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Abstract

We give a detailed analysis in distribution of the profiles of random symmetric digital search
trees, which are in close connection with the performance of the search complexity of random queries
in such trees. While the expected profiles have been analyzed for several decades, the analysis of
the variance turns out to be very difficult and challenging, and requires the combination of several
different analytic techniques, as established the first time in this paper. We also prove by contraction
method the asymptotic normality of the profiles in the range where the variance tends to infinity. As
consequences of our results, we obtain a two-point concentration for the distributions of the height
and the saturation level of random digital search trees.
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1 Introduction and Results

Digital trees are fundamental data structures for words or alphabets in computer algorithms whose anal-
ysis has attracted much attention over the last half century. One major such varieties is the digital search
tree (DST for short), introduced by Coffman and Eve in 1970 [5] (see also [23] for more information).
Such structures are closely related to the popular Lempel-Ziv compression scheme, and their asymp-
totic stochastic behaviors under random inputs are often more challenging than those for other digital
tree families because of the natural occurrence of differential-functional equations instead of purely
algebraic-functional equations.

�Partially supported by MOST under the grants MOST-104-2923-M-009-006-MY3 and MOST-105-2115-M-009-010-
MY2.

|Partially supported by an Investigator Award from Academia Sinica under the Grant AS-IA-104-M03.
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We begin with the definition of DST, which is the main object of study in this paper. In the simplest
situation, it is built from digital data consisting of a sequence of records in the form of 0-1 strings. The
first record is stored at the root of the tree. All other records are distributed to the left- or right-subtree
according as their first bit being 0 or 1, respectively, and retain their relative order. The subtrees of the
root are then built according to the same rules but by using the j th digit at level j in further directing
the strings to their respective subtrees. The splitting process stops when the size of the subtree is either
zero or one. Note that the resulting tree is a binary tree with internal nodes holding the records. External
nodes, which represent places where future records can be inserted, are often added to the tree (in fact,
two external nodes are automatically created in the algorithmic implementation for each new internal
node); see Figure 1 for an example of a DST built from five records (internal nodes are represented by
rectangles and external nodes by circles).

10 � � �

00 � � � 10 � � �

01 � � � 11 � � �

0 1

0 1 0 1

0 1 0 1

B5;0 D 0, I5;0 D 1;

B5;1 D 0, I5;1 D 2;

B5;2 D 2, I5;2 D 2;

B5;3 D 4, I5;3 D 0.

Figure 1: A DST built from 5 records with its profiles.

For the purpose of analysis, we assume that bits in the input strings are independent and identically
distributed with a common Bernoulli.p/ random variable with 0 < p < 1. Throughout this paper, we
fix p D 1

2
, namely, we consider only the symmetric case. This random model is called the symmetric

Bernoulli model and the corresponding random tree is referred to as a random symmetric DST. It repre-
sents a simple model with reasonably good predictive power in general (for example, results holding in
the Bernoulli model often have similar forms in more general Markov models; see [26]).

Under such a random model, we study in this paper the external and internal node profiles (referred
to as the profiles for short) which are defined as follows: the external profile of a random symmetric DST
of size n is a double-indexed sequence of random variables Bn;k which counts the number of external
nodes at (horizontal) level k; the internal profile In;k is similarly defined (with external nodes replaced
by internal nodes).

Profiles are fine shape characteristics encoding the level silhouette of the tree and they are closely
connected to many other shape parameters such as height, width, total path length, saturation or fill-up
level, and successful and unsuccessful search. In particular, we will discuss the unsuccessful search (or
the depth), the height and the saturation level:

� Unsuccessful search Un: the distance from the root to a randomly chosen external node with its
distribution given by

P.Un D k/ D
E.Bn;k/

nC 1
: (1)

� Height: the length of the longest path from the root to an external node, or maxfk W Bn;k > 0g;
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� Saturation level: the last level from the root which is completely filled with internal nodes, or
maxfk W In;k D 2kg.

See for example [8, 16] and the references therein for more shape parameters in DSTs.
Historically, the external profile was among the very first shape parameters analyzed on DSTs due

to the connection (1) to the unsuccessful search; see Knuth [23] and Konheim and Newman [24]. Yet
our understanding of the profiles of symmetric DSTs has remained incomplete. Table 1 summarizes the
current status for the profiles of tries, Patricia tries and DSTs, the latter two representing other major
classes of digital trees.

Trees p D q? Mean Variance CLT

Tries 0 < p < 1 [32] [32] [32]

Patricia Tries
p D 1

2
[28] ? ?

p ¤ 1
2

[11, 28, 27] [11, 27] [27]

DSTs
p D 1

2
[25, 10] this paper this paper

p ¤ 1
2

[10] [19] ?

Table 1: A summary of the analysis in distribution of profiles in the three major classes of digital trees
under the Bernoulli model.

Briefly, in the case of random tries, the mean, the variance and the asymptotic normality of both
profiles under the symmetric and asymmetric models are fully clarified in [32]. For Patricia tries, the
expected profiles were studied in [28] for both symmetric and asymmetric models. Then the asymp-
totic variance and the asymptotic normality of the profiles, inter alia, under the asymmetric model are
established in the recent papers [11, 27].

As regards symmetric DSTs, Louchard [25], following [23, 24], derived an explicit expression for
the expected profiles; see also [8, 10, 29, 33]. Louchard also obtained an asymptotic approximation for
the mean profiles in the most important range k D log2 nCO.1/ (where most nodes lie), characterizing
the asymptotic distribution of unsuccessful and successful search. These results were later extended in
[8, 10, 22, 29]. We broaden the study in this paper to the variance of the profiles for which an arduous
analysis is carried out. We also clarify the asymptotic normality of the profiles in the range where the
variance becomes unbounded. Moreover, we will apply our results to the height and the saturation level.
See also [6, 18, 26, 34] for other parameters and different types of results on profiles in DSTs .

We now state our results, focusing on the external profile. The corresponding results for the internal
profile will be given in Section 5. First, we introduce the following function and sequence that are
ubiquitous in the analysis of DSTs; see [23].

Q.z/ D
Y
`>1

�
1 � 2�`z

�
and Qn D

Y
16`6n

�
1 � 2�`

�
D

Q.1/

Q.2�n/
:

Note that limn!1Qn exists and equals Q.1/ DW Q1.
In the next section, we will derive the following (known) result (see [8]) for the mean of the external

profile.

Theorem 1. The mean of the external profile satisfies

E.Bn;k/ D 2kF
�
2�kn

�
CO.1/; (2)
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uniformly for 0 6 k 6 n, where F.x/ is a positive function on RC defined by

F.x/ D
X
j>0

.�1/j 2�.
j
2/

Qj Q1
e�2jx : (3)

The proof of (2) for small k, or more precisely, for k such that 2�kn ! 1, will follow readily
by simple elementary arguments, whereas for the remaining range complex-analytic tools will be used.
More precisely, when 2�kn!1 and k > 1, we will show that

E.Bn;k/ D
2k

Qk

�
1 � 2�k

�n�
1CO

�
e
� n

2k�1

��
; (4)

which is stronger than (2) if 2kF
�
2�kn

�
D O.1/.

Remark 1. Note that (4) indeed holds for all n and k but is more useful in the range when 2�kn!1.

Figure 2: The functions F (left) and G (right).

On the other hand, the relation (2) is only a (useful) asymptotic approximation if the first term on the
right-hand side is not bounded for large n. Thus, to understand when this holds, we derive more precise
asymptotic behaviors of F.x/ for large and small x; see Figure 2 (left) for a graphical rendering of F .

Observe first that the series definition (3) of F extends to complex parameter z with <.z/ > 0 and
is itself an asymptotic expansion for large jzj:

F.z/ D
e�z

Q1
CO

�
e�2<.z/

�
; .<.z/ > 0/: (5)

On the other hand, for small x with X WD 1
x log 2

(see Proposition 1),

F.x/ D

r
log 2

2�
X

1
2
C 1

log 2 exp
�
�
.log.X log X //2

2 log 2
� P .log2.X log X //

�
�

�
1CO

�.log log X /2

log X

��
; (6)

with P .t/, t 2 R, a 1-periodic function whose Fourier series is given explicitly by

P .t/ WD
log 2

12
C

�2

6 log 2
�

X
j>1

cos.2j� t/

j sinh
�2j�2

log 2

� : (7)
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Note that the series in (7), representing the fluctuating part of P .t/, t 2 R, has a (peak-to-peak) ampli-
tude less than 1:8 � 10�12. The expansion (6) and (7) can be extended to complex z with jzj 6 " and
j arg.z/j 6 �

2
� "; see Proposition 1.

While it is well anticipated (from known results for tries and Patricia tries) that Var.Bn;k/ is asymp-
totically of the same form as (2) for E.Bn;k/ in most ranges of k of interest, the function involved is
surprisingly very complicated, as shown in (9) below; see also Figure 2 (right).

Theorem 2. The variance of the external profile satisfies

Var.Bn;k/ D 2kG
�
2�kn

�
CO.1/; (8)

uniformly for 0 6 k 6 n, where G.x/ is a positive function on RC defined by

G.x/ D
X

j ;r>0

X
06h;`6j

.�1/rChC`2�j�.r
2/�.

h
2/�.

`
2/C2hC2`

Q1Qr QhQj�hQ`Qj�`

'
�
2rCj ; 2h

C 2`Ix
�
; (9)

with

'.u; vIx/ D e�ux

Z x

0

te.u�v/t dt D

8<:
e�ux C ..u � v/x � 1/ e�vx

.u � v/2
; if u ¤ vI

1
2
x2e�ux; if u D v:

(10)

Remark 2. In the case when 2�kn!1, we will in fact prove that

E.Bn;k/ � Var.Bn;k/:

Despite of its complicated form, the function G is very close to F in the following sense (see Section
3):

G.x/ �

(
F.x/; if x !1I

2F.x/; if x ! 0I
(11)

see also [32] for the same type of results for symmetric tries, and Devroye [7] for a general bound for
the profile variance. A more precise approximation when x !1 is

G.x/ D
e�x

Q1
CO

�
xe�2x

�
;

where the second-order term differs from that of F ; see (5).
The two theorems imply that the mean and the variance have very similar behaviors. In particular,

they tend to infinity in the same range of k.

Corollary 1. For large n and 0 6 k 6 n, E.Bn;k/!1 iff Var.Bn;k/!1.

We now describe the range where the mean and the variance tend to infinity. Define two functions
of n:

ks WD log2 n � log2 log nC 1C
log2 log n

log n
;

kh WD log2 nC
p

2 log2 n �
1

2
log2 log2 nC

1

log 2
�

3 log log n

4
p

2.log n/.log 2/
:

(12)

Corollary 2. The mean and the variance of Bn;k tend to infinity iff there exists a positive sequence !n

tending to infinity with n such that

ks C
!n

log n
6 k 6 kh �

!np
log n

: (13)
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k D 4; : : : ; 10 B100;4 B100;5

B100;6 B100;7 B100;8 B100;9 B100;10

Figure 3: Histograms of B100;k for k D 4; : : : ; 10 with the same color used for each histogram: coral
for k D 4, red for k D 5, dark green for k D 6, blue for k D 7, brown for k D 8, gray for k D 9 and
light green for k D 10. Numerically, E.H100/ D 8:98615 : : :

This range is very small (or almost all nodes are concentrated at these levels); see Figure 3. For
convenience, we will refer to (13) as the central range, and it is exactly this range where the sequence
of random variables fBn;kgn follows a central limit theorem.

Theorem 3. If Var.Bn;k/!1, then the external profile is asymptotically normally distributed:

Bn;k � E.Bn;k/p
Var.Bn;k/

d
�! N .0; 1/;

where N .0; 1/ denotes the standard normal random variable.

Our proof of Theorem 3 relies on the contraction method, which has found fruitful applications to
recursively defined random variables in the last three decades; see Neininger and Rüschendorf [31] and
Section 4.

Results of a very similar nature for the internal profile are given in Section 5.
These new results for the internal and external profile have many consequences in view of their close

connections to other shape parameters. We content ourselves here with an application to the height Hn

of DSTs, which is related to Bn;k by Hn WD maxfk W Bn;k > 0g; see Section 6 for other consequences.

Theorem 4. Define kH as follows

kH D

�
log2 nC

p
2 log2 n �

1

2
log2 log2 nC

1

log 2

�
: (14)

which is at the upper boundary of the central range (13). Then the distribution of Hn is concentrated at
the two points kH and kH C 1:

P.Hn D kH or Hn D kH C 1/ �! 1; .n!1/: (15)

The possibility that such a result might hold was mentioned in [1] for a closely related model; a
heuristic derivation was given in [20]. See also [2, 3] for other two-point approximation results in
probability theory.

It is interesting to compare (15) with known results for the height of tries and those for Patricia tries,
which we summarize in Table 2; see Flajolet [12] for the height of symmetric tries, and Knessl and
Szpankowski [21] for that of Patricia tries (with only non-rigorous proofs).
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Trees Expected height
Discrete

concentration
References

Tries 2 log2 nCO.1/ no [12]

Patricia tries log2 nC
p

2 log2 nCO.1/ at 3 pts [21] (non-rigorous)

DSTs
log2 nC

p
2 log2 n

�
1
2

log2 log2 nCO.1/
at 2 pts this paper

Table 2: A comparison of the height of random symmetric tries, Patricia tries and DSTs.

We describe briefly the methods and tools used in proving Theorems 1–3, which all start with the
following distributional recurrence

Bn;k
d
D BJn;k�1 C B�n�1�Jn;k�1; .n; k > 1/; (16)

with the boundary conditions B0;0 D 1;B0;k D 0 for k > 1, Bn;0 D 0 for n > 1, where Jn D

Binomial
�
n � 1; 1

2

�
, and B�

n;k
is an independent copy of Bn;k .

To derive the asymptotic approximations for the mean (Theorem 1) and the variance (Theorem 2),
we rely on the property, in view of (16), that all moments of Bn;k satisfy recurrences of the following
type

an;k D 22�n
X

06j<n

�
n � 1

j

�
aj ;k�1 C bn;k (17)

for some given sequence bn;k . This recurrence looks standard but the complication here comes from the
dependence of k on n. When k is small, more precisely, when 2�kn!1, the tree shape at these levels
has little variation and thus both mean and variance can be treated by simple elementary arguments. The
hard ranges are when 2�kn � 1 and 2�kn ! 0 for which our arguments are built upon the idea of
Poissonization by defining the Poisson generating functions

QAk.z/ D e�z
X
n>0

an;k

zn

n!
and QBk.z/ D e�z

X
n>0

bn;k

zn

n!
:

Then (17) is translated into the differential-functional equation

QAk.z/C QA
0
k.z/ D 2 QAk�1

�
1
2
z
�
C QBk.z/;

which amounts to describing the moments in the Poisson model. This equation will be solved via Laplace
transform techniques, which lead to exact and asymptotic expressions whose asymptotic properties will
be further examined via Mellin transform, saddle-point method and again Laplace transform. Finally,
we will translate the results in the Poisson model to those in the Bernoulli model via de-Poissonization.

While these procedures are by now standard (see [15, 16]) and work well for the mean, the analysis
of the variance is more subtle. Here, the most crucial step is to introduce a Poissonized variance in
the Poisson model (see again [15, 16]) so as to provide an asymptotic equivalent to the variance after
de-Poissonization. An appropriate adaptation in the current situation is to define the function

QVk.z/ WD QMk;2.z/ � QMk;1.z/
2
� z QM 0

k;1.z/
2;

where QMk;2.z/ and QMk;1.z/ denote the Poisson generating functions of the second moment and the first
moment of Bn;k , respectively. Then we show that QVk.z/ is well-approximated by 2kG

�
2�kz

�
for large
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jzj, and that QVk.n/ is asymptotically equivalent to Var.Bn;k/. Once these are clarified, the next challenge
is the asymptotic behaviors of G.z/, notably for small jzj, which turns out to be the most technical part
of this paper (see Proposition 3) largely due to the complicated form of the Laplace transform of G.z/

(see (43) and (44)) and the uniformity for large parameters (see Lemma 8).
In addition to the asymptotics of the mean and the variance, we also prove the central limit theorem

from the distributional recurrence of Bn;k via the contraction method, which is built on recurrences
and the corresponding asymptotic transfer. Finally, Theorem 4 and related properties will be proved
in Section 6 by using the results from Sections 2–5 and the first and second moment method. The
corresponding asymptotic estimates for the internal profiles will be given in Section 5.

An extended abstract of this paper (entitled External Profile of Symmetric Digital Search Trees) by
the same authors has appeared in the Proceedings of the Fourteenth Workshop on Analytic Algorith-
mics and Combinatorics (ANALCO17), and contains Theorems 1–4 and sketches of the proofs of the
first two. The current paper provides the proofs and derives additionally the same types of asymptotic
approximations to the internal profile and discusses some of their consequences.

2 Expected Values of the External Profile

In this section, we prove Theorem 1 for E.Bn;k/. As mentioned in the Introduction, most results given
here are known. Nevertheless, we provide detailed proofs because the analysis of the variance will
follow the same pattern.

We start from (16). Write �n;k D E.Bn;k/. Then

�n;k D 22�n
X

06j<n

�
n � 1

j

�
�j ;k�1; .n; k > 1/;

with the boundary conditions �0;0 D 1; �n;0 D 0 for n > 1, and �0;k D 0 for k > 1. We then consider
the Poisson generating function

QMk;1.z/ WD e�z
X
n>0

�n;k

zn

n!
; .k > 0/;

which satisfies the differential-functional equation

QMk;1.z/C QM
0
k;1.z/ D 2 QMk�1;1

�
1
2
z
�
; .k > 1/; (18)

with QM0;1.z/ D e�z .
We now solve this differential-functional equation using Laplace transform, which, by inverting and

taking coefficients, leads to an exact expression for �n;k .

2.1 Exact Expressions

To solve (18), we apply Laplace transform (subsequently denoted by L Œ�I s�) on both sides of (18), and
obtain

L Œ QMk;1.z/I s� D
4

s C 1
L Œ QMk�1;1.z/I 2s�; .k > 1/;

with L Œ QM0;1.z/I s� D
1

sC1
. A direct iteration then yields

L Œ QMk;1.z/I s� D
4k

.s C 1/.2s C 1/ � � � .2ks C 1/
;
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for k > 0. By partial fraction expansion, we see that

L Œ QMk;1.z/I s� D 2k
X

06j6k

.�1/j 2�.
j
2/

Qj Qk�j

�
1

s C 2j�k
; (19)

which, by term-by-term inversion, gives

QMk;1.z/ D 2k
X

06j6k

.�1/j 2�.
j
2/

Qj Qk�j

e�2j�kz; .k > 0/: (20)

From this, we obtain the closed-form expression for the expected profile (first derived in [25])

�n;k D 2k
X

06j6k

.�1/j 2�.
j
2/

Qj Qk�j

�
1 � 2j�k

�n
: (21)

We now examine the asymptotic aspects.

2.2 Asymptotics of �n;k

If 2�kn ! 1, then an expansion for the mean can be derived by elementary arguments because the
term in (21) with j D 0 is dominating. More precisely, we have

�n;k D
2k

Qk

�
1 � 2�k

�n�
1CO

��
1 � 21�k

�n�
1 � 2�k

�n ��; (22)

where the error term is bounded above by�
1 � 21�k

�n�
1 � 2�k

�n D exp
�
�n

X
`>1

2` � 1

`2k`

�
6 exp

�
�

n

2k � 1

�
.k > 1/: (23)

Substituting this into (22) proves the asymptotic estimate (4) for �n;k when 2�kn!1 and k > 0.
If 2�kn D O.1/, then no single term in (21) is dominating and 2�rkn ! 0 for r > 2, so we

readily obtain, again by (21) (approximating .1 � x/n by e�xn and by extending k to infinity), �n;k �

2kF
�
2�kn

�
, but the asymptotics of F for small parameter remains unclear. We will use instead the

Poissonization techniques (see [16, 17]) to derive the required asymptotic approximation; see Theorem
1.

We derive first a simple bound for F.z/ and its derivatives.

Lemma 1. For m > 0 and <.z/ > 0, the mth derivative of F satisfies the uniform bound

sup
<.z/>0

ˇ̌
F .m/.z/

ˇ̌
D O

�
2.

mC1
2 /�: (24)

Proof. By the definition (3)

F .m/.z/ D
X
j>0

.�1/jCr 2�.
j
2/Cjm

Qj Q1
e�2j z

D O
 X

j>0

2�.
j
2/Cjm

!
D O

�
2.

mC1
2 /�:

This proves the uniform bound (24).
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We then show that (20) can be brought into the following more useful form (both exact and asymp-
totic).

Lemma 2. For <.z/ > 0 and k > 1, the Poisson generating function QMk;1.z/ of the expected profile
�n;k satisfies

QMk;1.z/ D 2k
X
m>0

2�.
mC1

2 /�km

Qm
F .m/

�
2�kz

�
;

where F.z/ is given in (3).

Proof. By Euler’s identity (see [4, Corollary 2.2])

X
j>0

.�1/j q.
j
2/

.1 � q/.1 � q2/ � � � .1 � qj /
zj
D

Y
`>0

�
1 � q`z

�
; .0 < q < 1/;

we have

Q1

Qk�j

D

Y
`>1

�
1 � 2j�k�`

�
D

X
m>0

.�1/m2�.
mC1

2 /

Qm
2.j�k/m;

which is still valid for j > k (in which case both sides are zero). Substituting the latter into (20) gives

QMk;1.z/ D 2k
X

06j6k

.�1/j 2�.
j
2/

Qj Qk�j

e�2j�kz

D 2k
X
j>0

.�1/j 2�.
j
2/

Qj Q1

X
m>0

.�1/m2�.
mC1

2 /C.j�k/m

Qm
e�2j�kz

D 2k
X
m>0

.�1/m2�.
mC1

2 /�km

QmQ1

X
j>0

.�1/j 2�.
j
2/Cjm

Qj
e�2j�kz;

where interchanging the sums is justified as in the proof of Lemma 1. This proves the lemma since the
last series is equal to .�1/mQ1F .m/

�
2�kz

�
.

From these two lemmas, we get

QMk;1.z/ D 2kF
�
2�kz

�
CO.1/; .<.z/ > 0/; (25)

which is the Poissonized version of (2).
The asymptotics of �n;k and that of QMk.n/ can be bridged by the analytic de-Poissonization tech-

niques; see the survey paper [17]. For that purpose, it turns out that the use of JS-admissible functions,
a notion introduced in [16], provides a more effective operational approach.

Throughout this paper, the generic symbols "; "0 always denote small positive quantities whose val-
ues are immaterial and not necessarily the same at each occurrence.

Definition 1 ([16]). An entire function Qf .z/ is said to be JS-admissible, denoted by Qf .z/ 2JS , if the
following two conditions hold for jzj > 1.

(I) There exists a constant ˛ 2 R such that uniformly for j arg.z/j 6 ",

Qf .z/ D O
�
jzj˛

�
:
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(O) Uniformly for " 6 j arg.z/j 6 � ,

f .z/ WD ez Qf .z/ D O
�
e.1�"

0/jzj
�
:

When Qf 2 JS , its coefficients can be expressed in terms of the Poisson-Charlier expansion (see
[16])

n!Œzn�ez Qf .z/ D
X
j>0

Qf .j/.n/

j !
�j .n/; (26)

which is not only an identity but also an asymptotic expansion, where the �j .n/’s are essentially Charlier
polynomials defined by

�j .n/ D n!Œtn�et .t � n/j D
X

06`6j

�
j

`

�
.�n/j�`

n!

.n � `/!
; .j D 0; 1; : : : /:

In particular, �j .n/ is a polynomial in n of degree b1
2
j c; the expressions for �j .n/, 0 6 j 6 5, are given

below.

�0.n/ �1.n/ �2.n/ �3.n/ �4.n/ �5.n/

1 0 �n 2n 3n.n � 2/ �4n.5n � 6/

For our purpose, we also need an additional uniformity property for JS-admissible functions as the
level parameter k may also depend on n.

Lemma 3. The functions QMk;1.z/ are uniformly JS-admissible, i.e, if jzj > 1, then for j arg.z/j 6 "

QMk;1.z/ D O.jzj/

and for " 6 j arg.z/j 6 �

ez QMk;1.z/ D O
�
e.1�"

0/jzj
�
; (27)

where all implied constants are absolute and hold uniformly for k > 0.

Proof. Let Mk;1.z/ WD ez QMk;1.z/. We first rewrite (18) into the following form

Mk;1.z/ D

Z z

0

2e
1
2

uMk�1;1

�
1
2
u
�

du D 2z

Z 1

0

e
1
2

tzMk�1;1

�
1
2
tz
�

dt: (28)

Consider first the region j arg.z/j > ". The bound (27) holds trivially for k D 0 since M0;1.z/ D 1.
Thus, we assume k > 1. By the trivial bound �n;k 6 2n, we get the a priori upper estimate jMk.z/j 6
2jzjejzj. Plugging this into (28) yields

jMk;1.z/j 6 2jzj2
Z 1

0

te
1
2

t.<.z/Cjzj/ dt

6 2jzj2
Z 1

0

e
1
2

t.cos "C1/jzj dt

6
4jzj

cos "C 1
e

1
2
.cos "C1/jzj:

Since 1
2
.cos "C 1/ < 1, this proves (27).
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Now we consider the sector j arg.z/j 6 ". The required bound QMk;1.z/ D O.jzj/ will follow from
(25) and the smallness of F.z/=z to be proved in Proposition 1 below (see also Remark 3). It is also
possible to give a direct proof although with a weaker estimate (sufficient for our de-Poissonization
purposes). By (28)

QMk;1.z/ D 2z

Z 1

0

e�.1�t/z QMk�1;1

�
1
2
tz
�

dt;

and induction on k, we deduce the (slightly worse) bound QMk;1.z/ D O.jzj1C"0/.

By the asymptotic expansion (26) and Lemma 3 (which also gives bounds on the derivatives of
QMk;1.z/ by Ritt’s theorem; see [16]), we can justify the “Poisson heuristic” for �n;k as follows.

Lemma 4. For large n and 0 6 k 6 n

�n;k D
QMk;1.n/CO.1/;

where the O-term holds uniformly in k.

From this and (25), we obtain now Theorem 1 (except of the positivity of F.x/, which will be
established in Proposition 2 below).

2.3 Asymptotics of F.z/

In this subsection, we derive an asymptotic expansion for F.z/ for small jzj and prove the positivity of
F.x/ on RC; the corresponding large-jzj asymptotics is much easier; see (5).

Proposition 1. For each integer m > 0, the mth derivative of F satisfies

F .m/.z/ D
�

mC 1
2
C 1

log 2p
2� log2 �

exp
�
�
.log �/2

2 log 2
� P .log2 �/

��
1CO

�
j log �j�1

��
; (29)

as jzj ! 0 in the sector j arg.z/j 6 ", where P .t/ is given in (7) and � D �.z/ solves the saddle-point
equation

�

log �
D

1

z log 2
;

satisfying j�j ! 1 as jzj ! 0.

Proof. By additivity, the Laplace transform of F has the form

L ŒF.z/I s� D
X
j>0

.�1/j 2�.
j
2/

Qj Q1.s C 2j /
; .<.s/ > �1/;

which equals the partial fraction expansion of the product

L ŒF.z/I s� D
Y
j>0

1

1C 2�j s
D

1

Q.�2s/
: (30)

Since we are interested in the asymptotics of F.z/ as jzj ! 0, which is reflected by the large-s
asymptotics of L ŒF.z/I s�, we apply the Mellin transform techniques for that purpose; see Flajolet et

12



al.’s survey paper [13] for more background tools and applications. In particular, taking logarithm on
both sides of (30) and using the inverse Mellin transform gives

log Q.�2s/ D
X
j>0

log.1C 2�j s/ D
1

2� i

Z �1
2
Ci1

�
1
2
�i1

�s�!

.1 � 2!/! sin�!
d!;

because the Mellin transform of log.1C s/ equalsZ 1
0

s!�1 log.1C s/ ds D
�

! sin�!
; .<.!/ 2 .�1; 0//:

Now, by standard Mellin analysis (see [13]), we deduce that

log Q.�2s/ D
.log s/2

2 log 2
C

log s

2
C P .log2 s/CO

�
jsj�1

�
; (31)

uniformly as jsj ! 1 in the sector j arg sj 6 � � ".
Next, by the inverse Laplace transform, first for z D r real, we have

F .m/.r/ D
1

2� i

Z 1Ci1

1�i1

smers

Q.�2s/
ds: (32)

It follows, by moving the line of integration to <.s/ D � and by substituting the asymptotic approxima-
tion (31), that

F .m/.r/ D
1

2� i

Z �Ci1

��i1

sm exp
�

rs �
.log s/2

2 log 2
�

log s

2
� P .log2 s/CO

�
jsj�1

��
ds:

A standard application of the saddle-point method (see [14, Ch. VIII]) then yields (29) for real z with
z ! 0.

When the imaginary part of z is not zero, we can still apply the same procedure but need to deform
the integration contour in the representation (32) from the vertical line with real part 1 to the one where
the portions from 1C i to 1C i1 and 1 � i1 to 1 � i are tilted slightly to the left; see the Appendix
for details.

Remark 3. As a consequence of the above proposition, we see that F.z/ is smaller than any polynomial
of z as jzj ! 0 in the sector j arg.z/j 6 ".

Asymptotically, for large X WD 1
x log 2

, x 2 R,

� D X

 
log X C log log X C

log log X

log X
�
.log log X /2 � 2 log log X

2.log X /2
CO

�
.log log X /3

.log X /3

�!
: (33)

Substituting this into (29) gives the more explicit expression (6) (but with a worse error term).
Finally, we prove the positivity of F on the positive real line.

Proposition 2. The function F.x/ is positive in .0;1/.

Proof. Since �n;k > 0, we see, by Theorem 1, that F.x/ > 0 on .0;1/. Then, from (30),

.1C s/L ŒF.x/I s� D
Y
j>0

1

1C 2�j�1s
D L ŒF.x/I 1

2
s�:

13



The corresponding inverse Laplace transform yields the equation

F.x/C F 0.x/ D 2F.2x/:

With this differential-functional equation, we prove the positivity of F by contradiction. Assume a
contrario that F.x/ has a zero in .0;1/, say x0. Then F 0.x0/ D 2F.2x0/ > 0 and since F 0.x0/ > 0

is not possible (for otherwise F.x/ would become negative in a neighborhood of x0), we also have
F.2x0/ D 0. Continuing this argument, we obtain arbitrarily large zeros. This is, however, impossible
since we see from (5) that F.x/ is positive for all x large enough.

3 The Variance of the External Profile

In this section, we prove Theorem 2 by the same approach used above for the mean, starting from the
second moment �n;k WD E.B2

n;k
/, which satisfies, by (16), the recurrence

�n;k D 22�n
X

06j<n

�
n � 1

j

�
�j ;k�1 C 22�n

X
06j<n

�
n � 1

j

�
�j ;k�1�n�1�j ;k�1; .n; k > 1/;

with the boundary conditions �0;0 D 1; �n;0 D 0 for n > 1, and �0;k D 0 for k > 1. Translating this
recurrence into the corresponding Poisson generating functions

QMk;2.z/ WD e�z
X
n>0

�n;k

zn

n!
; .k > 0/

leads to the differential-functional equation

QMk;2.z/C QM
0
k;2.z/ D 2 QMk�1;2

�
1
2
z
�
C 2 QMk�1;1

�
1
2
z
�2
; .k > 1/; (34)

with QM0;2.z/ D e�z .
Since the variance is expected to be of the same order as the mean (notably when both tend to

infinity), there is a cancellation between the dominant term in the asymptotic expansion for �n;k and that
for �2

n;k
. Such a cancellation of dominant terms can be incorporated in the Poissonized variance (as in

[15, 16]):
QVk.z/ D QMk;2.z/ � QMk;1.z/

2
� z QM 0

k;1.z/
2;

which itself also satisfies, after a straightforward calculation,

QVk.z/C QV
0

k.z/ D 2 QVk�1

�
1
2
z
�
C z QM 00

k;1.z/
2; .k > 1/; (35)

with QV0.z/ D e�z � .1 C z/e�2z . In this form, the original inherent cancellation is nicely integrated
into the same type of equation with an explicitly computable non-homogeneous function, and we need
only to work out the asymptotics of QVk.z/, which will be proved to be asymptotically equivalent to the
variance of Bn;k in the major range of interest.

3.1 Exact Expressions

To justify the cancellation-free approach to computing the asymptotic variance, we still need more ex-
plicit expressions for QMk;2.z/ and QVk.z/. For that purpose, we apply Laplace transform on both sides
of (34) and obtain

L Œ QMk;2.z/I s� D
4

s C 1
L Œ QMk�1;2.z/I 2s�C

4

s C 1
L Œ QMk�1;1.z/

2
I 2s�; .k > 1/;
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with L Œ QM0;2.z/I s� D
1

sC1
. Iterating the recurrence gives

L Œ QMk;2.z/I s� D
4k

.s C 1/ � � � .2ks C 1/
C

X
06j<k

4k�jL Œ QMj ;1.z/
2I 2k�j s�

.s C 1/ � � � .2k�j�1s C 1/
: (36)

From (20), a manageable expression for the Laplace transform of QMk�j ;1.z/
2 is given by

L Œ QMj ;1.z/
2
I s� D 4j

X
06h;`6j

.�1/hC`2�.
h
2/�.

`
2/

QhQj�hQ`Qj�`

�
1

s C 2h�j C 2`�j
:

This and the partial fraction expansion (19) yieldX
06j<k

4k�jL Œ QMj ;1.z/
2I 2k�j s�

.s C 1/ � � � .2k�j�1s C 1/

D

X
.j ;r;h;`/2S

22jC1.�1/rChC`2�.
r
2/�.

h
2/�.

`
2/

Qr Qk�1�j�r QhQj�hQ`Qj�`

�
1

.s C 2rC1�kCj /.s C 2h�k C 2`�k/
;

where
S D f.j ; r; h; `/ W 0 6 j 6 k � 1; 0 6 r 6 k � 1 � j ; 0 6 h; ` 6 j g:

From this and the expression

1

.s C u/.s C v/
D

1

v � u

�
1

s C u
�

1

s C v

�
; .u ¤ v/;

we obtain, by term-by-term inversion,

QMk;2.z/ D QMk;1.z/C
X

.j ;r;h;`/2S

22jC1.�1/rChC`2�.
r
2/�.

h
2/�.

`
2/

Qr Qk�1�j�r QhQj�hQ`Qj�`

�.2rC1�kCj ; 2h�k
C 2`�k

I z/;

where

�.u; vI z/ D e�vz

Z z

0

e�.u�v/t dt D

8<:
e�uz � e�vz

v � u
; if u ¤ vI

ze�uz; if u D v:

Taking the coefficients of zn on both sides, we are led to the exact expression for �n;k :

�n;k D �n;k C

X
.j ;r;h;`/2S

22jC1.�1/rChC`2�.
r
2/�.

h
2/�.

`
2/

Qr Qk�1�j�r QhQj�hQ`Qj�`

ı.2rC1�kCj ; 2h�k
C 2`�k

I n/; (37)

where

ı.u; vI n/ D n

Z 1

0

.1 � u � .v � u/t/n�1 dt

D

8<:
.1 � u/n � .1 � v/n

v � u
; if u ¤ vI

n.1 � u/n�1; if u D v:

Similarly, by (35) and the same procedure, we also have

QVk.z/ D
X

.j ;r;h;`/2V

2k�j .�1/rChC`2�.
r
2/�.

h
2/�.

`
2/C2hC2`

Qr Qk�j�r QhQj�hQ`Qj�`

'
�
2rCj ; 2h

C 2`I 2�kz
�
; (38)
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where
V D f.j ; r; h; `/ W 0 6 j 6 k; 0 6 r 6 k � j ; 0 6 h; ` 6 j g;

and '.u; vI z/ is defined in (10). Note that the equality 2rCj D 2h C 2` occurs if and only if .j ; r; h; `/
belongs to the set

f.j ; r; h; `/ W 1 6 j 6 k; r D 0; h D ` D j � 1 or 0 6 j < k; r D 1; h D ` D j g;

and the corresponding terms in (38) are

X
0<j6k

2�k�j 2�2.j�1
2 /C4.j�1/

Qk�j Q2
1
Q2

j�1

�
z2

2
e�2j�kz

�

X
06j<k

2�k�j 2�2.j2/C4j

Qk�j�1Q1Q2
j

�
z2

2
e�2jC1�kz;

which become zero since Q1 D
1
2

. Hence, the equality part in the definition (10) of '.u; vI z/ may be
ignored.

3.2 Asymptotics of Var.Bn;k/

The range where 2kne�2�kn ! 0 can be treated elementarily, as in the case of the mean. In this range
of k (and even in the wider range where 2�kn!1), we have

Var.Bn;k/ �
2k

Qk

�
1 � 2�k

�n
; (39)

uniformly in k. To prove this, we use (37) and begin with the estimate

ı.2rC1�kCj ; 2h�k
C 2`�k

I n/ D O
�
n
�
1 � 21�k

�n�
;

where the implied constant is absolute in n and in k. Substituting this into (37) yields

�n;k D �n;k CO
�

n
�
1 � 21�k

�n X
.j ;r;h;`/2S

22j 2�.
r
2/�.

h
2/�.

`
2/
�

D �n;k CO
�
n4k

�
1 � 21�k

�n�
:

By the asymptotic estimate (4) for �n;k , we then have

�n;k D
2k

Qk

�
1 � 2�k

�n�
1CO

�
e
� n

2k�1

�
CO

�
n2k

�
1 � 21�k

�n�
1 � 2�k

�n ��:
From this estimate and (23), we see that

�n;k �
2k

Qk

�
1 � 2�k

�n
� �n;k ;

because 2kne�2�kn ! 0. Also, �n;k D o.1/ in this range. Thus, we get �2
n;k
D o.�n;k/ and then

(39). Note that it is possible to extend slightly the range to 2ke�2�kn ! 0 because there is only one
term containing the factor n.1 � 21�k/n in the sum (37) (which is when j D r D h D l D 0), and the
contribution of all other terms is bounded above by O.4k.1� 21�k/n/. Moreover, that (39) holds in the
wider range 2�kn!1 follows from a refinement of the expansion of Theorem 2, which can in turn be
obtained by the analytic method below.

On the other hand, complex analytic tools apply in a wider range. In contrast to the mean, however,
we do not prove an identity for QVk.z/ (compare with Lemma 2 and see Remark 4) but we directly prove
an asymptotic result similar to the one for the mean in (25).
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Lemma 5. For j arg.z/j 6 " and k > 0, QVk.z/ satisfies the expansion

QVk.z/ D 2kG
�
2�kz

�
CO.1/; (40)

where G.z/ is defined in Theorem 2.

Proof. Similar to Lemma 2, we first consider Q1=Qk�j�r which satisfies the uniform bound

Q1

Qk�j�r

D

Y
`>1

�
1 � 2jCr�k�`

�
D 1CO

�
2jCr�k

�
: (41)

Here the product also makes sense for j C r > k where it becomes zero and thus the bound also holds
in this case. Substituting this into (38) gives

QVk.z/ D 2kG
�
2�kz

�
C

X
j ;r>0

X
06h;`6j

.�1/rChC`2�j�.r
2/�.

h
2/�.

`
2/C2hC2`

Q1Qr QhQj�hQ`Qj�`

O
�
2jCr'

�
2rCj ; 2h

C 2`I 2�kz
��
:

To estimate the double sum, we split the summation range into two: (i) h; ` 6 bj=2c and (ii) either
h > bj=2c or ` > bj=2c, and denote the resulting sums E1.z/ and E2.z/, respectively. By the estimates

2jCr'
�
2rCj ; 2h

C 2`I 2�kz
�
D

(
O.1/; if h; ` 6 bj=2c;

O.2jCr /; if h > bj=2c or ` > bj=2c;

where the implied constants are both absolut, we have

E1.z/ D O
�X

j ;r>0

X
06h;`6j=2

2�j�.r
2/�.

h
2/�.

`
2/C2hC2`

�
D O.1/;

and

E2.z/ D O

0BB@X
j ;r>0

X
06h;`6j

h>j=2 or `>j=2

2�.
r
2/�.

h
2/�.

`
2/CrC2hC2`

1CCA D O
�X

j>1

j�12�
1
8

j2C 5
4

j

�
D O.1/:

This proves the claimed expansion.

Remark 4. Comparing with Lemma 2, it would be natural to derive an identity for QVk.z/ in a way similar
to that for QMk;1.z/ by replacing the first order asymptotics (41) by the full expansion

Q1

Qk�j�r

D

Y
`>1

�
1 � 2jCr�k�`

�
D

X
m>0

.�1/m2�.
mC1

2 /

Qm
2.jCr�k/m;

which is zero for j C r > k. However, doing so yields an expression that is no more absolutely
convergent, as pointed out by one referee. Nevertheless, ignoring the convergence issue and carrying
out all computations formally, one can expand QVk.z/ as

QVk.z/ D 2k
X
m>0

2�.
mC1

2 /�mk

Qm
Hm.2

�kz/; (42)
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where Hm.z/ are suitable functions. Then, a formal calculation of the Laplace transform gives (after a
lengthy computation)

L ŒHm.z/I s� D sm
X
j>0

4�j
Qg�j
�
2�j s

�
Q
�
�21�j s

� ; (43)

where Qg�j .s/ D L Œz. QM 00
j ;1
.z//2I s�. Similarly,

L
h
G.m/.z/I s

i
D sm

X
j>0

4�j
Qg�j
�
2�j s

�
Q
�
�21�j s

� ; (44)

where this relation indeed holds not just formally but also in a rigorous analytic sense since the series
representation of G.m/.z/ does converge absolutely for all m > 0 (this can be proved by bounding the
derivatives of '.u; vIx/). Thus, (43) and (44) suggest that

Hm.z/ D G.m/.z/; .m > 0/

which in turn suggests that the following identity

QVk.z/ D 2k
X
m>0

2�.
mC1

2 /�km

Qm
G.m/

�
2�kz

�
:

This identity, if true, would be the variance analogue of the identity in Lemma 2. This identity was
claimed to hold at the end of Section 1 in the conference version of this paper. However, it is not
rigorously proved. This shows the intricacy of the analysis for the variance.

Note that (40) gives the version of (8) under the Poisson model. From this we will deduce now
Theorem 8 by the same approaches used to prove Theorem 1, namely, de-Poissonization techniques
through the use of JS-admissible functions.

Lemma 6. The functions QMk;2.z/ are uniformly JS-admissible. More precisely, if jzj > 1, then for
j arg.z/j 6 "

QMk;2.z/ D O
�
jzj2

�
;

and for " 6 j arg.z/j 6 �

ez QMk;2.z/ D O
�
e.1�"

0/jzj
�
;

where all implied constants in the O-terms are absolute for k > 0.

Proof. We proved in [16, Prop. 2.4] that if Qg.z/ is JS-admissible, then Qf .z/ with

Qf .z/C Qf 0.z/ D 2 Qf
�

1
2
z
�
C Qg.z/;

is also JS-admissible. Since 2 QMk�1;1

�
1
2
z
�2 is uniformly JS-admissible (by Lemma 3), the same property

holds for QMk;2.z/ by the same proof of [16, Prop. 2.4]. Alternatively, the bound for QMk;2.z/ can be
derived from (40) and properties of G.z/ and QMk;1.z/.

We are now ready to prove Theorem 2. Since QMk;2 2JS , we have the expansion

�n;k D

X
06j63

QM
.j/

k;2
.n/

j !
�j .n/CO

�
QMk;2.n/n

�2
�
;
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where we retain the terms from (26) with j > 3 so as to guarantee that the error term is O.1/ (since
QMk;2.n/ D O.n2/). For �n;k , we need an expansion with an error up to O

�
n�1

�
:

�n;k D

X
06j63

QM
.j/

k;1
.n/

j !
�j .n/CO

�
QMk;1.n/n

�2
�
;

so that �2
n;k

is correct up to an error of order O.1/. Then we obtain

Var.Bn;k/ D �n;k � �
2
n;k D

QVk.n/CO.1/;

where we have used the relation QMk;2.n/ D QVk.n/C QMk;1.n/
2 C n QM 0

k;1
.n/2. By (40), this proves the

approximation in Theorem 2.

3.3 Asymptotics of G.z/

We now derive the asymptotic behaviors of G for small and large jzj, and prove that G.x/ is positive for
x 2 .0;1/. In particular, the asymptotic approximations of G will imply (11).

First, the asymptotics of G.z/ for large z follows directly from the defining series (9)

G.z/ D
e�z

Q1
CO

�
jzje�2<.z/

�
;

for <.z/ > 0. In contrast the small-jzj asymptotics of G turns out to be very involved, which we now
examine.

Proposition 3. For each integer m > 0, G.m/ satisfies the asymptotic estimate

G.m/.z/ � 2F .m/.z/;

as jzj ! 0 in the sector j arg.z/j 6 ".

The proof of this proposition is long and technical and relies mostly on Laplace transform. Note that
since the Laplace transform of G.m/ is just sm times the Laplace transform of G, it will be sufficient to
consider only the case m D 0.

We start from the Laplace transform of G.z/, which by (43) and (44), is given by

L ŒG.z/I s� D
X
j>0

Rj .s/; where Rj .s/ WD
Qg�j
�
2�j s

�
4j Q

�
�21�j s

� : (45)

Here Qg�j .s/ D L Œz. QM 00
j ;1
.z//2I s�, which, by (20) and a straightforward computation, has the form

Qg�j .s/ D 4�j
X

06h;`6j

.�1/hC`2�.
h
2/�.

`
2/C2hC2`

QhQj�hQ`Qj�`

�
1

.s C 2h�j C 2`�j /2
:

Strangely, the dominating term in (45) is

R2.s/ �
2

Q.�2s/

for large jsj, and the hard part of the analysis consists in showing that
P

j¤2 Rj .s/ D O.jR2.s/=sj/.
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Lemma 7. For large jsj in the half-plane <.s/ > 0, R0 and R1 satisfy

R0.s/ D
s�2

Q.�2s/
.1CO.jsj�1// and R1.s/ D

9 s�1

Q.�2s/
.1CO.jsj�1//; (46)

respectively, and Rj with fixed j > 2 satisfies

Rj .s/ D
.2j � 3/!2.

j
2/

..j � 2/!/2Q.�2s/
s2�j

�
1CO

�
jsj�1

��
: (47)

Proof. The estimates (46) for j D 0 and j D 1 follow from the closed-form expressions

Qg�0 .s/ D
1

.s C 2/2
and Qg�1 .2

�1s/ D
4

.s C 2/2
�

32

.s C 3/2
C

64

.s C 4/2
;

and the functional relation Q.�2s/ D .1C s/Q.�s/. Thus we assume now j > 2.
Since Qg�j

�
2�j s

�
is the Laplace transform of 4j z QM 00

j ;1
.2j z/2, we see that the large-jsj behavior of

the former is reflected from the small-jzj behavior of the latter. Starting from (19) using Ritt’s theorem
for the asymptotics of the derivatives of an analytic function, we obtain successively the estimates in the
following table.

f .z/ QMj ;1.z/ QM 00
j ;1
.z/ 4j z QM 00

j ;1
.2j z/2

as jzj � 0 zj

j!2j.j�3/=2

zj�2

.j�2/!2�j.j�3/=2

2j.jC1/

..j�2/!/2
z2j�3

L Œf .z/I s� 4jQ
06`6j .2

`sC1/
4j s2Q

06`6j .2
`sC1/

Qg�j
�
2�j s

�
as jsj ! 1 2�j.j�3/=2 s�j�1 2�j.j�3/=2 s�jC1 .2j�3/!

..j�2/!/2
2j.jC1/s2�2j

where the entries in the second and the fourth rows give the asymptotics of f and its Laplace transform
as jzj ! 0 and jsj ! 1, respectively. All error terms are of the form 1 C O.jzj/ and 1 C O.jsj�1/,
respectively,

From this table and the estimate

Q.�21�j s/ D
Q.�2s/

.1C s/.1C 2�1s/ � � � .1C 2�.j�1/s/

D s�j Q.�2s/2.
j
2/.1CO.jsj�1//; (48)

for large jsj, we obtain (47).

We now enhance the asymptotic approximation (47) by incorporating the uniformity in j .

Lemma 8. For j > 2, uniformly as jsj ! 1 with <.s/ > ",

Qg�j
�
2�j s

�
D

8<:O
�

j
log2 jsj

; 2�.log2 jsj/.log2 jsj�5/
�
; if 1 6 jsj 6 2jC1;

O
�
2j2C3j jsj�2jC2

�
; if jsj > 2jC1.

(49)

Proof. For notational convenience, we write the Laplace transform of h as h� and the convolution as

.h�1 ? h�2/.s/ WD
1

2� i

Z 1
2

sCi1

1
2

s�i1

h�1.t/h
�
2.s � t/ dt:
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Since Qg�j
�
2�j s

�
D L Œz QM 00

j ;1
.2j z/2I s�, we see that, by the relation L Œzh.z/I s� D �h�.s/0,

Qg�j
�
2�j s

�
D �.Lj ?Lj /

0.s/ D �.Lj ?L0j /.s/;

where

Lj .s/ WD
s2Q

06`6j

�
1C 2�`s

� : (50)

On the other hand, since

L0j .s/ D Lj .s/

�
2

s
�

X
06`6j

1

s C 2`

�
;

we now derive an upper bound for each of the convolutions

Lj .s/ ?
�Lj .s/

s

�
and Lj .s/ ?

� Lj .s/

s C 2`

�
; 0 6 ` 6 j:

Note that if both h�
1
.s/; h�

2
.s/ D O.jsj�1/ for large jsj, then we can replace .h�

1
? h�

2
/.s/ (for

<.s/ > 0) by the integral
1

2� i

Z

.s/

h�1.t/h
�
2.s � t/ dt;

where 
 .s/ WD
˚

1
2
s .1 C iv/ W �1 < v < 1

	
is the symmetry line between 0 and s; such a choice

implies jt j D js � t j for t 2 
 .s/ and jLj .t/j D jLj .s � t/j. This simplifies our analysis.
By (50), it is also straightforward to show that for all s with <.s/ > 0 and for all t 2 
 .s/,

Lj .t/ D

(
O
�
jt j3jsj�12�

1
2
.log2 jt j/.log2 jt jC1/

�
I for 1 6 jt j 6 2j ,

O
�
2j.jC1/=2jt j�jC1

�
; for jt j > 2j :

(51)

Now, we are ready to prove (49). Assume first that jsj > 2jC1. Then jt j > 2j for all t 2 
 .s/.
Furthermore, we have jtCyj > jsj=2 for all t 2 
 .s/ and for all non-negative numbers y. Consequently,
by (51), ˇ̌̌̌

Lj .s/ ?

�
Lj .s/

s C y

�ˇ̌̌̌
6

2

jsj

Z

.s/

jLj .t/j
2
j dt j

D O
�

2j.jC1/

jsj

�
2

jsj

�2j�2

jsj

Z 1
0

1

.1C v2/j�1
dv
�

D O
�

2j2C3j

j jsj2j�2

�
;

where we used the substitution t D 1
2
s .1 C iv/. Since Qg�j

�
2�j s

�
can be written as the sum of j C 1

terms of this form, (49) follows (in the case jsj > 2jC1).
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If jsj 6 2jC1, then we split the integral into two parts. The first one is by (51) bounded above by

2

jsj

Z
t2
.s/; jt j62j

jLj .t/j
2
j dt j D O

�
1

jsj3

Z
t2
.s/; jt j62j

jt j62�.log2 jt j/.log2 jt jC1/
j dt j

�
D O

�
1

jsj3

Z
t2
.s/; jt j62j

jt j62�.log2 jt j/.log2 jsj/ j dt j

�
D O

�
1

jsj3

Z
t2
.s/; jt j62j

jt j6�log2 jsj j dt j

�
D O

 
jsj4

�
jsj

2

�� log2 jsj
Z 1

0

j1C ivj6�log jsj dv

!

D O
�

2� log2
2
jsjC5 log2 jsj

log jsj

�
;

where we used the inequality jt j > 1
2
jsj and the substitution t D 1

2
s .1 C iv/. Finally, the remaining

integral is bounded above by

2

jsj

Z
t2
.s/; jt j>2j

jLj .t/j
2
j dt j D O

�
2j.jC1/

�
2

jsj

�2j�2 Z 1
2j

jsj

1

.1C v2/j�1
dv
�

D O
�

2j.jC1/

�
2

jsj

�2j�2
1

j

�
jsj

2j

�2j�5�
D O

�
2�j2C8j

j jsj3

�
:

Since jsj 6 2jC1, we then have

2�j2C8j

j jsj3
D O

�
2� log2

2
jsjC5 log2 jsj

log2 jsj

�
;

and accordingly

Qg�j
�
2�j s

�
D O

�
j

log2 jsj
2� log2

2
jsjC5 log2 jsj

�
;

which completes the proof of the lemma.

We now derive a precise asymptotics for L ŒG.z/I s� for large jsj.

Lemma 9. The Laplace transform of G satisfies

L ŒG.z/I s� D
2

Q.�2s/

�
1CO

�
jsj�1

��
;

uniformly as jsj ! 1 and <.s/ > ".

Proof. By Lemma 7, we have (Rj .s/ being defined in (45))

R0.s/CR1.s/CR2.s/ D
2

Q.�2s/

�
1CO

�
jsj�1

��
:

For the remaining terms, we examine the factor Q
�
�21�j s

�
. By (48), we have, uniformly for jsj ! 1

with <.s/ > 0 and jsj > 1,

Q
�
�21�j s

�
D

(
�.1/; if 1 6 jsj 6 2jC1;

�
�
jsj�j jQ.�2s/j2.

j
2/
�
; if jsj > 2jC1.
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Now, it follows from Lemma 8 thatX
36j6log2 jsj�1

Rj .s/ D O
�

1

jQ.�2s/j

X
36j6log2 jsj�1

2
1
2

j.jC3/�.j�2/ log2 jsj

�

D O
�

1

js Q.�2s/j

�
I

also by Lemma 8 and (31)

X
j>log2 jsj

Rj .s/ D O
 X

j>log2 jsj

j

log2 jsj
2�.log2 jsj/.log2 jsj�5/�2j

!
D O

�
2�.log2 jsj/.log2 jsj�3/

�
D O

 
2�.log2 jsj/.log2 jsj�7/=2

jQ.�2s/j

!

D O
�

1

js Q.�2s/j

�
;

This completes the proof of the lemma.

Proof of Proposition 3. Proposition 3 now follows from Lemma 9 because 1
Q.�2s/

is the Laplace trans-
form of F.z/, details being similar to the proof of Theorem 1 (for the asymptotics of F.z/).

Finally, we prove that G.x/ is a positive function.

Proposition 4. The function G.x/ is positive on .0;1/.

Proof. By (45) and the inverse Laplace transform, we see that

G.x/ D
X
j>0

2j

Z x

0

.x � t/ QM 00
j ;1.2

j .x � t//2F.2j t/ dt:

Since F.x/ is positive on .0;1/, we then deduce that G.x/ is also positive on .0;1/.

4 Asymptotic Normality of Bn;k

We prove in this section Theorem 3, the central limit theorem for Bn;k , by the contraction method [31].
Recall that�n;k D E.Bn;k/. Let �n;k WD

p
Var.Bn;k/ for all n; k > 0. We consider the standardized

random variables when �n;k > 0

Xn;k WD
Bn;k � �n;k

�n;k

; (52)

and Xn;k WD 0 otherwise. From (16), we obtain

Xn;k
d
D
�Jn;k�1

�n;k

XJn;k�1 C
�n�1�Jn;k�1

�n;k

X �n�1�Jn;k�1 C bn;k.Jn/; (53)

where all Xj ;k ;X
�

j ;k
and Jn D Binomial

�
n � 1; 1

2

�
are independent, X �

j ;k
are distributed as Xj ;k , and

bn;k.j / WD
�j ;k�1 C �n�1�j ;k�1 � �n;k

�n;k

: (54)
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Our goal is to prove that Xn;k converges in distribution to N WD N.0; 1/ as �n;k ! 1. This is
achieved by showing that in the limit (53) becomes

X
d
D

1
p

2
X C

1
p

2
X �; (55)

which is satisfied by the normal distribution. Thus, apart from the convergence of Xn;k to X , we will
show that the coefficients of the first two terms on the right hand side of (53) both converge to 1p

2
, and

the third term there tends to 0 as �n;k ! 1. In addition to these convergences, we derive (stronger)
uniform bounds in the next two lemmas. In what follows, we use kXk3 to denote the L3 norm of a
random variable X .

Lemma 10. The L3 norm of bn;k.Jn/ is bounded above by

kbn;k.Jn/k3 D O
�
��1

n;k

�
: (56)

Proof. Define the set An D
˚
jJn �

1
2
nj < n

3
4

	
and denote by 1An

the indicator function of An.
We first consider bn;k.Jn/ on the complement Ac

n, where we have

kbn;k.Jn/1Ac
n
k3 D

O.ne�2
p

n/

�n;k

D O
�
��1

n;k

�
:

Here we used the linear upper bound of �n;k (either by definition or by Theorem 1) and Chernoff’s
bound for binomial tails X

jj� 1
2

nj>n
3
4

21�n

�
n � 1

j

�
D O

�
n�

1
4 e�2

p
n
�
: (57)

It remains to estimate kbn;k.Jn/1An
k3. By Theorem 1 and Taylor series expansion,

�Jn;k�1 C �n�1�Jn;k�1 � �n;k

D 2k�1F
�
21�kJn

�
C 2k�1F

�
21�k.n � 1 � Jn/

�
� 2kF

�
2�kn

�
CO.1/

D O
�

1C F 0.2�kn/C 4�k
�
Jn �

1
2
.n � 1/

�2 max
jx� 1

2
nj<n

3
4

ˇ̌
F 00
�
21�kx

�ˇ̌�
:

Thus

kbn;k.Jn/1An
k3 D �

�1
n;k �O

�
1C 4�kn max

jx� 1
2

nj<n
3
4

ˇ̌
F 00
�
21�kx

�ˇ̌�
:

Now by the asymptotic approximations (5) and (6) to F.x/, we see that

4�kn max
jx� 1

2
nj<n

3
4

ˇ̌
F 00
�
21�kx

�ˇ̌
D

8̂<̂
:
O
�
4�kne�.1�"/2

�kn
�
; if 2�kn!1I

O
�
4�knF

�
2�kn

��
; if 2�kn D ‚.1/I

O
�
n�1k2F

�
2�kn

��
; if 2�kn! 0:

It follows that
4�kn max

jx� 1
2

nj<n
3
4

ˇ̌
F 00
�
21�kx

�ˇ̌
D O.1/;

and this completes the proof of (56).
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Lemma 11. We have the uniform bound



�Jn;k�1

�n;k

�
1
p

2






3

D O
�
��1

n;k

�
: (58)

Proof. Note that (58) clearly holds if �n;k is bounded since then, �Jn;k�1 is also bounded. We thus
assume in the sequel that �n;k !1 which holds for k with (13). Also, note that





�Jn;k�1

�n;k

�
1
p

2






3

D







 �2
Jn;k�1

�
1
2
�2

n;k

�n;k

�
�Jn;k�1 C

1p
2
�n;k

�








3

D O
 

�2

Jn;k�1
�

1
2
�2

n;k




3

�2
n;k

!
:

To prove (58) from the last expression, we apply similar arguments as in the proof of Lemma 10 whose
notations we again adopt.

First, on the set Ac
n the estimate (58) follows from the same exponential tail bounds for binomial

distributions and �2
n;k
D O.n/ (as in Lemma 10). On the other hand, on the set An we use Theorem 3

and the Taylor series expansion

�2
Jn;k�1 D 2k�1G

�
21�kJn

�
CO.1/

D 2k�1G
�
2�kn

�
CO

�
1CG0.2�kn/C

�
Jn �

1
2
n
�

max
jx� 1

2
nj<n

3
4

ˇ̌
G0
�
21�kx

�ˇ̌�
:

Thus 


�2
Jn;k�1 �

1
2
�2

n;k





3
D O

�
1C
p

n max
jx� 1

2
nj<n

3
4

ˇ̌
G0
�
21�kx

�ˇ̌�
:

Next, by the growth properties of G.x/ from Section 3.3, we see that

p
n max
jx� 1

2
nj<n

3
4

ˇ̌
G0
�
21�kx

�ˇ̌
D O

�q
2kG

�
2�kn

��
;

because

p
n max
jx� 1

2
nj<n

3
4

ˇ̌
G0
�
21�kx

�ˇ̌
D

8̂̂̂<̂
ˆ̂:
O
�
2k=2
p

2�k=2n e�.1�"/2
�kn

�
; if 2�kn!1I

O
�
p

nG
�
2�kn

��
; if 2�kn D ‚.1/I

O
�
k
q

2kG
�
2�kn

�
=n
�
; if 2�kn! 0:

This proves (58).

We now justify the convergence in distribution of (52) to standard normal through the use of the
Zolotarev �3-distance introduced in [35, 36]. Note that the fixed-point equation (55) appears frequently
in the analysis of recursive algorithms and random trees; Section 5.3 of [31] gives about a dozen such
examples. Most applications of the contraction method in the literature rely on the minimal L2-metric.
However, recurrences leading to the limit equation (55) are beyond the power of the minimal Lp-metrics
as explained in detail in Section 2 of [31]. This deficiency of the minimal Lp-metrics was initially the
main motivation to develop the Zolotarev �s-distance in the context of the contraction method in [31].
That (55) on an appropriate subspace of probability measures endowed with the �3-distance constitutes
a contraction is also explained in details in Section 2 of [31]. This fact is the key for the present proof of
the central limit law in Theorem 3.

We recall a few properties needed.
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Zolotarev metric. The Zolotarev �3-distance of two distributions L.Y /, L.Z/ on R is defined by

�3.Y;Z/ WD �3.L.Y /;L.Z// WD sup
f 2F3

jE.f .Y / � f .Z//j; (59)

where
F3 WD ff 2 C 2.R;R/ W jf .2/.x/ � f .2/.y/j 6 jx � yjg;

denotes the space of twice continuously differentiable functions from R to R such that the second deriva-
tive is Lipschitz continuous with Lipschitz constant 1. It is known that �3.Y;Z/ <1 if E.Y / D E.Z/,
E.Y 2/ D E.Z2/ and kY k3; kZk3 < 1. The convergence in �3 implies weak convergence on R. We
need that �3 is .3;C/-ideal, namely,

�3.Y CW;Z CW / 6 �3.Y;Z/ (60)

and
�3.cY; cZ/ D c3�3.Y;Z/; (61)

for all W independent of .Y;Z/ and all c > 0. Note that this implies that

�3 .Y1 C Y2;Z1 CZ2/ 6 �3.Y1;Z1/C �3.Y2;Z2/; (62)

for Y1;Y2 independent and Z1;Z2 independent such that the respective �3 distances are finite.
The following bound is also used (see [9, Lemma 5.7] or [30, Lemma 2.1] for a slightly tighter

bound):

�3.L.Y /;L.Z// 6 .kY k23 C kZk
2
3/kY �Zk3; (63)

where on the right-hand side the pair .Y;Z/ forms any coupling of the distributions L.Y /;L.Z/ on a
joint probability space.

The �3-distance is part of the family �s , s > 0, of Zolotarev metrics.
Before we prove Theorem 3 with this metric, we need another crucial technical lemma.

Lemma 12 (O- and o-transfer for (17)). Let ˛ > 1 and consider the recurrence (17).

(a) If bn;k D O
�
2˛kG

�
2�kn

�˛
C 1

�
, then an;k D O

�
2˛kG

�
2�kn

�˛� for any sequence k D k.n/

such that �n;k !1;

(b) If bn;k D o
�
2˛kG

�
2�kn

�˛
C 1

�
, then an;k D o

�
2˛kG

�
2�kn

�˛� for any sequence k D k.n/

such that �n;k !1.

See (13) for the range where �n;k !1.

Proof. We start with part (a), and prove by induction on k the uniform bound

jan;k j 6 C02k˛G
�
2�kn

�˛
CD0n1C"; (64)

for some constants C0;D0 > 0 (specified below) and an arbitrarily small " > 0. For k D 0 the bound
(64) holds. Hence, we assume that (64) holds for all k 0 < k. To prove it for k, we substitute (64) into
the recurrence (17), and obtain

jan;k j 6 22�n
X

06j<n

�
n � 1

j

��
C02.k�1/˛G

�
21�kj

�˛
CD0j 1C"

�
C C12k˛G

�
2�kn

�˛
CD1; (65)
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for some constants C1 and D1. As in the proof of Lemma 10, we split the above binomial sum into two
parts according as jj � 1

2
nj < n

3
4 or jj � 1

2
nj > n

3
4 . The sum over the latter range is, by Chernoff’s

bound (57), bounded above by

22�n
X

jj� 1
2

nj>n
3
4

�
n � 1

j

��
C02.k�1/˛G

�
21�kj

�˛
CD0j 1C"

�
D O

�
n˛e�2

p
n
�
D o.1/;

because �2
n;k

is at most of linear growth. For the remaining sum with jj � 1
2
nj < n

3
4 , we split it further

into two parts, one for each summand inside the parentheses of the first term in (65). The second part is
independent of k and can again be easily estimated by binomial concentration properties:

2D0

X
jj� 1

2
nj<n

3
4

21�n

�
n � 1

j

�
j 1C"

D 2�"D0n1C".1C o.1//:

We are left with the sum

21�˛C02k˛
X

jj� 1
2

nj<n
3
4

21�n

�
n � 1

j

�
G
�
21�kj

�˛
: (66)

By Taylor expansion, we have

G
�
21�kj

�˛
D G

�
2�kn

�˛
C ˛G

�
2�kn

�˛�1
G0
�
2�kn

�2j � n

2k
CO

�
E.n/

.2j � n/2

4k

�
with

E.n/ WD max
jx� 1

2
nj<n

3
4

�ˇ̌
G
�
21�kx

�ˇ̌˛�2
jG0
�
21�kx

�ˇ̌2
C
ˇ̌
G
�
21�kx

�ˇ̌˛�1ˇ̌
G00
�
21�kx

�ˇ̌�
:

Substituting this into (66), we deduce that

C021�˛2k˛
X

jx� 1
2

nj<n
3
4

21�n

�
n � 1

j

�
G
�
21�kj

�˛
D C021�˛2k˛G

�
2�kn

�˛
.1C o.1//C o.1/CO

�
4�k2k˛nE.n/

�
: (67)

Now, by the properties of G.x/ from Section 3.3,

4�knE.n/ D

8̂̂<̂
:̂
O
�
4�kne�˛2�knCO.2�kn

3
4 /
�
; if 2�kn!1I

O
�
4�knG

�
2�kn

�˛�
; if 2�kn D ‚.1/I

O
�
k2n�1G

�
2�kn

�˛�
; if 2�kn! 0:

Thus, O.4�k2k˛nE.n// D o
�
1C 2k˛G

�
2�kn

�˛�, which shows that the last term in (67) can be
dropped.

Collecting all estimates and substituting them into (65), we get

jan;k j 6 C021�˛2k˛G
�
2�kn

�˛
.1C o.1//CD02�"n1C".1C o.1//C C12k˛G

�
2�kn

�˛
CD1:

Since 21�˛ < 1 and 2�" < 1, it is clear that one can choose C0 and D0 such that the latter is bounded
by C02k˛G

�
2�kn

�˛
CD0n1C". This proves the uniform bound (64).

Using the uniform bound (64), the assertion of part (a) can now be obtained by another induction on
those k D k.n/ such that �n;k !1, where we can use the same arguments as above since now D1 in
(65) can be dropped and thus the second term in the uniform bound (64) is not needed anymore.

Finally, part (b) follows mutatis mutandis the same method of proof. This proves the lemma.
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Proof of Theorem 3. Denote by

1n;k WD

(
1I if �n;k > 0;

0; otherwise:

To bound the �3-distance between Xn;k and N .0; 1/ we define

„n;k WD
�Jn;k�1

�n;k

N C
�n�1�Jn;k�1

�n;k

N � C bn;k.Jn/; (68)

if �n;k > 0 and „n;k WD 0 otherwise, where N ;N � and Jn are independent and N and N � have the
standard normal distribution. Conditioning on Jn and using (53), we obtain, for all n; k > 0,

Var.„n;k/ D Var.Xn;k/ D Var.1n;kN / D 1n;k :

Since all the random variables in this display are centered and have finite third moments, we see that the
�3-distances between them are finite. Thus

�3.Xn;k ; 1n;kN / 6 �3.Xn;k ; „n;k/C �3.„n;k ; 1n;kN /:

We first bound the second term on the right-hand side. Note that Lemma 10 and 11 imply that

k„n;kk3 D O
�
��1

n;k C 1
�
:

Furthermore, we have the identity

N d
D

1p
2
N C 1p

2
N �; (69)

where N and N � are as above; compare with (55). Now, using the representations (68) and (69) and the
inequality (63), we have

�3.„n;k ; 1n;kN / D �3.„n;k ;N /

D O
��
��2

n;k C 1
�



�Jn;k�1

�n;k

N C
�n�1�Jn;k�1

�n;k

N �

Cbn;k.Jn/ �
�

1p
2
N C 1p

2
N �

� 




3

�
D O

��
��2

n;k C 1
� �



�Jn;k�1

�n;k

�
1
p

2






3

C kbn;k.Jn/k3

��
:

Consequently, by Lemma 10 and 11,

�3.„n;k ; 1n;kN / D O
�
��3

n;k C �
�1
n;k

�
:

Thus,

�.n; k/ WD �3.Xn;k ; 1n;kN / 6 �3.Xn;k ; „n;k/CO
�
��3

n;k C �
�1
n;k

�
:

We are left with the distance �3.Xn;k ; „n;k/. Using the definition (59) and conditioning on Jn, we see
that

�3.Xn;k ; „n;k/ 6 21�n
X

06j<n

�
n � 1

j

�
�3

 
�j ;k�1

�n;k

Xj ;k�1 C
�n�1�j ;k�1

�n;k

X �n�1�j ;k�1 C bn;k.j /;

�j ;k�1

�n;k

N C
�n�1�j ;k�1

�n;k

N � C bn;k.j /

!
:
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We then majorize the latter expression by using the C-ideal properties of �3 in (60), (61) and drop the
bn;k.j / terms. This gives, by (62) and again the 3-ideal properties of �3 in (60), (61),

�3.Xn;k ; „n;k/ 6 21�n
X

06j<n

�
n � 1

j

� �
�j ;k�1

�n;k

�3

�3.Xj ;k�1; 1j ;k�1N /

C

�
�n�1�j ;k�1

�n;k

�3

�3.X
�
n�1�j ;k�1; 1n�1�j ;k�1N �/

!

D 2�n
X

06j<n

�
n � 1

j

��
�j ;k�1

�n;k

�3

�.j ; k � 1/:

Note that the corresponding summand is zero when 1j ;k�1 D 0 or 1n�1�j ;k�1 D 0. Collecting the
estimates yields

�.n; k/ 6 2�n
X

06j<n

�
n � 1

j

��
�j ;k�1

�n;k

�3

�.j ; k � 1/CO
�
��3

n;k C �
�1
n;k

�
:

From this, we see that �3
n;k
�.n; k/ is bounded above by a sequence an;k satisfying (17) with bn;k D

O.�2
n;k
C 1/. Thus

�3
n;k�.n; k/ D o

�
�2C"

n;k

�
;

whenever �n;k ! 1 by Lemma 12, part (a) (with ˛ D 1 C " for any " > 0). Thus �.n; k/ ! 0 as
�n;k !1, and this completes the proof of Theorem 3.

5 Internal Profile

In this section, we present the results without proofs for the internal profile In;k because all proofs used
for the external profile extend to those for the internal profile, which satisfies the same form of recurrence
as Bn;k , namely,

In;k
d
D IJn;k�1 C I�n�1�Jn;k�1; .n; k > 1/;

where the notation is as in (16). The only differences lie in the boundary conditions: I0;k D 0 for k > 0

and In;0 D 1 for n > 1.
From this recurrence and the same method used in Section 2, we can derive the following (mostly

known) result for the mean; see [10, 25].

Theorem 5. The expected internal profile satisfies

E.In;k/ D 2kFI

�
2�kn

�
CO.1/;

uniformly for 0 6 k < n, where FI .x/ equals the antiderivative of F.x/:

FI .x/ D 1 �
X
j>0

.�1/j 2�.
jC1

2 /

Qj Q1
e�2jx :

Moreover, FI .x/ is a positive function on RC; see Figure 4 for a plot.
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From the above expression, we see that as x !1

FI .x/ D 1 �
e�x

Q1
CO

�
e�2x

�
and as x ! 0, with the same method as in Section 2,

FI .x/ D

r
log 2

2�
�

X
� 1

2
C 1

log 2

log X
exp

�
�

log.X log X /2

2 log 2
� P

�
log2.X log X /

��
�

�
1CO

�
.log log X /2

log X

��
;

where X D 1
x log 2

and the 1-periodic function P .t/ is defined in (7). The extra term X�1.log X /�1,

when compared with (6), comes from integration (or from the additional factor s�1 in the Laplace
transform of FI .x/ and the saddle-point approximation).

Figure 4: The functions FI (left) and GI (right).

Similarly, the same approach in Section 3 leads to the following asymptotic expansion for the vari-
ance.

Theorem 6. The variance of the internal profile satisfies

Var.In;k/ D 2kGI

�
2�kn

�
CO.1/;

uniformly for 0 6 k < n, where GI .x/ is positive on RC defined by

GI .x/ D
X

j ;r>0

X
06h;`6j

.�1/rChC`2�j�.r
2/�.

h
2/�.

`
2/ChC`

Q1Qr QhQj�hQ`Qj�`

'.2rCj ; 2h
C 2l
Ix/;

where ' is defined in (10).

Note that the only difference between G.z/ and GI .z/ is that the exponent 2h C 2` in the series
definition (9) of G.z/ is replaced by hC `; see Figure 4.

Proposition 5. The function GI .x/ satisfies

GI .x/ �

8<:
e�x

Q1
; if x !1I

FI .x/; if x ! 0:
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Corollary 3. The variance of the internal profile tends to infinity iff there exists a positive sequence !n

tending to infinity with n such that

ks C
!n

log n
6 k 6 kh � 1 �

!n

log n
; (70)

where ks and kh are defined in (12).

Note that the only difference from the central range (13) for the external profile is the additional shift
of �1 in the upper bound, a property implied from the fundamental relation

2In;k D In;kC1 C Bn;kC1:

Finally, (70) is the range where the internal profile follows asymptotically a normal limit law.

Theorem 7. If Var.In;k/!1, then In;k is asymptotically normally distributed:

In;k � E.In;k/p
Var.In;k/

d
�! N .0; 1/:

6 Applications

In this section, we apply our results on the profiles to establish the asymptotic two-point concentration
of the height and the saturation level in random DSTs.

6.1 Height

We first prove Theorem 4 for the height of random DSTs. Recall that kH is defined as follows:

kH D

�
log2 nC

p
2 log2 n �

1

2
log2 log2 nC

1

log 2

�
:

To prove the asymptotic concentration of the height at kH and kH C 1, we also need a finer approx-
imation to the mean. By using more terms in the identity of Lemma 2 (together with Lemma 1 for the
error term) and (26), we obtain

�n;k D 2kF
�
2�kn

�
C F 0

�
2�kn

�
� 2�k�1nF 00

�
2�kn

�
CO

�
n�1
C 4�kn

�
: (71)

Moreover, from Theorem 1 and Theorem 2 and the asymptotic growth of G.z/ and H.z/ from Sec-
tion 2.3 and Section 3.3, respectively, we deduce that the variance of Bn;k is asymptotically of the same
order as the mean:

�2
n;k D ‚.�n;k/ (72)

for k with �n;k !1; compare with Corollary 1.

Lemma 13. For all k,
1 �

X
`>1

2�`�n;kC` 6 P.Hn 6 k/ (73)

and for all k with �n;kC1 !1,

P.Hn 6 k/ D O
�

1

�n;kC1

�
; (74)
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Proof. The proof relies on the first and the second moment method.
Noting that In;k > 0 if and only if Hn > k, we have, by the first moment method,

P.Hn > k/ D P.In;k > 0/ 6 E.In;k/:

On the other hand, in view of the relation In;k D
P
`>1 2�`Bn;kC`, (73) follows from the inequality

P.Hn > k/ 6
X
`>1

2�`�n;kC`:

For the upper bound, since Bn;kC1 > 0 implies that Hn > k, we see that

P.Hn > k/ > P.Bn;kC1 > 0/:

By the second moment method,

P.Hn 6 k/ 6 P.Bn;kC1 D 0/ 6
�2

n;kC1

�2
n;kC1

:

From this (74) follows then from (72).

Theorem 4 is then a consequence of the following two limit results.

Lemma 14. The height of random DSTs satisfies

lim
n!1

P.Hn 6 kH C 1/ D 1 and lim
n!1

P.Hn 6 kH � 1/ D 0:

Proof. We first consider the expected value of the external profile around the level kH and define

k` WD kH C ` D

�
log2 nC

p
2 log2 n �

1

2
log2 log2 nC

1

log 2

�
C ` .` 2 Z/:

Since 2�k`n ! 0, we apply Proposition 1 for the asymptotics of F.2�k`n/ (and its derivatives). Note
that the saddle-point equation in Proposition 1 has the form

�

log �
D

2k`

n log 2
;

or, with R WD log �,

R � log RC log log 2

log 2
D
p

2 log2 n �
1

2
log2 log2 nC

1

log 2
C ` � �;

where � D �n denotes the fractional part of log2 nC
p

2 log2 n � 1
2

log2 log2 nC 1= log 2. Now, by a
direct bootstrapping argument, we obtain

R D
p

2 log2 n log 2C 1C

�
`C

1

2
� �

�
log 2C

2`C 1C 2
log 2
� 2�

2
p

2 log2 n
CO

�
1

log n

�
:

Substituting this into the asymptotics of F.2�k`n/ from Proposition 1, we have

k` log 2C log F.2�k`n/ D �
p

2 log2 n.` � 1 � �/ log 2 �
3 log log2 n

4
CO.1/:
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On the other hand, from (71) and the estimates (by Proposition 1)

F 0.2�k`n/

F.2�k`n/
D O.�/ D O.eR/

and
F 00.2�k`n/

F.2�k`n/
D O.�2/ D O.e2R/;

we have
�n;k` D 2k`F.2�k`n/

�
1CO

�
n�1eO.

p
log n/

��
:

Consequently, if ` 6 0, then

�n;k` � 2k`F.2�k`n/ >
e�
p

2 log2 n.1C�/ log 2CO.1/

.log2 n/3=4
!1; (75)

and if ` > 2, then

�n;k` � 2k`F.2�k`n/ 6
e�
p

2 log2 n.1��/CO.1/

.log2 n/3=4
! 0: (76)

Now, by Lemma 13, we show thatX
`>1

2�`�n;k`C1
! 0; and �n;k0

!1; (77)

which will then prove the lemma.
Observe that the second limit of (77) follows directly from (75). We prove the first claim of (77),

beginning with the inequality log.2X log.2X // > log 2 C log.X log X / for X > 2, which in turn
implies that

log.2X log.2X //2 > log.X log X /2 C 2.log 2/ log.X log X /; .X > 2/:

Thus, it follows from (6) that, for small x (with X D 1=.x log 2/),

F.x=2/ D O
�

F.x/

X log X

�
D O

 
xF.x/

log. 1
x
/

!
:

Hence, if 2�kn! 0, then

�n;kC1 6 C2

2�kn

log.2k=n/
�n;k ; (78)

for some constant C2 > 0. From this, we have (for n sufficiently large)

�n;k` 6 �n;k2
; .` > 2/;

and thus X
`>1

2�`�n;k`C1
6 �n;k2

! 0:

This proves (77) and the lemma.
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Remark 5. Observe that the only missing case in (75) and (76) is ` D 1 for which we have

�n;k1
� 2k1F.2�k1n/ D

e�
p

2 log2 n log 2CO.1/

.log2 n/3=4
:

Thus, in this case, we have �n;k1
!1 if

� >
3 log2 log2 n

4
p

2 log2 n

�
1C

!n

log2 log2 n

�
;

where !n is any sequence tending to infinity, and �n;k1
! 0 if

� 6
3 log2 log2 n

4
p

2 log2 n

�
1 �

!n

log2 log2 n

�
;

where !n is as above. Finally, �n;k1
remains bounded if

� D
3 log2 log2 n

4
p

2 log2 n

�
1˙

O.1/
log2 log2 n

�
:

Thus we see that in almost all cases �n;k1
!1 and �n;k1C1 ! 0, meaning that the height is in almost

all cases asymptotic to kH C 1; see also [20] where this was observed.

6.2 Saturation Level

Recall that the saturation level Sn of a binary tree with n internal nodes is defined as the maximal level
with In;k D 2k , that is, up to level Sn the binary tree is complete.

Define kS as follows:
kS D dlog2 n � log2 log ne

which is at the lower boundary of the central range (13).

Theorem 8. The distribution of Sn is asymptotically concentrated on the two points kS � 1 and kS :

P.Sn D kS � 1 or Sn D kS / �! 1; .n!1/:

The proof of Theorem 8 is very similar to that of Theorem 4. The basic observation is that Sn < k

if and only if
P
`6k Bn;` > 0. In particular, if Bn;k > 0 then Sn < k. Hence, as above, a direct

application of the first and second moment method implies that

1 �
X
`6k

�n;` 6 P.Sn > k/ 6
�2

n;k

�2
n;k

:

By using similar arguments as above, Theorem 8 then follows from the limit results:

lim
n!1

P.Sn > kS � 1/ D 1 and lim
n!1

P.Sn > kS C 1/ D 0:

The only difference is that we now use the asymptotic expansion, for 2�kn!1,

�n;k � �
2
n;k �

2k

Qk

�
1 � 2�k

�n
:
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Appendix: Proof of Proposition 1

We give a detailed proof of Proposition 1, which for convenience is re-stated here.

Proposition 1. For each integer m > 0, the mth derivative of F satisfies

F .m/.z/ D
�

mC 1
2
C 1

log 2p
2� log2 �

exp

 
�
.log �/2

2 log 2
� P .log2 �/

!�
1CO

�
j log �j�1

��
; (79)

as jzj ! 0 in the sector j arg.z/j 6 ", where P .u/ is given in (7) and � solves the equation

�

log �
D

1

z log 2
;

satisfying j�j ! 1 as jzj ! 0.

Proof. Recall that

Q.s/ WD
Y
j>1

�
1 � 2�j s

�
and Qn WD

Y
16j6n

�
1 � 2�j

�
D

Q.1/

Q.2�n/
:

Also

F.z/ WD
X
j>0

.�1/j 2�.
j
2/

Qj Q1
e�2j z :

Since the Laplace transform L ŒF.z/I s� of F is given by

L ŒF.z/I s� D
Y
j>0

1

1C 2�j s
D

1

Q.�2s/
.<.s/ > �1/; (80)

we have the Laplace inversion formula

F.z/ D
1

2� i

Z 1Ci1

1�i1

ezs

Q.�2s/
ds; (81)

which is valid for z D r where r > 0 is real. We are interested in the asymptotics of F.r/ as r ! 0,
which is reflected by the large-s asymptotics of L ŒF.z/I s�. Our approach relies on the Mellin trans-
form techniques and the saddle-point method; see the survey paper [13] for more background tools and
applications on Mellin transform. In particular, taking logarithm on both sides of (80) (assuming that
1C 2�j s ¤ 0), we begin with the Mellin integral representation

log Q.�2s/ D
X
j>0

log.1C 2�j s/ D
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

� s�w

.1 � 2w/w sin�w
dw;

because the Mellin transform of log.1C s/ equalsZ 1
0

sw�1 log.1C s/ ds D
�

w sin�w
; .<.w/ 2 .�1; 0//:

Note that if w D uC iv and s D jsjeib with u; v; b real and jbj 6 � � ", thenˇ̌̌̌
�s�w

.1 � 2w/w sin�w

ˇ̌̌̌
D O

 
jsj�ue�jvj.��jbj/

j1 � 2wjjwj

!
;

37



provided that jwj stays away from the zeros of the denominator. Thus by standard arguments, we deduce
that (with ˇ WD 1

2 log 2
)

log Q.�2s/ D ˇ.log s/2 C
log s

2
C P .log2 s/C J.s/; (82)

when j arg.s/j 6 � � ", where the periodic function P .u/ has the Fourier series representation

P .u/ D
log 2

12
C

�2

6 log 2
�

X
j>1

cos.2j�u/

j sinh 2j�2

log 2

; (83)

which also defines an analytic function as long as j=.u/j 6 � � "; see Figure 5. Here the remainder
J.s/ satisfies

J.s/ D
1

2� i

Z 1
2
Ci1

1
2
�i1

� s�w

.1 � 2w/w sin�w
dw

D
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

� sw

.1 � 2�w/w sin�w
dw

D �
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

� .2s/w

.1 � 2w/w sin�w
dw

D � log Q

�
�

1

s

�
:

We thus have the identity:

Figure 5: P .u/ in the unit interval (left) and the fluctuating part of P .u/ (right).

Q.�2s/ D

p
s eˇ.log s/2CP.log2 s/

Q
�
�

1
s

� ;

or Y
j>0

�
1C

s

2j

�
D
p

s eˇ.log s/2CP.log2 s/
Y
j>1

1

1C 1
2j s

;

which indeed holds, by analytic continuation, as long as s 2 Cn .�1; 0�. In particular, for large jsj with
j arg.s/j 6 � � ",

J.s/ D �
1

s
C

1

6s2
�

1

21s3
C

1

60s4
CO

�
jsj�5

�
:

It follows, by substituting the asymptotic approximation (31), that

F.r/ D
1

2� i

Z 1Ci1

1�i1

s�
1
2 ers�ˇ.log s/2�P.log2 s/

�
1CO

�
jsj�1

��
ds:
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Now, the asympotitcs of F.r/ as r ! 0 is obtained by a standard application of the saddle-point
method. Therefore, we move the line of integration to <.s/ D �, where � > 0 solves the saddle-point
equation

log �
�
D

r

2ˇ
:

Note that this does not change the value of the integral which is either clear from the domain of the
Laplace transform of f .z/ or can also be seen directly since the integrand over the horizontal line
segments of distance T � 1 from the positive real axis (and contained in a cone with j arg.s/j 6 � � ")
is bounded above by

T �
1
2 er<.s/�ˇ.log T /2 ;

implying that the integral along such lines is of order

T �
1
2 exp.�ˇ.log T /2/;

which decays to 0 as T tends to infinity. Thus, (with s 7! �.1C i t/)

F.r/ D
�

1
2 e�r

2�

Z 1
�1

ei�tr�ˇ.log.�.1Cit///2�P.log2.�.1Cit///

p
1C i t

�
1CO

� 1

�j1C i t j

��
dt:

By a direct iterative argument, we obtain, with R WD 2ˇ
r

,

� D R

 
log RC log log RC

log log R

log R
�
.log log R/2 � 2 log log R

2.log R/2
CO

 
j log log Rj3

j log Rj3

!!
:

Then we split the integral into two parts:

F.r/ D
�

1
2 e�r

2�

�Z
jt j6t0

C

Z
jt j>t0

�
ei�tr�ˇ.log.�.1Cit///2�P.log2.�.1Cit///

p
1C i t

�
1CO

� 1

�j1C i t j

��
dt;

where t0 D .log �/�
2
5 . Since

<..log.�.1C i t///2/ D .log �/2 C .log �/ log.1C t2/C 1
4

log.1C t2/2 � arctan.t/2

is a monotonic function of jt j for fixed �, we haveZ
jt j>t0

ei�tr�ˇ.log.�.1Cit///2�P.log2.�.1Cit///

p
1C i t

dt

D O
 

e�ˇ.log�/2
Z 1

log.1Ct2
0
/

w�
1
2 e�ˇ.w log�C 1

4
w2/Cw dw

!

D O
�

e�ˇ.log�/2�".log�/
1
5

�
;

for some " > 0. Now by the local expansions

i�t r � ˇ.log.�.1C i t///2

D �ˇ.log �/2 � ˇ.log � � 1/t2
C

1
3
.2 log � � 3/i t3

CO
�
t4 log �

�
;

and

e�P.log2.�.1Cit///
D e�P.log2 �/

�
1 �

P 0.log2 �/

log 2
i t CO.jt j2/

�
;
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for jt j 6 t0, we deduce that the integral with jt j 6 t0 is asymptotic to

F.r/ D
�

1
2 e�r

2�

Z
jt j6t0

ei�tr�ˇ.log.�.1Cit///2�P.log2.�.1Cit///

p
1C i t

�
1CO

� 1

�j1C i t j

��
dt

D
�

1
2 e�r�ˇ.log�/2�P.log2 �/

2
p
�ˇ log �

�
1CO

�
.log �/�1

��
:

Similarly, we also have

F .m/.r/ D
�mC 1

2 e�r�ˇ.log�/2�P.log2 �/

2
p
�ˇ log �

�
1CO

�
m2.log �/�1

��
;

uniformly as r ! 0 and m D o.
p

log �/.

<.z/

=.z/

1

1Ci

1�i

'

'

C

Figure 6: The contour of integration in the integral representation of F.z/ when z is complex.

We now look at the situation when z D rei� with � ¤ 0 and j� j 6 ". Here, (81) is no longer valid
since the integral diverges. However, by the same idea of the Hankel contour used for extending the
Gamma function, we can deform the original integration line into the following one:

C WD fz D 1 � i C e�i.�
2
C'/u W u > 0g

[ fz D 1C iu W �1 < u < 1g [ fz D 1C i C ei.�
2
C'/u W u > 0g;

where " < '; see Figure 6. Then, we use (31) and make the substitution

F.z/ D
1

2� i

Z
C

s�
1
2 erei� s�ˇ.log s/2�P.log2 s/

�
1CO

�
jsj�1

��
ds

D
e�

1
2

i�

2� i

Z
ei�C

s�
1
2 ers�ˇ.log s�i�/2�P

�
log2.se�i� /

� �
1CO

�
jsj�1

��
ds;

where ei�C denotes the image of C under the mapping s 7! ei�s. Note that the solution to the saddle-
point equation

log �.z/
�.z/

D
z

2ˇ
D

ei�

R
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where R WD 2ˇ
r

, satisfies asymptotically for small r

�.z/ D Re�i�

�
log RC log log R � i� C

log log R � i�

log R
CO

 
j log log Rj2

j log Rj2

!�
:

In particular (� D �.jzj/),

�.z/ D � e�i�

 
1 �

i�

log R
C
.log log R � 1/i�

.log R/2
CO

 
j log log Rj2

j log Rj2

!!
: (84)

Since j� j 6 ", we now deform the integration contour again into the vertical line<.s/ D � (which again
does not change the value of the integral as can be seen by a similar argument as above) and proceed as
before:

F.z/ D
e�

1
2

i�

2� i

0@Z
sD��.1Cit/
jt j6t0

C

Z
sD��.1Cit/
jt j>t0

1A
s�

1
2 ers�ˇ.log s�i�/2�P.log2 s�i�/

�
1CO

�
jsj�1

��
ds: (85)

By the local expansion

r�i t � ˇ.log.� � .1C i t// � i�/2 D �ˇ.log � � i�/2 � 2ˇ� t � ˇ.log � � 1 � i�/t2

C
ˇ

3
.2 log � � 3 � 2i�/i t3

CO
�
.log �/t4

�
;

and the relations .a 2 R; b > 0/

1

2�

Z 1
�1

tme�at�bt2

dt D
e

a2

4b

2mC1
p
�b

X
06`6b 1

2
mc

m!am�2`

`!.m � 2`/!bm�l
.m D 0; 1; : : : /;

we deduce that the first integral on the RHS of (85) is asymptotic to

�
1
2 e
� 1

2
i��P

�
log2.�e�i� /

�
Cr��ˇ.log��i�/2� ˇ2�2

log��1�i�

2
p
�ˇ.log � � 1 � i�/

�
1CO

�
.log �/�1

��
D
�

1
2 e�

1
2

i��P
�

log2.�e�i� /
�
Cr��ˇ.log��i�/2

2
p
�ˇ log �

�
1CO

�
.log �/�1

��
:

By (84), the right-hand side is asymptotic to

�.z/
1
2 e�P.log2 �.z//Cz�.z/�ˇ.log�.z//2

2
p
�ˇ log �.z/

�
1CO

�
j log �.z/j�1

��
:

It remains to prove the smallness of the other integral in (85), which is bounded above byZ
sD��.1Cit/
jt j>t0

s�
1
2 ers�ˇ.log s�i�/2�P.log2.se�i� // ds

D O
�
�

1
2 er�

Z 1
t0

.1C t2/�
1
4 e�ˇ..log�C 1

2
log.1Ct2//2�.��arctan.t//2/ dt

�
:
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The factor .� � arctan.t//2 being bounded for t in the range of integration, we obtain

O
�
�

1
2 er�

Z 1
t0

.1C t2/�
1
4 e�ˇ.log�C 1

2
log.1Ct2//2 dt

�
D O

�
�

1
2 er��ˇ log.�/2�".log�/

1
5

�
;

which, by (84), is majorized by

O
�
j�.z/j

1
2 e<.z�.z/�ˇ log.�.z//2/�"j log�.z/j

1
5

�
:

We thus obtain the approximation

F.z/ D
�.z/

1
2 ez�.z/�ˇ.log�.z//2�P.log2 �.z//

2
p
�ˇ log �.z/

�
1CO

�
j log �.z/j�1

��
;

uniformly as jzj ! 0 in the sector j arg.z/j 6 ". The proof for the mth derivative of F.z/ is similar as
above.
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