus the limit law of the coefficients is Poisson.1/ because
Pn.v/

Pn.1/
! ev�1:

Another sequence of polynomials studied in [129, 155] is

Q0n.v/ D 2vnQn�1.v/C 2.1 � v2/Q0n�1.v/ .n > 1/;

with Q0.v/ D 1 and Qn.1/ D 2nn!. Since the Qn’s all contain even powers of v, we consider
Rn.v/ D Qn.

p
v/, which then satisfies the recurrence

R0n.v/ D nRn�1.v/C 2.1 � v/R0n�1.v/ .n > 1/;

with R0.v/ D 1 and Rn.1/ D 2nn!. This is of the same form as (117) but with a different
boundary condition. By the same method of moments, we can show that the distribution of the
coefficients of Rn is asymptotically Poisson.1

2
/.

Interestingly, if we use the boundary condition Pn.0/ D 0 for n > 1 instead of Pn.1/ D n!,
then by solving the PDE satisfied by the OGF of Pn

z2F 0z C zF D .1 � 2.1 � v/z/F 0v;

we obtain

F.z; v/ D
2.1 � .1 � v/z/

1C
p

1 � 4z C 4.1 � v/z2
:

This leads instead to the CLT
�

1
4
n; 1

16
nI n�

1
2

�
by Theorem 2 with �.v/ D 1

2

�
1C
p
v
��1. Also

in this case, Pn.1/ D
1

nC1

�
2n

n

�
. This coincides, up to a shift of indices, A091894 (Touchard

distribution), which counts particularly the 231-avoiding permutations according to the number
of peaks. Furthermore,

Œvkzn�F.z; v/ D
2nC1�2k

k

�
n � 1

2k � 2

��
2k � 2

k � 1

�
.1 6 k 6 dn

2
e/:
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9.8. Extended Eulerian recurrences of Cauchy-Euler type
Similar to the Cauchy-Euler differential equations (see [50]), the same method of moments

can be extended further to the equi-dimensional Eulerian recurrence,

enPn.v/ D
X

06j6`

.1 � v/jP
.j/

n�1.v/
X

06i6r�j

dj ;i.v/n
i .r > ` > 1/: (118)

Consider first A091156, counting big ascents in Dyck paths of a given semilength:

Pn.v/ D
1

nC 1

X
06k6b 1

2
nc

�
nC 1

k

�
vk

X
06j6n�2k

�
k C j � 1

k � 1

��
nC 1 � k

n � 2k � j

�
.n > 1/:

Such Pn satisfies the recurrence

Pn.v/ D
.1C 3v/nC 1 � 3v

nC 1
Pn�1.v/C

2.4n � 3/v.1 � v/

n.nC 1/
P 0n�1.v/C

4v.1 � v/2

n.nC 1/
P 00n�1.v/;

for n > 1 with P0.v/ D 1, which can be proved by the OGF

X
n>0

Pn.v/z
n
D

1 �
p

1 � 4z C 4.1 � v/z2

2z.1 � .1 � v/z/
:

We then deduce the CLT N
�

1
4
n; 1

16
nI n�

1
2

�
by Theorem 2 with �.v/ D 1

2

�
1C
p
v
��1.

We consider another example (with ` D r D 2 in (118)) from Legendre-Stirling permuta-
tions [83], where an extension of Eulerian numbers using Legendre-Stirling numbers [93] was
studied:

Dn.v/ WD
X
j>0

dn.j /v
j
D

Pn.v/

.1 � v/3nC1
D

v

1 � v

�
vDn�1.v/

�00
:

Here dn.j / D dn.j � 1/ C j .j C 1/dn�1.j / with d0.j / D 1 for j > 0 and dn.0/ D 0 for
n > 1, and

Pn.v/ D v.3n � 2/.3vnC 2 � 3v/Pn�1.v/C 2v.1 � v/.3vnC 1 � 3v/P 0n�1.v/

C v2.1 � v/2P 00n�1.v/ .n > 2/;

with P0.v/ D 1 and P1.v/ D 2v. A CLT N
�

6
5
n; 36

175
n
�

for the coefficients of Pn was derived
in [83] by the real-rootedness approach. The same CLT can aso be obtained by the method of
moments; in particular, the mean and the variance are given by

E.Xn/ D
6n � 1

5
and V.Xn/ D

9.n � 1/.12nC 11/

175.3n � 1/
.n > 1/:

However, we have no Berry-Esseen bound because no solution is available for the PDE�
v�2@3

z � z2@2
z � 2z.1 � v/@2

zv � .1 � v/
2@2
v � 4z@z � 2.1 � v/@v � 2

�
F D 0;

satisfied by the EGF F.z; v/ WD v
P

n>0
Pn.v/

.3n/!
z3n. Note that the real-rootedness approach used

in [83] can be refined to get the optimal Berry-Esseen bound.
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9.9. A multivariate Eulerian recurrence
Enumerating simultaneously the number of descents Xn in a random permutation of n ele-

ments and that Yn of its inverse leads to the recurrence for the probability generating function
of Xn and Yn (see [36, 199, 234])

Pn.v; w/ WD E
�
vXnwYn

�
D

�
.n � 1/.1 � v/.1 � w/

n2
C vw

�
1C

1 � v

n
@v

��
1C

1 � w

n
@w

��
Pn�1.v; w/;

for n > 1, with P0.v; w/ D 1. Recently, Chatterjee and Diaconis [46] proved the CLT
N
�
n; 1

6
n
�

for Xn C Yn, the total number of descents of a permutation and its inverse:

Pn.v; v/ D E
�
vXnCYn

�
D
.1 � v/2nC2

n!

X
j ;l>0

�
j l C n � 1

n

�
vjCl :

This paper also mentions six different ways to prove the CLT for Eulerian numbers: sum of 2-
dependent random variables, sum of UniformŒ0; 1� random variables, Harper’s real-rootedness
(sum of Bernoullis), Stein’s method, Bender’s analytic method and the method of moments,
but none of the six applies to the coefficients of Œvk �Pn.v; v/; see also [198].

While a direct use of the method of moments fails, we show that it is possible to extend the
method to establish the CLT for XnCYn; in particular, we derive the asymptotics of the central
moments E. NXnC

NYn/
m through those of the joint moments E. NX j

n
NY

m�j
n /, where NXn WD Xn�

nC1
2

and NYn WD Yn �
nC1

2
, so that E. NXn/ D E. NYn/ D 0. For that purpose, we define

Qn.s; t/ WD exp
�
�

nC 1

2
s �

nC 1

2
t

�
Pn.e

s; et/;

which satisfies the recurrence

Qn.s; t/ D

�
4.n � 1/

n2
sinh

�
1
2
s
�

sinh
�

1
2
t
��

Qn�1.s; t/

C

�
cosh

�
1
2
s
�
�

2

n
sinh

�
1
2
s
�
@s

��
cosh

�
1
2
t
�
�

2

n
sinh

�
1
2
t
�
@t

�
Qn�1.s; t/;

(119)

for n > 1, with Q0.s; t/ D e�
1
2

s� 1
2

t and Q1.s; t/ D 1. Write now

Qn.s; t/ D 1C
X

mCl>2

QnIm;l

smt l

m!l!
.n > 1/;

with Q0Im;l D .�1/mCl2�m�l . Then by the recurrence (119) and induction, we see that

QnIl;2mC1�l D 0 .n > 1I 0 6 l 6 2mC 1/:

To compute the asymptotics of QnIl;2m�l , we use the recurrence

QnIm;l D

�
1 �

m

n

��
1 �

l

n

�
Qn�1Im;l CRnIm;l ;
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where

RnIm;l D
n � 1

n2

X
06i6b 1

2
.m�1/c

06j6b 1
2
.l�1/c

�
m

2i C 1

��
l

2j C 1

�
2�2i�2jQn�1Im�2i�1;l�2j�1

C

X
06i6b 1

2
mc

06j6b 1
2

lc

iCj>1

�
m

2i

��
l

2j

�
2�2i�2jQn�1Im�2i;l�2j

�
1 �

m � 2i

n.2i C 1/

��
1 �

l � 2j

n.2j C 1/

�
:

(120)

Then by induction, we show that

QnI2m�l;l � d.l/d.2m � l/�2m
n .0 6 l 6 2mIm > 0/; (121)

where �2
n WD

1
12

n, d.2j C1/ D 0 and d.2j / D .2j �1/!! D .2j/!

j !2j
. See Appendix A for details.

By the expansion

�m WD E
�
NXn C

NYn

�m
D

X
06l6m

�
m

l

�
QnIm�l;l ;

we see that �2mC1 D 0 because QnI2mC1�l;l D 0; furthermore, using the estimate (121), we
deduce that

�2m � �
2m
n

X
06l6m

�
2m

2l

�
d.2l/d.2m � 2l/ D d.2m/2m�2m

n :

We then conclude that Xn C Yn � N
�
n; 1

6
n
�
.

A type B analogue is given in [234] and the same CLT N
�
n; 1

6
n
�

can be established by the
same approach.

10. The degenerate case: ˇ.v/ � 0 H) Pn.v/ D an.v/Pn�1.v/

For completeness, we briefly discuss a special class of Eulerian recurrences of the form
(without derivative terms)

Pn.v/ D an.v/Pn�1.v/ .n > 1/; (122)

with P0.v/ given. Typical examples include binomial coefficients with an.v/ D 1 C v and
Stirling numbers of the first kind with an.v/ D n � 1 C v. Assume that Œvk �an.v/ > 0,
an.v/ is analytic in jvj 6 1 and an.1/ > 0 for k; n > 0. Define Xn as in (10). Then, with
a0.v/ WD P0.v/, Xn is expressible as the sum of independent random variables:

Xn D

X
06j6n

Yj ; where E
�
vYj
�
D

aj .v/

aj .1/
:

Thus Xn is asymptotically normally distributed if the Lyapunov condition (see [95]) holds:X
06j6n

EjYj � E.Yj /j
3
D o.V.Xn/

3=2/:

This condition is not optimal but is simpler to use in a setting like ours. In particular, it holds
when each Yj is bounded.
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A simple linear framework. To be more precise, we consider the linear framework when an.v/ D

˛.v/nC 
 .v/, where ˛ and 
 are in most cases polynomials. Then we have

E.Xn/ D
P 00.1/

P0.1/
C

X
16j6n

˛0.1/j C 
 0.1/

˛.1/j C 
 .1/
:

It follows that

E.Xn/ D

8̂<̂
:
�.˛/nC � log nCO.1/; if �.˛/ > 0I

 0.1/

˛.1/
log nCO.1/; if �.˛/ D 0; ˛.1/; 
 0.1/ > 0I

�.
 /nCO.1/; if �.˛/ D ˛.1/ D 0; �.
 / > 0;

where

�.f / WD
f 0.1/

f .1/
; and � WD

˛.1/
 0.1/ � ˛0.1/
 .1/

˛.1/2
:

For the variance, with the notation

�2.f / WD
f 0.1/

f .1/
C
f 00.1/

f .1/
�

�
f 0.1/

f .1/

�2

;

we have

V.Xn/ D

8̂<̂
:
�2.˛/nCO.log n/; if �2.˛/ > 0I

& log nCO.1/; if �2.˛/ D 0; ˛.1/; & > 0I

�2.
 /nCO.1/; if �2.˛/ D ˛.1/ D 0; �2.
 / > 0;

where

& WD

 0.1/C 
 00.1/

˛.1/
�

2˛0.1/
 0.1/

˛.1/2
C

 .1/˛0.1/2

˛.1/3
:

In all cases, the distribution of Xn is asymptotically normal if V.Xn/!1:

Xn �

8̂<̂
:

N
�
�.˛/n; �2.˛/n

�
; if �2.˛/ > 0I

N
�
�.˛/nC � log n; & log n

�
; if �2.˛/ D 0; & > 0I

N
�
�.
 /n; �2.
 /n

�
; if �2.˛/ D ˛.1/ D 0; �2.
 / > 0:

Applications. The literature and the database OEIS abound with examples satisfying (122),
and they are mostly of a simpler nature when compared with (9). The prototypical example is
binomial coefficients

�
n

k

�
: A007318 (or A135278) for which an.v/ D 1 C v. We then obtain

the CLT N
�

1
2
n; 1

4
n
�
, a result first established by de Moivre in 1738 [73]. Another 80 OEIS

sequences of the form (122) with an.v/ D en.1C v/ are collected in Appendix B, where en is
either a constant or a sequence of n. We get the same CLT N

�
1
2
n; 1

4
n
�

for the coefficients.
We also identified another 182 sequences satisfying (122) with an.v/ D pC qvC rv2 with

p; q; r nonnegative integers. The corresponding coefficients follow the CLT

N

�
q C 2r

p C q C r
n;

pq C 4pr C qr

.p C q C r/2
n

�
I

see Appendix B for the tables of these sequences.
Examples for which ˛.v/; �2.˛/ ¤ 0 are scarce:
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A059364.n; k/D
P

k6j<n

�
j

k

��
n

n�j

�
an.v/ D .1C v/nC 1 N

�
1
2
n; 1

4
n
�

A088996: reciprocal of A059364 .1C v/n � 1 N
�

1
2
n; 1

4
n
�

A322225 .1C v2/nC v N
�
n; n

�
A322235 .1C 2v2/nC v N

�
4
3
n; 8

9
n
�

Here
�

n

k

�
denotes the unsigned Stirling numbers of the first kind (A132393, A094638, A130534),

another prototypical example with log-variance CLT.
We now group other examples with logarithmic variance according as �.˛/ > 0 or �.˛/ D

0, respectively.

Polynomials with �.˛/ > 0 and �2.˛/ D 0, and & > 0.

OEIS an.v/ Initial CLT

A094638 vnC 1 P0.v/ D 1 N .n � log n; log n/

A109692 2vnC 1 � v P0.v/ D 1 N .n � 1
2

log n; 1
2

log n/

A145324 vnC 1C v P0.v/ D 1 N .n � log n; log n/

A196841 vnC 1C v P1.v/ D 1C v N .n � log n; log n/

A196842 vnC 1C v P2.v/ D 1C 3v C 2v2 N .n � log n; log n/

A196843 vnC 1C v P3.v/ D 1C 6v C 11v2 C 6v3 N .n � log n; log n/

A196844 vnC 1C v P4.v/ D 1C 10v C 35v2 C 50v3 C 24v4 N .n � log n; log n/

A196845 vnC 1C 2v P0.v/ D 1 N .n � log n; log n/

A196846 vnC 1C 2v P2.v/ D 1C 3v C 2v2 N .n � log n; log n/

A201949 vnC 1 � v C v2 P0.v/ D 1 N .n; log n/

A249790 vnC 1C v2 P0.v/ D 1 N .n; log n/

A291845 2vnC 1 � v C v2 P0.v/ D 1 N .n; log n/

A324960 vnC 1C 2v C v2 P0.v/ D 1 N .n; 2 log n/

Polynomials with �.˛/ D �2.˛/ D 0, and & > 0.

OEIS an.v/ Initial CLT

A028338 2n � 1C v P0.v/ D 1 N .1
2

log n; 1
2

log n/

A125553 nC 2v P0.v/ D 2 N .2 log n; 2 log n/

A130534 nC v P0.v/ D 1 N .log n; log n/

A132393 n � 1C v P0.v/ D 1 N .log n; log n/

A136124 nC 1C v P0.v/ D 1 N .log n; log n/

A137320 n � 1C 2v P0.v/ D 1 N .2 log n; 2 log n/

A137339 n � 1C 3v P0.v/ D 1 N .3 log n; 3 log n/

A143491 nC 1C v P0.v/ D 1 N .log n; log n/

A143492 nC 2C v P0.v/ D 1 N .log n; log n/

A143493 nC 3C v P0.v/ D 1 N .log n; log n/

A161198 2n � 1C 2v P0.v/ D 1 N .log n; log n/

A180013 1Cn
n
.n � 1C v/ P0.v/ D 1 N .log n; log n/

A204420 .2n � 1/ .2n � 2C v/ P0.v/ D 1 N .1
2

log n; 1
2

log n/

A216118 nC3
n�1

.nC v/ P1.v/ D 1C v N .log n; log n/
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A225470 3n � 1C v P0.v/ D 1 N .1
3

log n; 1
3

log n/

A286718 3n � 2C v P0.v/ D 1 N .1
3

log n; 1
3

log n/

A225471 4n � 1C v P0.v/ D 1 N .1
4

log n; 1
4

log n/

A290319 4n � 3C v P0.v/ D 1 N .1
4

log n; 1
4

log n/

A225477 3n � 1C 3v P0.v/ D 1 N .log n; log n/

A225478 4n � 1C 4v P0.v/ D 1 N .log n; log n/

A254881 .n � 1C v/ .nC v/ P0.v/ D 1 N .2 log n; 2 log n/

Historically, the Stirling numbers of the first kind numbers were found as early as the
17th century in Thomas Harriot’s unpublished manuscripts in addition to James Stirling’s book
Methodus Differentialis published in 1730; see [13, p. 61] and [152] for more historical notes.
The CLT for

�
n

k

�
first appeared in Goncharov’s 1942 paper [116] (see also [94, 117]) in the form

of cycles in permutations.

an.v/ depending on the parity of n.

OEIS an.v/ (n odd) an.v/ (n even) Initial CLT

A060523 n n � 1C v P0.v/ D 1 N .1
2

log n; 1
2

log n/

A064861 1C 2v 1C v P0.v/ D 1 N . 7
12

n; 17
72

n/

A152815 1 1C v P0.v/ D 1 N .1
4
n; 1

8
n/

A152842 1C 3v 1C v P0.v/ D 1 N .5
8
n; 7

32
n/

A188440 1 1C 2v P0.v/ D 1 N .1
3
n; 1

9
n/

A246117 1
2
.n � 1/C v 1

2
nC v P0.v/ D 1 N .2 log n; 2 log n/

A274496 2 1C v P0.v/ D 1 N .1
4
n; 1

8
n/

A274498 3 1C 2v P0.v/ D 1 N .1
3
n; 1

9
n/

A026519 1C v C v2 1C v2 P0.v/ D 1 N .n; 5
6
n/

A026536 1C v2 1C v C v2 P0.v/ D 1 N .n; 5
6
n/

A026552 1C v2 1C v C v2 P1.v/ D 1C v C v2 N .n; 5
6
n/

Nonlinear an.v/. Let pn denote the nth prime and fn the nth Fibonacci number. Then by the
prime number theorem it is known that pn � n log n; also fn � 5�

1
2��n�1, where � D

p
5�1
2

is the golden ratio. Then the following CLTs follow from these estimates and Lyapunov’s
condition.

OEIS an.v/ Initial CLT

A096294 pn � 1C v P0.v/ D 1 N .log log n; log log n/

A260613 1C pnv P0.v/ D 1 N .n � log log n; log log n/

A130405 fn C fn�1v P0.v/ D 1 N
�
�

1C�
n; �

.1C�/2
n
�

A CLT N
�

1
2
n; 1

6
n
�
. Sequence A220884 is not of the type (122) but has a similar product form

Pn.v/ D
Y

16j<n

.j v C nC 1 � j /;
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which leads to the CLT N
�

1
2
n; 1

6
n
�
.

Non-normal limit laws. Non-normal limit laws arise when the variance remains bounded and
the analysis is simple because the probability generating function (PGF) tends to a finite limit.
Consider the case when an.v/ D en C v, where

P
j>1 e�1

j is convergent. Then

E
�
vXn

�
D

Pn.v/

Pn.1/
D

Y
16j6n

ej C v

ej C 1
!

Y
j>1

1C v
ej

1C 1
ej

:

When an.v/ D env C 1, we consider n � Xn, and we get the same limit law. Some examples
of these types are collected in the following table (P0.v/ D 1 in all cases).

OEIS an.v/
PGF of the

limit law
OEIS an.v/

PGF of the

limit law

A008955 vn2 C 1
sinh
�
�
p
v
�

p
v sinh.�/

A008956 v.2n � 1/2 C 1
cosh
�

1
2
�
p
v
�

cosh
�

1
2
�
�

A108084 2n C v

Q
j>1

�
1C2�j v

�
Q
j>1

�
1C2�j

� A128813 1
2
vn.nC 1/C 1

cos
�

1
2
�
p

1�8v
�

v cosh
� p

7
2
�
�

A160563 .2n � 1/2 C v
cosh
�
�
2

p
v
�

cosh
�
�
2

� A173007 3n C v

Q
j>1

�
1C3�j v

�
Q
j>1

�
1C3�j

�
A173008 4n C v

Q
j>1

�
1C4�j v

�
Q
j>1

�
1C4�j

� A249677 vn3 C 1

Q
j>1

�
1Cj�3v

�
Q
j>1

�
1Cj�3

�
A269944 .n � 1/2 C v

sinh
�
�
p
v
�

p
v sinh.�/

A269947 .n � 1/3 C v v

Q
j>1

�
1Cj�3v

�
Q
j>1

�
1Cj�3

�
11. Conclusions

In connecting Eulerian numbers to descents in permutations in the preface of Petersen’s
book [200], Richard Stanley writes: “Who could believe that such a simple concept would
have a deep and rich theory, with close connections to a vast number of other subjects?” We
demonstrated in this paper, through a considerable number (more than 500) of examples from
the literature and the OEIS database, that not only have the Eulerian numbers been very fruit-
fully explored, but its simple extension to Eulerian recurrences is very effective and powerful
in modeling many different laws—a prolific source of various phenomena indeed, although we
limited our study mostly to linear (in n) factors an.v/ and bn.v/. The combined use of an ele-
mentary approach (method of moments) and an analytic one (notably Theorem 2) also proved
to be functional, handy and very successful. To see further the modeling versatility of Eulerian
recurrences, we conclude with a few special Eulerian examples from OEIS of the recursive
form E hhan.v/; bn.v/ii, where an.v/ and bn.v/ are quadratic either in n or in v.

A mixture of two Betas H) Uniform. Writing all rational numbers p

q
2 .0; 1/ as ordered pairs

.p; q/ gives sequence A181118 or the polynomials

Pn.v/ D
X

16k6n

�
kv2k

C .nC 1 � k/v2k�1
�
;

which satisfy the recurrence

Pn 2 E1

��
2n2 C v2n � v

.n � 1/.2n � 1/
;�

nv.1C v/

.n � 1/.2n � 1/
I v C v2

��
:

The limit distribution is UniformŒ0; 2� although the random variable is a mixture of two Betas;
see Figure 12. On the other hand, the sequence A215655 is twice A181118.
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A mixture of two normals. The Eulerian recurrence is also capable of describing the binomial
distribution concatenated twice: Pn.v/ WD .1C v/

n.1C vnC1/, which corresponds to A152198
and satisfies

Pn 2 E

��
.1C 2v � v2/n � v.1 � v/

n
;�
v.1C v/

n
I 1C v

��
:

On the other hand, the sequence A188440 corresponds to the polynomials
P

06k6bn
2
c

�
b 1

2
nc

k

�
vk .

If we concatenate the two polynomial rows with the same row number b1
2
nc and read them

sequentially as one, we get

Pn 2 E

��
.1C 4v � 2v2/n � 2v.1 � v/

n
;�
v.1C 2v/

n
I 1C v

��
;

and the resulting distributions are similar to those of A152198.

Figure 12: Histograms of A181118 when n D 50 (left) and of A152198 for n D 3; : : : ; 50

(right), and the (normalized) distribution functions of A152198 (middle).

Degenerate limit law. While the recurrence Pn 2 E hhnCv
2

n
;�v.1Cv/

2n
I 1ii leads to a uniform limit

law (see Section 8.2), changing the minus sign to a positive one

Pn 2 E

��
nC v2

n
;
v.1C v/

2n
I 1

��
gives the closed-form solution Pn.v/ D 1C nv2.

Similarly, the recurrence Pn 2 E hhnCv
n
;�v

n
I 1ii leads to a uniform limit law (A000012, as

we examined in ~ 8.1.1), but Pn 2 E hhnCv
n
; v

n
I 1ii gives Pn.v/ D 1C nv, and yields the degen-

erate limit law, which (when read sequentially) corresponds to A057979, and up to different
initial conditions, to A133622, A152271 and A158416. Note that these four sequences are not
triangular sequences.

Another normal limit law. For the examples examined in this section, if we have no a priori
information about the solution, then the method of moments still works well except for the
normal mixtures. But the analytic method will generally become more messy as the PDEs
involved will have higher orders. To see this, we look briefly at another example A136267
(with normal limit law), which is defined via Narayana numbers (see Section 5.5.3) by

Pn.v/ D
1

1C v

X
16k62nC2

�
2nC 1

k � 1

��
2nC 2

k � 1

�
vk�1

k
;
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a polynomial of degree 2n. Such polynomials satisfy the rather cumbersome recurrence

Pn 2 E

**
2.1C 10v C 5v2/n2 C .5C 24v C 3v2/nC 3.1C 2v � v2/

.nC 1/.2nC 3/
;
.4nC 3/v.1C v/

.nC 1/.2nC 3/
I 1

++
:

To prove this, we see first that the OGF of Pn.v/ satisfies the PDE

2z2.1 � .1C 10v C 5v2/z/@2
zY � 4vz2.1 � v2/@z@vY C z.7 � .11C 84v C 33v2/z/@zY

� 7vz.1 � v2/@vY C .3 � 10.1C 5v C v2/z/Y � 3 D 0;

with Y .0; v/ D 1. Although this equation is not easy to solve, it is easy to check that the
solution is given by

Y .z; v/ WD
f
�p

z; v
�
C f

�
�
p

z; v
�

2v.1C v/z
;

where f is the OGF for Narayana numbers; see (75). By the recurrences in Section 2.5, the
mean and the variance are

E.Xn/ D n; and V.Xn/ D
n.nC 1/

4nC 3
.n > 1/;

and the asymptotic normality N
�
n; 1

4
n
�

can either be derived by the method of moments or by
the CLT for Narayana numbers. The complex-analytic approach (Theorem 2) also applies here
with �.v/ D .1 C v/�4, and we get an optimal convergence rate in the CLT N

�
n; 1

4
nI n�

1
2

�
.

Yet another approach is to apply Stirling’s formula to Œvk �Pn.v/ and derive the corresponding
LLT when k D n C o

�
n

2
3

�
, but this approach is often limited to the situations when simple

closed-form expression is available.

Perspectives. A natural, fundamental question regarding more general Eulerian recurrence
Pn 2 E hhan.v/; bn.v/ii is “are there simple criteria (on an.v/ and bn.v/) to guarantee the
nonnegativity of the coefficients Œvk �Pn.v/?”

On the other hand, from a methodological point of view, how to address the finer proper-
ties such as local limit theorems and large deviations by a more systematic approach? Much
remains to be clarified.

Bóna writes in [18]: “While Eulerian numbers have been given plenty of attention during
the last 200 years, most of the research was devoted to analytic concepts.” Despite the large
literature on analytic aspects, a more complete compilation of the Eulerian recurrences seems
lacking and this paper also aims to provide an attempt to gather more examples and types
of Eulerian recurrences, focusing on distributional aspect of the coefficients. We believe that
such an extensive compilation will also be helpful for the study of other properties of Eulerian
recurrences and related structures.

Our method of moments relies crucially on the presence of the factor “1�v” in the derivative
term in (9); it fails when 1�v is not there as we already saw many examples in Section 9.5. Such
recurrences also occur frequently in combinatorics and a systematic study of the corresponding
distributional properties of the coefficients will be given elsewhere.

Finally, from a computational point of view, the Eulerian recurrence is a Markovian one in
that the nth row of the polynomials Pn depends only on Pn�1 and its derivative. This property
not only facilites the systematic computer search through all OEIS sequences but also provides
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a good framework for mathematical analysis; yet the total number (594) we worked out is still
relatively small compared with the 25,000+ nonnegative polynomial sequences in OEIS (over
a total of 327,000+). Although many such polynomial sequences do not have combinatorial or
structural interpretations or are rather artificially constructed, they do provide a very rich and
valuable source for the study of various properties such as the distribution of the coefficients,
and that of the zeros. A complete characterization of the corresponding limit laws is of special
methodological and phenomenal interest but seems too early at this stage.
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A. Proof of (121)

By induction hypothesis, we see that the largest terms in the sum expression (120) of
RnI2m�l;l occur when .i; j / D .0; 1/ and .i; j / D .1; 0/, giving

RnI2m�l;l �
1

4

�
2m � l

2

�
Qn�1I2m�l�2;l C

1

4

�
l

2

�
Qn�1I2m�l;l�2;

where Q with negative indices are interpreted as zero. By (121)

RnI2m�l;l � C2m�l;l�
2m�2
n ; (A.1)

where

C2m�l;l WD
d.l/d.2m � l � 2/

4

�
2m � l

2

�
C

d.2m � l/d.l � 2/

4

�
l

2

�
:

Consider now the recurrence

xn D

�
1 �

m

n

��
1 �

l

n

�
xn�1 C yn .n > n0/;

with the given initial condition xn0
, where n0 WD maxfm; lg C 1. Then (with yn0

WD xn0
)

xn D
.n �m/!.n � l/!

n!2

X
n06j6n

j !2 yj

.j �m/!.j � l/!
.n > m/:

From this exact expression, we deduce the asymptotic transfer:

if yn � cn˛; then xn �
c

mC l C ˛ C 1
n˛C1 .mC l C ˛ > 0/:

Applying this transfer, we see that

QnI2m�l;l �
4C2m�l;l

m
�2m

n :
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Now the leading constant equals

d.l/d.2m � l � 2/

m

�
2m � l

2

�
C

d.2m � l/d.l � 2/

m

�
l

2

�
D d.l/d.2m � l/;

after a straightforward simplification. By induction, this proves (121).

B. Some OEIS sequences satisfying Pn.v/ D an.v/Pn�1.v/

In this Appendix, we collect some OEIS sequences satisfying the recurrence Pn.v/ D

an.v/Pn�1.v/ and give their limit laws. For convenience, we use the notation Emhhan.v/; 0IB.v/ii

for an abbreviation of E hhan.v/; 0IPm.v/ D B.v/ii (those without subscripts stand for E0hhan.v/; 0IB.v/ii

as above).

an.v/ D c H) N
�

1
2
n; 1

4
n
�
, where c is a constant.

OEIS Type OEIS Type

A007318 E hh1C v; 0I 1ii A028262 E2hh1C v; 0I 1C 3v C v2ii

A028275 E2hh1C v; 0I 1C 4v C v2ii A028313 E2hh1C v; 0I 1C 5v C v2ii

A028326 E hh1C v; 0; 2ii A029600 E1hh1C v; 0I 2C 3vii

A029618 E1hh1C v; 0I 3C 2vii A029635 E1hh1C v; 0I 1C 2vii

A029653 E1hh1C v; 0I 2C vii A038208 E hh2.1C v/; 0I 1ii

A038221 E hh3.1C v/; 0I 1ii A038234 E hh4.1C v/; 0I 1ii

A038247 E hh5.1C v/; 0I 1ii A038260 E hh6.1C v/; 0I 1ii

A038273 E hh7.1C v/; 0I 1ii A038286 E hh8.1C v/; 0I 1ii

A038299 E hh9.1C v/; 0I 1ii A038312 E hh10.1C v/; 0I 1ii

A038325 E hh11.1C v/; 0I 1ii A038338 E hh12.1C v/; 0I 1ii

A055372 E1hh2.1C v/; 0I 1C vii A055373 E1hh3.1C v/; 0I 1C vii

A055374 E1hh4.1C v/; 0I 1C vii A071919 E1hh1C v; 0I 1ii

A072405 E2hh1C v; 0I 1C v C v
2ii A087698 E2hh1C v; 0I 1C v

2ii

A093560 E1hh1C v; 0I 3C vii A093561 E1hh1C v; 0I 4C vii

A093562 E1hh1C v; 0I 5C vii A093563 E1hh1C v; 0I 6C vii

A093564 E1hh1C v; 0I 7C vii A093565 E1hh1C v; 0I 8C vii

A093644 E1hh1C v; 0I 9C vii A093645 E1hh1C v; 0I 10C vii

A095660 E1hh1C v; 0I 1C 3vii A095666 E1hh1C v; 0I 1C 4vii

A096940 E1hh1C v; 0I 1C 5vii A096956 E1hh1C v; 0I 1C 6vii

A097805 E1hh1C v; 0I vii A122218 E2hh1C v; 0I 1C v C v
2ii

A124459 E1hh1C v; 0I 3C 2vii A129687 E2hh1C v; 0I 2C 2v C v2ii

A131084 E2hh1C v; 0I 2v C v
2ii A132200 E1hh1C v; 0I 4C 4vii

A134058 E1hh1C v; 0I 2C 2vii A134059 E1hh1C v; 0I 3C 3vii

A135089 E1hh1C v; 0I 5C 5vii A144225 E2hh1C v; 0I vii

A147644 E3hh1C v; 0I 1C 5v C 5v2 C v3ii A159854 E2hh1C v; 0I v
2ii

A172185 E1hh1C v; 0I 9C 11vii A202241 E3hh1C v; 0I 4v C 4v2 C v3ii
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an.v/ D dn.1C v/ H) N
�

1
2
n; 1

4
n
�
, where dn is a sequence of n and independent of v. Here

fn denotes the nth Fibonacci number (A000045) and Bn that of Bell numbers (A000110).

OEIS Type OEIS Type

A003506 E hhnC1
n
.1C v/; 0I 1ii A016095 E hh

fnC1

fn
.1C v/; 0I 1ii

A055883 E hh Bn

Bn�1
.1C v/; 0I 1ii A085880 E hh2.2n�1/

nC1
.1C v/; 0I 1ii

A085881 E hh.2n � 1/.1C v/; 0I 1ii A094305 E hhnC2
n
.1C v/; 0I 1ii

A121547 E1hh
nC2
n�1

.1C v/; 0I vii A124860 E hh2
nC1�.�1/nC1

2n�.�1/n
.1C v/; 0I 1ii

A127952 E1hh
nC1

n
.1C v/; 0I 2vii A129533 E2hh

n
n�2

.1C v/; 0I vii

A132775 E hh2nC1
2n�1

.1C v/; 0I 1ii A134239 E1hh
nC1

n
.1C v/; 0I 4C 2vii

A134346 E hh2
nC1�1
2n�1

.1C v/; 0I 1ii A134400 E1hh
n

n�1
.1C v/; 0I 1C vii

A135065 E hh .nC1/2

n2 .1C v/; 0I 1ii A140880 E hhnC2
n
.1C v/; 0I 2ii

A156992 E hh.nC 1/.1C v/; 0I 1ii A164961 E hh.4n � 2/.1C v/; 0I 1ii

A178820 E hhnC3
n
.1C v/; 0I 1ii A178821 E hhnC4

n
.1C v/; 0I 1ii

A178822 E hhnC5
n
.1C v/; 0I 1ii A196347 E hhn.1C v/; 0I 1ii

A216973 E1hh
n

n�1
.1C v/; 0I 1ii A219570 E1hh.n � 1/.1C v/; 0I 1C vii

A237765 E2hh
n

n�2
.1C v/; 0I .1C v/2ii A249632 E1hh

nn�2

.n�1/n�3 .1C v/; 0I 1C vii

A253666

(
E hh1

4
n.1C v/; 0I 1ii n even

E hh 1
n
.1C v/; 0I 1ii n odd

A258758 E1hh
4n�2

n
.1C v/; 0I 1C vii

an.v/ D pC qv H) N
�

q
pCq

n; pq

.pCq/2
n
�
.

OEIS Type CLT OEIS Type CLT

A013609 E hh1C 2v;0I1ii N . 2
3
; 2

9
n/ A013610 E hh1C 3v;0I1ii N . 3

4
; 3

16
n/

A013611 E hh1C 4v;0I1ii N . 4
5
; 4

25
n/ A013612 E hh1C 5v;0I1ii N . 5

6
; 5

36
n/

A013613 E hh1C 6v;0I1ii N . 6
7
; 6

49
n/ A013614 E hh1C 7v;0I1ii N . 7

8
; 7

64
n/

A013615 E hh1C 8v;0I1ii N . 8
9
; 8

81
n/ A013616 E hh1C 9v;0I1ii N . 9

10
; 9

100
n/

A013617 E hh1C 10v;0I1ii N . 10
11
; 10

121
n/ A013618 E hh1C 11v;0I1ii N . 11

12
; 11

144
n/

A013619 E hh1C 12v;0I1ii N . 12
13
; 12

169
n/ A013620 E hh2C 3v;0I1ii N . 3

5
; 6

25
n/

A013621 E hh2C 5v;0I1ii N . 5
7
; 10

49
n/ A013622 E hh3C 5v;0I1ii N . 5

8
; 15

64
n/

A013623 E hh2C 7v;0I1ii N . 7
9
; 14

81
n/ A013624 E hh3C 7v;0I1ii N . 7

10
; 21

100
n/

A013625 E hh4C 7v;0I1ii N . 7
11
; 28

121
n/ A013626 E hh5C 7v;0I1ii N . 7

12
; 35

144
n/

A013627 E hh6C 7v;0I1ii N . 7
13
; 42

169
n/ A013628 E hh4C 5v;0I1ii N . 5

9
; 20

81
n/

A024462 E2hh1C 3v;0I .1C v/2ii N . 3
4
; 3

16
n/ A027465 E hh3C v;0I1ii N . 1

4
; 3

16
n/

A027466 E hh7C v;0I1ii N . 1
8
; 7

64
n/ A027467 E hh15C v;0I1ii N . 1

16
; 15

256
n/

A038195 E2hh22C v;0I .1C v/2ii N . 1
3
; 2

9
n/ A038207 E hh2C v;0I1ii N . 1

3
; 2

9
n/

A038210 E hh21C 2v;0I1ii N . 2
3
; 2

9
n/ A038212 E hh21C 3v;0I1ii N . 3

4
; 3

16
n/

A038214 E hh21C 4v;0I1ii N . 4
5
; 4

25
n/ A038215 E hh2C 9v;0I1ii N . 9

11
; 18

121
n/

A038216 E hh21C 5v;0I1ii N . 5
6
; 5

36
n/ A038217 E hh2C 11v;0I1ii N . 11

13
; 22

169
n/

A038218 E hh21C 6v;0I1ii N . 6
7
; 6

49
n/ A038220 E hh3C 2v;0I1ii N . 2

5
; 6

25
n/

A038222 E hh3C 4v;0I1ii N . 4
7
; 12

49
n/ A038224 E hh31C 2v;0I1ii N . 2

3
; 2

9
n/

A038226 E hh3C 8v;0I1ii N . 8
11
; 24

121
n/ A038227 E hh31C 3v;0I1ii N . 3

4
; 3

16
n/

Continued on next page
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OEIS Type CLT OEIS Type CLT

A038228 E hh3C 10v;0I1ii N . 10
13
; 30

169
n/ A038229 E hh3C 11v;0I1ii N . 11

14
; 33

196
n/

A038230 E hh31C 4v;0I1ii N . 4
5
; 4

25
n/ A038231 E hh4C v;0I1ii N . 1

5
; 4

25
n/

A038232 E hh22C v;0I1ii N . 1
3
; 2

9
n/ A038233 E hh4C 3v;0I1ii N . 3

7
; 12

49
n/

A038236 E hh22C 3v;0I1ii N . 3
5
; 6

25
n/ A038238 E hh41C 2v;0I1ii N . 2

3
; 2

9
n/

A038239 E hh4C 9v;0I1ii N . 9
13
; 36

169
n/ A038240 E hh22C 5v;0I1ii N . 5

7
; 10

49
n/

A038241 E hh4C 11v;0I1ii N . 11
15
; 44

225
n/ A038242 E hh41C 3v;0I1ii N . 3

4
; 3

16
n/

A038243 E hh5C v;0I1ii N . 1
6
; 5

36
n/ A038244 E hh5C 2v;0I1ii N . 2

7
; 10

49
n/

A038245 E hh5C 3v;0I1ii N . 3
8
; 15

64
n/ A038246 E hh5C 4v;0I1ii N . 4

9
; 20

81
n/

A038248 E hh5C 6v;0I1ii N . 6
11
; 30

121
n/ A038250 E hh5C 8v;0I1ii N . 8

13
; 40

169
n/

A038251 E hh5C 9v;0I1ii N . 9
14
; 45

196
n/ A038252 E hh51C 2v;0I1ii N . 2

3
; 2

9
n/

A038253 E hh5C 11v;0I1ii N . 11
16
; 55

256
n/ A038254 E hh5C 12v;0I1ii N . 12

17
; 60

289
n/

A038255 E hh6C v;0I1ii N . 1
7
; 6

49
n/ A038256 E hh23C v;0I1ii N . 1

4
; 3

16
n/

A038257 E hh32C v;0I1ii N . 1
3
; 2

9
n/ A038258 E hh23C 2v;0I1ii N . 2

5
; 6

25
n/

A038259 E hh6C 5v;0I1ii N . 5
11
; 30

121
n/ A038262 E hh23C 4v;0I1ii N . 4

7
; 12

49
n/

A038263 E hh32C 3v;0I1ii N . 3
5
; 6

25
n/ A038264 E hh23C 5v;0I1ii N . 5

8
; 15

64
n/

A038265 E hh6C 11v;0I1ii N . 11
17
; 66

289
n/ A038266 E hh61C 2v;0I1ii N . 2

3
; 2

9
n/

A038268 E hh7C 2v;0I1ii N . 2
9
; 14

81
n/ A038269 E hh7C 3v;0I1ii N . 3

10
; 21

100
n/

A038270 E hh7C 4v;0I1ii N . 4
11
; 28

121
n/ A038271 E hh7C 5v;0I1ii N . 5

12
; 35

144
n/

A038272 E hh7C 6v;0I1ii N . 6
13
; 42

169
n/ A038274 E hh7C 8v;0I1ii N . 8

15
; 56

225
n/

A038275 E hh7C 9v;0I1ii N . 9
16
; 63

256
n/ A038276 E hh7C 10v;0I1ii N . 10

17
; 70

289
n/

A038277 E hh7C 11v;0I1ii N . 11
18
; 77

324
n/ A038278 E hh7C 12v;0I1ii N . 12

19
; 84

361
n/

A038279 E hh8C v;0I1ii N . 1
9
; 8

81
n/ A038280 E hh24C v;0I1ii N . 1

5
; 4

25
n/

A038281 E hh8C 3v;0I1ii N . 3
11
; 24

121
n/ A038282 E hh42C v;0I1ii N . 1

3
; 2

9
n/

A038283 E hh8C 5v;0I1ii N . 5
13
; 40

169
n/ A038284 E hh24C 3v;0I1ii N . 3

7
; 12

49
n/

A038285 E hh8C 7v;0I1ii N . 7
15
; 56

225
n/ A038287 E hh8C 9v;0I1ii N . 9

17
; 72

289
n/

A038288 E hh24C 5v;0I1ii N . 5
9
; 20

81
n/ A038289 E hh8C 11v;0I1ii N . 11

19
; 88

361
n/

A038290 E hh42C 3v;0I1ii N . 3
5
; 6

25
n/ A038291 E hh9C v;0I1ii N . 1

10
; 9

100
n/

A038292 E hh9C 2v;0I1ii N . 2
11
; 18

121
n/ A038293 E hh33C v;0I1ii N . 1

4
; 3

16
n/

A038294 E hh9C 4v;0I1ii N . 4
13
; 36

169
n/ A038295 E hh9C 5v;0I1ii N . 5

14
; 45

196
n/

A038296 E hh33C 2v;0I1ii N . 2
5
; 6

25
n/ A038297 E hh9C 7v;0I1ii N . 7

16
; 63

256
n/

A038298 E hh9C 8v;0I1ii N . 8
17
; 72

289
n/ A038300 E hh9C 10v;0I1ii N . 10

19
; 90

361
n/

A038301 E hh9C 11v;0I1ii N . 11
20
; 99

400
n/ A038302 E hh33C 4v;0I1ii N . 4

7
; 12

49
n/

A038303 E hh10C v;0I1ii N . 1
11
; 10

121
n/ A038304 E hh25C v;0I1ii N . 1

6
; 5

36
n/

A038305 E hh10C 3v;0I1ii N . 3
13
; 30

169
n/ A038306 E hh25C 2v;0I1ii N . 2

7
; 10

49
n/

A038307 E hh52C v;0I1ii N . 1
3
; 2

9
n/ A038308 E hh25C 3v;0I1ii N . 3

8
; 15

64
n/

A038309 E hh10C 7v;0I1ii N . 7
17
; 70

289
n/ A038310 E hh25C 4v;0I1ii N . 4

9
; 20

81
n/

A038311 E hh10C 9v;0I1ii N . 9
19
; 90

361
n/ A038313 E hh10C 11v;0I1ii N . 11

21
; 110

441
n/

A038314 E hh25C 6v;0I1ii N . 6
11
; 30

121
n/ A038315 E hh11C v;0I1ii N . 1

12
; 11

144
n/

A038316 E hh11C 2v;0I1ii N . 2
13
; 22

169
n/ A038317 E hh11C 3v;0I1ii N . 3

14
; 33

196
n/

A038318 E hh11C 4v;0I1ii N . 4
15
; 44

225
n/ A038319 E hh11C 5v;0I1ii N . 5

16
; 55

256
n/

A038320 E hh11C 6v;0I1ii N . 6
17
; 66

289
n/ A038321 E hh11C 7v;0I1ii N . 7

18
; 77

324
n/

A038322 E hh11C 8v;0I1ii N . 8
19
; 88

361
n/ A038323 E hh11C 9v;0I1ii N . 9

20
; 99

400
n/

A038324 E hh11C 10v;0I1ii N . 10
21
; 110

441
n/ A038326 E hh11C 12v;0I1ii N . 12

23
; 132

529
n/

A038327 E hh12C v;0I1ii N . 1
13
; 12

169
n/ A038328 E hh26C v;0I1ii N . 1

7
; 6

49
n/

A038329 E hh34C v;0I1ii N . 1
5
; 4

25
n/ A038330 E hh43C v;0I1ii N . 1

4
; 3

16
n/

A038331 E hh12C 5v;0I1ii N . 5
17
; 60

289
n/ A038332 E hh62C v;0I1ii N . 1

3
; 2

9
n/

A038333 E hh12C 7v;0I1ii N . 7
19
; 84

361
n/ A038334 E hh43C 2v;0I1ii N . 2

5
; 6

25
n/

A038335 E hh34C 3v;0I1ii N . 3
7
; 12

49
n/ A038336 E hh26C 5v;0I1ii N . 5

11
; 30

121
n/

A038337 E hh12C 11v;0I1ii N . 11
23
; 132

529
n/ A038763 E1hh1C 3v;0I1C vii N . 3

4
; 3

16
n/

A081277 E1hh1C 2v;0I1C vii N . 2
3
; 2

9
n/ A120909 E hh1C 2v;0I3ii N . 2

3
; 2

9
n/

Continued on next page
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OEIS Type CLT OEIS Type CLT

A120910 E hh2C v;0I3ii N . 1
3
; 2

9
n/ A123187 E hh1C 13v;0I1ii N . 13

14
; 13

196
n/

A133371 E hh13C v;0I1ii N . 1
14
; 13

196
n/ A136158 E1hh3C v;0I1C vii N . 1

4
; 3

16
n/

A147716 E hh14C v;0I1ii N . 1
15
; 14

225
n/ A183190 E1hh2C v;0I1ii N . 1

3
; 2

9
n/

A193722 E1hh1C 3v;0I1C 2vii N . 3
4
; 3

16
n/ A193723 E1hh3C v;0I2C vii N . 1

4
; 3

16
n/

A193724 E1hh2C 3v;0I1C vii N . 3
5
; 6

25
n/ A193725 E1hh3C 2v;0I1C vii N . 2

5
; 6

25
n/

A193726 E1hh2C 5v;0I1C 2vii N . 5
7
; 10

49
n/ A193727 E1hh5C 2v;0I2C vii N . 2

7
; 10

49
n/

A193728 E1hh4C 3v;0I2C vii N . 3
7
; 12

49
n/ A193729 E1hh3C 4v;0I1C 2vii N . 4

7
; 12

49
n/

A193730 E1hh2C 3v;0I2C vii N . 3
5
; 6

25
n/ A193731 E1hh3C 2v;0I1C 2vii N . 2

5
; 6

25
n/

A193734 E1hh1C 4v;0I1C 2vii N . 4
5
; 4

25
n/ A193735 E1hh4C v;0I2C vii N . 1

5
; 4

25
n/

A200139 E1hh2C v;0I1C vii N . 1
3
; 2

9
n/ A201780 E2hh2C v;0I .1C v/

2ii N . 1
3
; 2

9
n/

A207628 E1hh1C 2v;0I1C 4vii N . 2
3
; 2

9
n/ A207636 E1hh2C v;0I3C 2vii N . 1

3
; 2

9
n/

A208659 E1hh1C 2v;0I2C 2vii N . 2
3
; 2

9
n/ A209149 E1hh2C v;0I3C vii N . 1

3
; 2

9
n/

an.v/ D pC qvC rv2 H) N
�

qC2r
pCqCr

n; pqC4prCqr

.pCqCr /2
n
�
.

OEIS Type CLT OEIS Type CLT

A152905 E hh1C v2;0I1C vii N .n;n/ A249095 E1hh1C v
2;0I1C vC v2ii N .n;n/

A260492 E hh1C v2;0I1ii N .n;n/ A249307 E1hh1C 4v2;0I1C 2vC 4v2ii N . 8
5

n; 16
25

n/

A034870 E hh.1C v/2;0I1ii N .n; 1
2

n/ A096646 E1hh.1C v/
2;0I1C vC v2ii N .n; 1

2
n/

A139548 E hh2.1C v/2;0I1ii N .n; 1
2

n/ A024996 E2hh1C vC v
2;0I1C 2v2 C v4ii N .n; 2

3
n/

A025177 E1hh1C vC v
2;0I1C v2ii N .n; 2

3
n/ A025564 E1hh1C vC v

2;0I1C 2vC v2ii N .n; 2
3

n/

A027907 E hh1C vC v2;0I1ii N . 5
4

n; 11
16

n/ A084600 E hh1C vC 2v2;0I1ii N .n; 2
3

n/

A084602 E hh1C vC 3v2;0I1ii N . 7
5

n; 16
25

n/ A084604 E hh1C vC 4v2;0I1ii N . 3
2

n; 7
12

n/

A084606 E hh1C 2vC 2v2;0I1ii N . 6
5

n; 14
25

n/ A084608 E hh1C 2vC 3v2;0I1ii N . 4
3

n; 5
9

n/

A200536 E hh1C 3vC 2v2;0I1ii N . 7
6

n; 17
36

n/ A272866 E hh1C 3vC v2;0I1ii N .n; 2
5

n/

A272867 E hh1C 4vC v2;0I1ii N .n; 1
3

n/
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[179] H. Mahmoud. Pólya Urn Models. CRC press, 2008.
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