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Abstract
We give a detailed analysis of the optimization time of the .1 C 1/-Evolutionary Algorithm
under two simple fitness functions (ONEMAX and LEADINGONES). The problem has been
approached in the evolutionary algorithm literature in various ways and with different degrees
of rigor. Our asymptotic approximations for the mean and the variance represent the strongest
of their kind. The approach we develop is based on an asymptotic resolution of the underlying
recurrences and can also be extended to characterize the corresponding limiting distributions.
While most of our approximations can be derived by simple heuristic calculations based on the
idea of matched asymptotics, the rigorous justifications are challenging and require a delicate
error analysis.
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(1C1)-evolutionary algorithm, probabilistic analysis, OneMax function, LeadingOnes function,
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1 Introduction

The last two decades or so have seen an explosion of application areas of evolutionary algorithms
(EAs) in diverse scientific or engineering disciplines. An EA is a random search heuristic,
using evolutionary mechanisms such as crossover and mutation, for finding a solution that often
aims at optimizing an objective function. EAs proved to be extremely useful for combinatorial
optimization problems because they can find good solutions for complicated problems using
only basic mathematical modeling and simple operators with reasonable efficiency; see Coello
Coello (2006); Deb (2001); Horn (1997) for more information. Although EAs have been widely
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applied in solving practical problems, the analysis of their performance and efficiency, which
often provides better modeling prediction for potential uses in practice, is much less developed,
and only computer simulation results are available for most of the EAs in use; see, for example,
Beyer et al. (2002); Droste et al. (1998); Garnier et al. (1999); He and Yao (2001, 2002). We
are concerned in this paper with a precise probabilistic analysis of a simple algorithm called
(1C 1)-EA.

A typical EA comprises several ingredients: the coding of solution, the population of in-
dividuals, the selection for reproduction, the operations for generating new individuals, and the
fitness function to evaluate the new individual, and the mathematical analysis of the time com-
plexity is often challenging mostly because the stochastic dynamics is difficult to capture. It
proves more insightful to look instead at simplified versions of the algorithm, seeking for a
compromise between mathematical tractability and general predictability. Such a consideration
was first attempted in Bäck (1992) and Mühlenbein (1992) in the early 1990’s for the (1C 1)-
EA, using only one individual with a single mutation operator at each stage. An outline of the
procedure is as follows.

Algorithm (1C 1)-EA

1. Choose an initial string x 2 f0; 1gn uniformly at random

2. Repeat until a terminating condition is reached

� Create y by flipping each bit of x (with probability p of flipping), each bit
independently of the others
� Replace x by y iff f .y/ > f .x/

Step 1 is often realized by tossing a fair coin for each of the n bits, one independently of
the others, and the terminating condition is either exhausting the number of assigned iterations
or reaching a state when no further improvement has been observed for a given amount of time.

Mühlenbein (1992) considered in detail the complexity of (1C1)-EA under the fitness func-
tion ONEMAX, which counts the number of 1s, namely, f .x/ D

P
16j6n xj . More precisely,

let Xn denote the time needed to reach the optimum value (often referred to as the optimization
time of ONEMAX). Then the expected time E.Xn/ was argued to be of order n log n, indicating
the efficiency of the (1 C 1)-EA. Bäck (1992) derived expressions for the success, failure and
stagnation probabilities of mutation. A finer asymptotic approximation of the form

E.Xn/ D en log nC c1nC o.n/; (1)

was derived by Garnier et al. (1999), where c1 � �1:9 when the mutation rate p equals 1
n

.
They went further by characterizing the limiting distribution of Xn�en log n

en
in terms of a log-

exponential distribution (which is indeed a double exponential or a Gumbel distribution). How-
ever, some of their proofs, notably the error analysis, seem incomplete (as indicated in their
paper). Thus a precise result such as (1) has remained obscure in the EA literature.

While the .1C1/-EA under simple fitness functions may seem too simplified to be of much
practical value, the study of its complexity continues to attract the attention in the literature (see,
for example, Auger and Doerr (2011); Neumann and Witt (2010) for more recent developments)
for several reasons. First, the .1 C 1/-EA (under some fitness functions) represents one of the
simplest models whose behavior is mathematically tractable. Second, the stochastic behaviors
under such a simple formulation often have, although hard to prove, a wider range of appli-
cability or predictability, either for more general models or for other meta-heuristics. Such a
complexity robustness can on the other hand be checked by simulations, and in such a case, the
theoretical results are useful in directing good guesses. For example, Neumann and Witt (2009)
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showed that 1-ANT behaves identically to the .1 C 1/-EA in some situations. Also Sudholt
and Witt (2010) showed a similar behavior translation into Particle Swarm Optimization algo-
rithms. Third, although tractable, most of the analyses of the .1 C 1/-EAs are far from being
trivial, and different mathematical tools have been introduced or developed for such a purpose,
leading to more general methodological developments, which may also be useful for the anal-
ysis of other EAs or heuristics. Fourth, from a mathematical point of view, few models can be
solved precisely, and those that can be often exhibit additional structural properties that are fun-
damental and may be of interest for further investigation. Finally, understanding the expected
complexity of algorithms may help in identifying hard inputs and in improving the efficiency of
the algorithm; see, for example, Doerr and Doerr (2014); Doerr et al. (2013).

The expected optimization time required by (1 C 1)-EA has undergone successive im-
provements, yet none of them reached the precision of Garnier et al.’s result (1); we summarize
in Figure 1 some recent findings; a brief account of earlier results can be found in Garnier et al.
(1999).

Droste et al. (2002) en.log nC 
 )

Doerr et al. (2011) en log n � 0:1369n

This paper D e.nC 1
2
/ log n � 1:89254 17883 : : : nCO.1/

Lehre and Witt (2014) en log n � 7:81791n �O.log n/

Doerr et al. (2011) en log n �‚.n/

Sudholt (2010) en log n � 2n log log n

Doerr et al. (2010a) .1 � o.1//en log n

Droste et al. (2002) 0:196n log n

ONEMAX

Figure 1: Some known lower (indicated by an up-arrow) and upper (marked by a down-arrow)
bounds for the optimization time of the .1C 1/-EA under ONEMAX.

Note that, by a result of Doerr et al. (2010b, 2012), which showed that ONEMAX is the
easiest function among all functions with a unique optimum (particularly, among all linear func-
tions), any lower bound for ONEMAX provides also a lower bound for linear functions. Thus
the precise asymptotic bounds we derive in this paper may also extend as effective lower bounds
for other fitness functions. On the other hand, Sudholt (2013) established that the (1C 1)-EA is,
for ONEMAX, the fastest non-adaptive EA that only uses standard bit mutations to create new
offspring, starting with a single search point.

In this paper we focus on the mutation rate p D 1
n

and prove that the expected number of
steps taken by the (1C 1)-EA to reach the optimum of ONEMAX function satisfies

E.Xn/ D en log nC c1nC 1
2
e log nC c2 CO

�
n�1 log n

�
; (2)
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where c1 and c2 are explicitly computable constants. More precisely,

c1 D �e
�

log 2 � 
 � �1

�
1
2

��
� �1:89254 17883 44686 82302 25714 : : : ;

where 
 D
R1

1

�
1
btc
�

1
t

�
dt � 0:57721 56649 is Euler’s constant, and

�1.z/ WD

Z z

0

�
1

S1.t/
�

1

t

�
dt; (3)

with S1.z/ an entire function defined by

S1.z/ WD
X
`>1

z`

`!

X
06j<`

.` � j /
.1 � z/j

j !
:

See (40) for an analytic expression and numerical value for c2. Note that from an algorithmic
point of view, a mutation rate� 1

n
leads to a complexity �.n log n/; see Witt (2013) for more

information.
These expressions, as well as the numerical values, are consistent with those given in Gar-

nier et al. (1999). From the expression of c1, it is clear that its characterization lies much deeper
than the dominant term en log n. Numerically, such a characterization is also important be-
cause log n is close to being a constant for moderate values of n, so that the overshoot (c1 being
negative) from the leading term en log n is not small in such a situation.

Finer properties such as more precise expansions for E.Xn/, the variance and limiting
distribution will also be established. In particular, the study of the variance provides a measure
of spread of the asymptotic distribution, and is in line with recent research on tail probabilities;
see, for example, Witt (2014); Zhou et al. (2012). The extension to p D c

n
does not lead to

additional new phenomena as already discussed in Garnier et al. (1999); it is thus omitted in this
paper.

Our approach relies essentially on the asymptotic resolution of the underlying recurrence
relation for the optimization time, and the method of proof is different from all previous ap-
proaches (including Markov chains, coupon collection, coupling, drift analysis, etc.). It consists
of three major steps depicted in the following diagram.

1. Recurrence
relation

2. Matched asymptotics
& Ansatz

3. Error analysis
& justification

2. Generating
function

3. Complex analysis
& asymptotics

ONEMAX

LEADINGONES

Briefly, due to the recursive nature of the algorithm, we first derive the corresponding re-
currence relation satisfied by the random variables that capture the remaining optimization time
from different states of the algorithm. In case when the recurrence can be solved by techniques
from analytic combinatorics through the use of generating functions, the corresponding asymp-
totic approximations can often be obtained by suitable complex-analytic tools such as singularity
analysis and saddle-point method; see the authoritative book Flajolet and Sedgewick (2009) for
more information. The analysis of (1 C 1)-EA under LEADINGONES belongs to such a case;
see Section 7 for details. On the other hand, when such a generating function-based approach
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fails to provide more manageable forms (in terms of functional or differential equations), a dif-
ferent route through “matched asymptotics” may be attempted, which is the one we adopt for
the analysis of the .1 C 1/-EA under ONEMAX. Roughly, we identify terms with the largest
contribution on the right-hand side and guess the right form (the Ansatz) by matching the asymp-
totic expansions on both sides of the recurrence. The Ansatz is, once postulated, often easily
checked by direct numerical calculations. The final stage is to justify the Ansatz by a proper er-
ror analysis, which often involves a delicate asymptotic analysis; see Wong (2014) for a recent
survey of techniques for recurrences of linear type. Our recurrences are, however, of a nonlinear
nature, and involve two parameters. On the other hand, these two approaches are not exclusive,
but instead complementary in many cases. For example, we rely on generating functions and
complex-analytic tools for the proof of several auxiliary results in this paper.

More precisely, we consider f .x/ D
P

16j6n xj and study the random variables Xn;m,
which counts the number of steps taken by (1C1)-EA before reaching the optimum state f .x/ D
n when starting with n�m 1s (namely, f .x/ D n�m). We will derive very precise asymptotic
approximations for each Xn;m, 1 6 m 6 n. In particular, the distribution of Xn;m is for large n

well approximated by a sum of m exponential distributions, and this in turn implies a Gumbel
limit law when m ! 1. Then the time for Xn to reach the optimum state by the .1 C 1/-EA
when starting with a random initial configuration (every bit being Bernoulli.1

2
/) can be readily

characterized because the binomial distribution is highly concentrated near the mean; see Table 1
for a summary of our major results.

In addition to its own methodological merit of obtaining stronger asymptotic approxima-
tions and potential use in other problems in similar EAs, our approach, to the best of our knowl-
edge, provides the first rigorous justification of the far-reaching results of Garnier et al. (1999)
more than seventeen years ago. It also sheds new light on further potential use of similar tech-
niques to related problems of a recursive nature.

This paper is organized as follows. We begin with deriving the recurrence relation satis-
fied by the random variables Xn;m (when the initial configuration is not random). From this
recurrence, it is straightforward to characterize inductively the distribution of Xn;m for small
1 6 m D O.1/. The hard case when m!1;m 6 n requires the development of more asymp-
totic tools, which we elaborate in Section 3. Asymptotics of the mean values of Xn;m and Xn are
presented in Section 4 with a complete error analysis. Section 5 then addresses the asymptotics
of the variance. Limit laws are established in Section 6 by an inductive argument and fine error
analysis. Finally, we consider briefly in Section 7 the optimization time of the .1C1/-EA for the
LEADINGONES problem. Denote the corresponding optimization time by Yn. We summarize
the major results in Table 1. Note that all results for Yn have previously been obtained in Ladret
(2005) and we will sketch a different self-contained method of proof for them.

Some technical material is collected in Appendices A–F.
Notation. Throughout this paper, all O-terms are with respect to n!1 unless otherwise

stated. We say that a quantity X D O.f .n;m// uniformly for m D O.1/ as n ! 1, or in
words “X D f .n;m/ uniformly for bounded m and large n”, if there exists a C > 0 such that
for any m > 0 there is an n0 > 0 such that jX j 6 Cf .n;m/ for all n > n0. Here n0 may
depend on C and m. The definition extends similarly when X D O.f .n;m; t// holds uniformly
for m; t D O.1/.

2 Recurrence and the limit laws of Xn;m when m D O.1/

In this section, we derive first a recurrence relation satisfied by the probability generating func-
tion Pn;m.t/ WD E

�
tXn;m

�
of Xn;m, where Xn;m denotes the number of steps taken by (1C1)-EA

to reach f .x/ D n for the first time when starting from the initial state f .x/ D n � m. From
this recurrence and starting with Pn;0.t/ D 1, we can then get closed-form expressions one

Evolutionary Computation Volume x, Number x 5
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Properties
Fitness

ONEMAX (Xn) LEADINGONES (Yn)

Mean � en log nC c1n e�1
2

n2

Variance � �2

6
.en/2 � .2e C 1/en log n e2�1

8
n3

Limit law

Gumbel distribution

P
�

Xn

en
� log n

2
� �1.

1
2
/ 6 x

�
! e�e�x

Gaussian distribution

P

 
Yn�

e�1
2

n2q
e2�1

8
n3

6 x

!
!

1p
2�

R x

�1
e�

t2

2 dt

Approach Ansatz & error analysis Analytic combinatorics

Table 1: A summary of our findings for the time complexity of the .1C 1/-EA under ONEMAX
(Xn) and LEADINGONES (Yn) fitness function, respectively, when starting from a random initial
state and when the mutation probability is 1

n
. The constant c1 is defined in (2) and the function

�1 in (3). The symbol an � bn here means that the ratio an

bn
tends to 1 as n!1.

after another by iterating the recurrence, but the expressions soon become too cumbersome. We
then use a simple inductive argument to derive the corresponding limit laws when m remains
bounded, together with an asymptotic approximation to the mean and one to the variance. These
results not only reveal the complexity of the analytic problem when viewed from a generating
function perspective but also serve to introduce the prototype forms of the mean and variance
asymptotics, respectively, which we will examine in more detail later.

2.1 Recurrence for Pn;m.t/

Lemma 1. The probability generating function Pn;m.t/ satisfies the recurrence

Pn;m.t/ D
t
P

16`6m �n;m;`Pn;m�`.t/

1 �
�
1 �

P
16`6m �n;m;`

�
t

.1 6 m 6 n/; (4)

with Pn;0.t/ D 1, where

�n;m;` WD

�
1 �

1

n

�n

.n � 1/�`
X

06j6minfn�m;m�`g

�
n �m

j

��
m

j C `

�
.n � 1/�2j : (5)

The leading factor
�
1 � 1

n

�n in (5) is the origin of the pervasive presence of “e” in our
asymptotic approximations.

Proof. Start from the state f .x/ D n � m and run the two steps inside the loop of Algorithm
(1C1)-EA. The new state becomes y with f .y/ D n�mC` if j bits in the group fxi D 1g and
j C ` bits in the other group fxi D 0g toggled their values, where 0 6 j 6 minfn�m;m� `g

and ` > 0. Thus, the probability from state x to y is given by

�n;m;` D

X
06j6minfn�m;m�`g

�
n �m

j

��
1

n

�j �
1 �

1

n

�n�m�j �
m

j C `

��
1

n

�jC` �
1 �

1

n

�m�j�`

;

which is identical to (5). Since (see Figure 2.1)

Xn;m
d
D

(
1CXn;m�`; with probability �n;m;`; 1 6 ` 6 mI

1CXn;m; with probability 1 �
P

16`6m �n;m;`;
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Xn;m

n � m 1s
Xn;m�1

n � m C 1 1s
Xn;m�2

n � m C 2 1s
: : :

: : :

Xn;0

n 1s

optimum
state

1 �
P

16`6m

�n;m;`

�n;m;1

�n;m;2

�n;m;m

Figure 2: The transition of states and their probabilities.

where the symbol d
D denotes distributional equivalence, we see that

Pn;m.t/ D t
X

16`6m

�n;m;`Pn;m�`.t/C

�
1 �

X
16`6m

�n;m;`

�
tPn;m.t/; (6)

and this proves the lemma.

While this simple recurrence relation is not new in the EA literature (see, for example,
Bäck (1992); Garnier et al. (1999); He and Yao (2003)), tools have been lacking for a direct
asymptotic resolution, which we will develop in detail in this paper.

From a computational point of view (notably for higher moments), it is often preferable to
use the following recurrence because fewer terms depending on t are involved.

Corollary 1. For 1 6 m 6 nX
16`6m

�n;m;`

�
Pn;m.t/ � Pn;m�`.t/

�
D
�
1 � t�1

�
Pn;m.t/: (7)

Proof. This follows from dividing both sides of (6) by t and then rearranging terms there.

For convenience, define

ƒn;m WD

X
16`6m

�n;m;`;

which can be interpreted as the probability that a mutation is successful in increasing the fitness
(objective function value).

2.2 Xn;1: from geometric to exponential
As the first nontrivial case beyond Xn;0 D 0, here we study in detail Xn;1 or, equivalently,
Pn;1.t/. In this case,

ƒn;1 D �n;1;1 D
1

n

�
1 �

1

n

�n�1

;

so that, by (4),

Pn;1.t/ D

1
n

�
1 � 1

n

�n�1
t

1 �
�
1 � 1

n

�
1 � 1

n

�n�1
�
t
:

This is a standard geometric distribution Geo.p0/ (assuming only positive integer values) with
probability

p0 D
1

n

�
1 �

1

n

�n�1

D
1

en

�
1CO

�
1

n

��
:
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This implies that E.Xn;1/ D
1
p0
D en

�
1CO

�
1
n

��
, and it is natural to consider the normalized

random variable Xn;1

en
for which we have, by taking t D e

i�
en (� 2 R) and by using the expansions

eiu D 1CO.juj/ and eiu D 1C iuCO.u2/ for bounded u 2 R,

Pn;1

�
e

i�
en

�
D

1
en

�
1CO

�
1
n

���
1CO

�
j� j
n

��
1 �

�
1 � 1

en

�
1CO

�
1
n

����
1C i�

en
CO

�
�2

n2

��
D

1
en

�
1CO

�
1Cj� j

n

��
1

en
.1 � i�/CO

�
1C�2

n2

�
!

1

1 � i�
; (8)

as n ! 1, for bounded real � . Note that the error term for the last convergence is of the form
O
�

1C�2

nj1�i� j2

�
, which holds uniformly for bounded � , but we do not need this uniform estimate.

Also observe that 1
1�i�

is the characteristic function of an exponential distribution with param-
eter 1. The passage from the convergence of a sequence of characteristic functions to that of
the corresponding distribution functions can be justified by Lévy’s continuity theorem (van der
Vaart, 1998, ~2.3) or (Flajolet and Sedgewick, 2009, ~IX 4.2):

If the sequence of characteristic functions f'n.�/g of the random variables fXng con-
verges pointwise to '.�/ as n ! 1 for � 2 R, and '.�/ is continuous at zero, then
Xn converges in distribution to X whose characteristic function is '.�/.

This and (8) imply the convergence in distribution

Xn;1

en

d
�! Exp.1/;

where Exp.c/ denotes an exponential distribution with parameter c. Equivalently, this can be
rewritten as

lim
n!1

P
�

Xn;1

en
6 x

�
D 1 � e�x ;

for x > 0. Such a limit law indeed extends to the case when m D O.1/, which we formulate in
the next subsection.

2.3 The distribution of Xn;m when m D O.1/

Figure 3: Histograms of Xn;2j

en
for j D 1; : : : ; 4 (in left to right order) and n D 5; : : : ; 50 (in

topdown order when starting from the peak in each figure), and their corresponding limit laws.

Let H
.r/
m D

P
16j6m

1
jr denote the r -th order harmonic numbers and Hm D H

.1/
m . For

convenience, we define H
.r/
0 D 0.

8 Evolutionary Computation Volume x, Number x
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Theorem 1. Assume 1 6 m D O.1/. Then the time used by (1C 1)-EA to reach the optimum
state f .x/ D n, when starting from f .x/ D n�m, converges (after normalized by en) to a sum
of m exponential random variables

Xn;m

en

d
�!

X
16r6m

Exp.r/I (9)

moreover, the mean of Xn;m is asymptotic to enHm and the variance to .en/2H
.2/
m .

From the integral representation (by induction) for the moment generating function ofP
16r6m Exp.r/:Y

16r6m

1

1 � s
r

D

Z 1
0

m.1 � e�x/m�1ex.s�1/ dx .s < 1Im > 1/;

we see that the convergence in distribution (9) can alternatively be expressed in the more trans-
parent form

lim
n!1

P
�

Xn;m

en
6 x

�
D .1 � e�x/

m
.x > 0/I

see Figure 3 for some plots for the density functions of Xn;m.
Before proving this theorem, we derive a simple estimate for �n;m;`, which will be useful

in our analysis below.
Lemma 2. Assume 1 6 m D O.1/. Then

�n;m;` D

�
m

`

�
e�1n�`

�
1CO

�
m � `

n.`C 1/
C
`

n

��
.1 6 ` 6 m/; (10)

where the O-term holds uniformly in ` and m.

Proof. When ` D m

�n;m;m D

�
1 �

1

n

�n

n�m
D

�
m

m

�
e�1n�m

�
1CO

�
n�1

��
.m > 1/;

so (10) holds. Assume now 1 6 ` < m. By the sum definition (5) of �n;m;`, we see that when
m D O.1/, the binomial factor

�
m

jC`

�
is also bounded, and the other factors

�
n�m

j

�
.n � 1/�2j

decrease with j (for fixed n and m), which means that the largest term comes from j D 0, all
other terms being of a smaller order. More precisely, the term with j D 0 equals�

1 �
1

n

�n �
m

`

�
.n � 1/�` D

�
m

`

�
e�1n�`

�
1CO

�
`

n

��
;

and the contribution from the remaining terms (with j > 1) is bounded above byX
j>1

�
m

j C `

��
n �m

j

�
.n � 1/�2j�` 6

X
j>1

�
m

j C `

�
.n � 1/�j�`

j !

D

�
m

`C 1

�X
j>1

.n � 1/�j�`

j !
�

�
m

jC`

��
m
`C1

�
D

�
m

`C 1

�
.n � 1/�`

X
j>1

.n � 1/�j

j !

Y
16r<j

m � ` � r

`C 1C r

<

�
m

`C 1

�
.n � 1/�`

X
j>1

mj�1

j !.n � 1/j`j�1
:
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The last series then satisfiesX
j>1

mj�1

j !.n � 1/j`j�1
D O

�
1

n

X
j>0

1

j !

�m

n`

�j
�
D O

�
n�1

�
;

for 1 6 ` < m and m D O.1/. So we have for m; ` in the same rangeX
j>1

�
m

j C `

��
n �m

j

�
.n � 1/�2j�`

D O

��
m

`C 1

�
n�`�1

�
D O

�
m � `

n.`C 1/

�
m

`

�
n�`

�
:

Collecting these estimates, we then obtain (10).

Corollary 2. For 1 6 m D O.1/, the probability that a mutation succeeds in increasing the
fitness is asymptotic to X

16`6m

�n;m;` D
m

en

�
1CO

�m

n

��
; (11)

where the O-term holds uniformly in m.

Proof. By (10)X
16`6m

�n;m;` D e�1
X

16`6m

�
m

`

�
n�`

�
1CO

�
m � `

n.`C 1/
C
`

n

��

D
m

en
CO

0@ X
26`6m

�
m

`

�
n�` C

X
16`6m

�
m

`C 1

�
n�`�1

C

X
26`6m

�
m

`

�
`n�`�1

1A
D

m

en
CO

0@X
`>2

1

`!

�m

n

�`
C

1

n

X
`>1

`

`!

�m

n

�`1A
D

m

en
CO

�
m2

n2

�
;

from which (11) follows.

Proof of Theorem 1: Limit laws. Using the fact that
ˇ̌
Pn;m.e

it /
ˇ̌
6 1 for t 2 R (being a

characteristic function), we then deduce, by (4), (10) and (11), that

Pn;m

�
e

i�
en

�
D

�n;m;1e
i�
en Pn;m�1

�
e

i�
en

�
CO

�P
26`6m �n;m;`

�
1 �

�
1 � m

en

�
1CO

�
m
n

���
e

i�
en

D

m
en

�
1CO

�
m
n

���
1CO

�
j� j
n

��
Pn;m�1

�
e

i�
en

�
CO

�
m2

n2

�
m�i�

en
CO

�
m2C�2

n2

�
D

Pn;m�1

�
e

i�
en

�
1 � i�

m

 
1CO

 
m

nj1 � i�
m
j
C

mC j� j

n

!!
CO

 
m

nj1 � i�
m
j

!
:

Since Pn;m.s/ is an analytic function of s near unity and Pn;m.1/ D 1, there exists an interval
in which jP .eit /j > c for some c > 0. Thus we can rewrite the above relation as

Pn;m

�
e

i�
en

�
D

Pn;m�1

�
e

i�
en

�
1 � i�

m

.1C "m.�//;
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where

"m.�/ D O

�
mC j� j

n

�
;

the O-term holding uniformly for bounded j� j and 1 6 m D O.1/. By iterating this relation m

times using Pn;0.t/ D 1, we obtain

Pn;m

�
e

i�
en

�
D

0@ Y
16r6m

1

1 � i�
r

1A0@ Y
16`6m

.1C "`.�//

1A
D

0@ Y
16r6m

1

1 � i�
r

1A0@ Y
16`6m

�
1CO

�
`C j� j

n

��1A
D

0@ Y
16r6m

1

1 � i�
r

1A�1CO

�
m2 Cmj� j

n

��
; (12)

uniformly for bounded � and m D O.1/. This and Lévy’s continuity theorem (van der Vaart,
1998, ~2.3) imply (9).

Note that if we compute formally the Taylor expansion at � D 0 of the right-hand side of
the uniform asymptotic estimate (12), we obtain

Y
16r6m

1

1 � i�
r

D exp
�
Hmi� � 1

2
H .2/

m �2
CO

�
j� j3

��
;

so we expect that the mean and the variance of Xn;m

en
will be asymptotic to Hm and H

.2/
m , respec-

tively, which is true and in consistency with the results obtained by the Quasi-power framework
(see Hwang (1998) or (Flajolet and Sedgewick, 2009, Sec. IX.9)). For self-containedness and
to pave the way for more refined arguments later, we will instead prove these two estimates by
a direct, independent approach.

Proof of Theorem 1: Mean value. We now turn to the mean �n;m WD E.Xn;m/, which satis-
fies, by taking derivative with respect to t and then substituting t D 1 in (4), the recurrenceX

16`6m

�n;m;`

�
�n;m � �n;m�`

�
D 1: (13)

By the same reasoning used above for Pn;m.t/ based on (10), we see that the largest contribution
on the left-hand side comes from terms with ` D 1, and we expect the estimate

m

en
.�n;m � �n;m�1/ � 1;

or

�n;m � �n;m�1 C
en

m
;

which, by iteration, yields �n;m � enHm. The error analysis to justify this is not difficult but
less interesting. Isolating first the terms corresponding to ` D 1 and then rearranging all other
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terms, we get, again by (10),

�n;m � �n;m�1 D
1

�n;m;1

0@1 �
X

26`6m

�n;m;`.�n;m � �n;m�`/

1A
D

en

m

�
1CO

�m

n

��0@1CO

0@�n;m

X
26`6m

�
m

`

�
n�`

1A1A
D

en

m

�
1CO

�m

n

��
CO

�m

n
�n;m

�
: (14)

Thus we can rewrite this as

�n;m.1C "m/ D �n;m�1 C
en

m
.1C ım/ ;

where both "m; ım D O.m
n
/. Note that "m and ım may be negative. Rearranging this recurrence

as

�n;m D
�n;m�1

1C "m

C
en

m
�

1C ım

1C "m

:

A direct iteration gives, by �n;0 D 0,

�n;m D en
X

16`6m

1

`
.1C ı`/

Y
`6j6m

1

1C "j

D en
X

16`6m

1

`

�
1CO

�
`

n

���
1CO

�
m2

n

��
D enHm CO.m2Hm/:

This proves the required estimate for the mean when m D O.1/.

Proof of Theorem 1: Variance of Xn;m. To compute the variance, one may start with the
second moment and then consider the difference with the square of the mean; however, it is
computationally more advantageous to study directly the recurrence satisfied by the variances
themselves.

For that purpose, we begin with (7) and substitute t D es , obtainingX
16`6m

�n;m;`

�
Pn;m.e

s/ � Pn;m�`.e
s/
�
D .1 � e�s/Pn;m.e

s/:

To derive a recurrence satisfied by the variance, we consider the moment generating function for
the centered random variables Xn;m � �n;m

NPn;m.s/ WD Pn.e
s/e�s�n;m ;

which then satisfies the recurrenceX
16`6m

�n;m;`

�
NPn;m.s/ � NPn;m�`.s/e

�s.�n;m��n;m�`/
�
D .1 � e�s/ NPn;m.s/;

for 1 6 m 6 n with NPn;0.s/ D 1. Let �2
n;m D V.Xn;m/ D NP

00
n;m.0/ be the variance of Xn;m.

Then �2
n;m satisfies the recurrenceX

16`6m

�n;m;`

�
�2

n;m � �
2
n;m�`

�
D �1C

X
16`6m

�n;m;`

�
�n;m � �n;m�`

�2
: (15)
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Heuristically, the dominant terms on both sides come from ` D 1 when m D O.1/, and we
expect that (Hm �Hm�1 D

1
m

)

m

en

�
�2

n;m � �
2
n;m�1

�
�

m

en
�
.en/2

m2
;

or

�2
n;m � �

2
n;m�1 C

.en/2

m2
I

iterating this recurrence m � 1 times leads to the required estimate �2
n;m � e2H

.2/
m n2 for the

variance.
For the justification, we follow the same argument used above for �n;m. First, we rearrange

the terms in (15) as

�2
n;m � �

2
n;m�1 D .�n;m � �n;m�1/

2
�

1

�n;m;1

�

X
26`6m

�n;m;`

�n;m;1

�
�2

n;m � �
2
n;m�`

�
C

X
26`6m

�n;m;`

�n;m;1

�
�n;m � �n;m�`

�2
:

Then by the estimates (10) and (14), we obtain

�2
n;m � �

2
n;m�1 D

�en

m
CO.1CmHm/

�2

CO
� n

m

�
CO

�m

n
�2

n;m

�
CO

�
mnH 2

m

�
D

�en

m

�2

CO
�
mnH 2

m

�
CO

�m

n
�2

n;m

�
;

and we are led to the form

�2
n;m.1C "m/ D �

2
n;m�1 C

.en/2

m2
.1C ım/ ;

where "m D O
�

m
n

�
and ım D O

�
m3

n
H 2

m

�
when m D O.1/. By a direct iteration, we obtain

�2
n;m D .en/2

X
16`6m

1

`2
.1C ı`/

Y
`6j6m

1

1C "j

D .en/2
X

16`6m

1

`2

 
1CO

 
`3H 2

`

n

!!�
1CO

�
m2

n

��
D .en/2H .2/

m CO
�
nm2H 2

m

�
:

This implies the asymptotic estimate �2
n;m � .en/2H

.2/
m when m is bounded, and completes the

proof of Theorem 1.
To summarize, we saw that both the mean and the variance satisfy the same type of recur-

rence X
16`6m

�n;m;`

�
an;m � an;m�`

�
D bn;m;

with suitable initial conditions, for some given sequences bn;m. We also observe the transfer
between the asymptotics of bn;m and that of an;m

m D O.1/ W

(
bn;m � 1 H) an;m � enHm

bn;m �
.en/2

m2 H) an;m � .en/2H
.2/
m :
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Such a correspondence will be useful in guiding our guess of the right Ansatz to be explored
below when m lies in the most interesting range m � n (the symbol means that the left-hand
side is of the same growth order as the right-hand side).

The simple inductive argument we used here extends to a wider range than m D O.1/

(as obvious from the error terms established) but fails when, say m �
p

n= log n. In order to
cover the whole range 1 6 m 6 n, we will need more refined uniform estimates for the error
terms, which will be dealt with in Section 4. Some of the tools needed are developed in the next
section.

2.4 Asymptotic expansions and Ansätze for E.Xn;m/

Normalizing the mean values. Let�n;m WD E.Xn;m/ D P 0n;m.1/. For simplicity, we consider

��n;m WD
en

n
�nC1;m;

where en WD

�
1 � 1

nC1

�nC1

, so that ��n;m satisfies, by (13), the simpler-looking recurrence

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�
D

1

n
.1 6 m 6 n/; (16)

with ��
n;0
D 0, where

��n;m;` WD
�nC1;m;`

en

D

X
06j6minfnC1�m;m�`g

�
m

j C `

��
nC 1 �m

j

�
n�`�2j : (17)

From these relations, we obtain ��
n;1
D 1, and

��n;2 D
3n2 C n � 1

2n2 C 2n � 1
;

��n;3 D
22n6 C 40n5 � 19n4 � 42n3 C 14n2 C 15n � 6

.2n2 C 2n � 1/.6n4 C 12n3 � 7n2 � 9nC 6/
:

(18)

In general, the ��n;m’s are all rational functions of n but their expressions become long as m

increases. We thus turn to asymptotic approximation.

Asymptotic expansions for��n;m. Our uniform asymptotic approximation to��n;m was largely
motivated by intensive symbolic computations for small m. We briefly summarize them here,
which will also be crucial in specifying the initial conditions for the differential equations satis-
fied by the functions (�1; �2; : : : ) involved in the full asymptotic expansion of ��n;m; see (86).

Starting from the closed-form expressions (18), we readily obtain ��
n;0
D 0, ��

n;1
D 1, and

��n;2 D
3
2
� n�1

C
5
4

n�2
�

7
4

n�3
C

19
8

n�4
�

13
4

n�5
CO

�
n�6

�
;

��n;3 D
11
6
�

13
6

n�1
C

155
36

n�2
�

323
36

n�3
C

4007
216

n�4
�

2783
72

n�5
CO

�
n�6

�
:

Similarly, we have

��n;4 D
25
12
�

41
12

n�1
C

329
36

n�2
�

917
36

n�3
C

61841
864

n�4
�

19501
96

n�5
CO

�
n�6

�
;

��n;5 D
137
60
�

283
60

n�1
C

2839
180

n�2
�

19859
360

n�3
C

848761
4320

n�4
�

5107063
7200

n�5
CO

�
n�6

�
:

From these expansions, we first observe that the leading sequence is exactly Hm (H0 WD 0)

fHmgm>0 D

n
0; 1; 3

2
; 11

6
; 25

12
; 137

60
; 49

20
; � � �

o
:
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An Ansatz for small m. These also suggest the Ansatz

��n;m �
X
k>0

dk.m/

nk
;

for some functions dk.m/ of m. Using this form and the above expansions to match the unde-
termined coefficients of the polynomials (in m), we obtain successively

d0.m/ D Hm .m > 0/;

d1.m/ D Hm C
1
2
�

3
2

m .m > 1/;

d2.m/ D
2
3

Hm C
1

12
�

7
4

mC 11
12

m2 .m > 2/;

d3.m/ D
1
2

Hm C
7

24
�

575
432

mC 23
18

m2
�

283
432

m3; .m > 2/;

d4.m/ D
5

18
Hm �

59
720
�

3439
3456

mC 15101
11520

m2
�

19951
17280

m3
C

5759
11520

m4; .m > 4/:

So we observe the general pattern

��n;m �
X
k>0

1

nk

0@bkHm C

X
06j6k

$k;j mj

1A ;
for some explicitly computable sequence bk and coefficients$k;j . A crucial complication arises
here: the general form of each dk.m/ holds only for m > 2bk

2
c, and correction terms are needed

for smaller m. For example,

d1.m/ D Hm C
1
2
�

3
2

m � 1
2

Jm D 0K; .m > 0/

d2.m/ D
2
3

Hm C
1

12
�

7
4

mC 11
12

m2
�

1
12

Jm D 0KC 1
12

Jm D 1K; .m > 0/;

where we use the Iverson bracket notation JAK D 1 if A holds, and 0, otherwise. It is such a
complication that makes the determination of smaller-order terms more involved.

An Ansatz for large m. All the expansions here hold only for small m. When m grows, we
write m D ˛n and see that

n�k
X

06j6k

$k;j mj
D $k;k˛

k
C$k;k�1

˛k�1

n
C smaller order terms;

and it is exactly this form that motivated naturally our choice of the Ansatz

��n;m � Hm C �.˛/; (19)

for some function �.˛/. This will be seen to be equivalent to the approximation �n;m �

en.Hm C �.˛//. Note that the omnipresence of the harmonic numbers Hm may be traced
to the asymptotic estimate (10); see also Lemma 4.

Formal calculations. The next formal question then is how to guess this function � (before
proving all assumptions)? Here is the quick sketch of our ideas.

Substituting formally (19) into (16) using the expansions Hm � Hm�` �
`
m

(see Corol-
lary 6) and �.m

n
/ � �.m�`

n
/ � �0.˛/ `

n
(see Lemma 5), we expect that

1

n
D

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�
�

X
16`6m

��n;m;`

�
`

m
C �0.˛/

`

n

�

D
1

n

�
1

˛
C �0.˛/

� X
16`6m

`��n;m;`:

(20)
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We are then led to the study of sums of the form
P

16`6m a`�
�
n;m;`

for a given sequence a`. As
we will see in the next section

P
16`6m `�

�
n;m;`

� S1.˛/ (defined in the introduction), so that
� has to satisfy the differential equation

�0.z/ D
1

S1.z/
�

1

z
:

Choosing properly the initial condition, we then conclude that � D �1, as defined in (3). The
justification of all these estimates, as well as more refined expansions, turns out to be highly
nontrivial and requires several asymptotic tools that will be developed in the following two
sections.

3 Asymptotics of sums of the form
P

16`6m a`�
�
n;m;`

Sums of the form
A�n;m WD

X
16`6m

a`�
�
n;m;`

will appear frequently in our analysis. We thus digress in this section to develop tools for
deriving the asymptotic behaviors of such sums. We consider first general a` and then specialize
the discussion to the cases when a` D `

r for r 2 ZC.
Throughout this paper, we use the abbreviation

˛ WD
m

n
:

3.1 Asymptotics of A�n;m

Observe that, by (10), we see that most contribution to A�n;m comes from small `, say ` D o.m/,
provided that a` does not grow too fast. Indeed, we expect more precisely that

A�n;m D
X
j>0

�
n �mC 1

j

�
n�j

X
j<`6m

a`�j

�
m

`

�
n�`

D

X
j>0

.n �mC 1/.n �m/ � � � .n �m � j C 2/

j ! nj

X
j<`6m

a`�j m � � � .m � `C 1/

`! n`

D

X
j>0

1

j !

Y
06k<j

�
1 � ˛ �

k � 1

n

� X
j<`6m

a`�j

`!

Y
06k<`

�
˛ �

k

n

�

�

X
j>0

.1 � ˛/j

j !

X
`>j

a`�j

˛`

`!
:

(21)

The last step can be justified by bounding all errors involved, but the calculations become messy,
especially when one needs more terms in the expansion. We use instead a more elegant approach
via generating functions.

Lemma 3. Let fa`g`>1 be a given sequence whose generating function A.z/ D
P
`>1 a`z

`�1

has a nonzero radius of convergence in the complex z-plane. Then

A�n;m D
QA0.˛/C

QA1.˛/

n
CO

�
˛n�2

�
; (22)
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where QA0.˛/ and QA1.˛/ are entire functions of ˛ defined by

QA0.˛/ WD
X
`>1

˛`

`!

X
06j<`

a`�j

.1 � ˛/j

j !
; (23)

and (a0 WD 0)

QA1.˛/ WD �
1

2

X
`>1

˛`

`!

X
06j<`

.1 � ˛/j

j !

�
.` � j /a`C1�j � .`C 2 � j /a`�1�j C a`�j

�
: (24)

Proof. Observe that the sum on the left-hand side of (17) is itself a Cauchy product, namely,

��n;m;` D
X

06j6m�`

�
m

m � ` � j

�
n�`�j

�

�
nC 1 �m

j

�
n�j :

Let Œzn�f .z/ denote the coefficients of zn in the Taylor expansion of f .z/. Then the right-hand
side equals

Œzm�`�
�
z C

1

n

�m �
1C

z

n

�nC1�m

D Œz�`�
�
1C

1

nz

�m �
1C

z

n

�nC1�m

:

Our analytic proof then starts from the relation (Cauchy’s integral representation)

��n;m;` D
1

2� i

I
jzjDc

z`�1
�
1C

1

nz

�m �
1C

z

n

�nC1�m

dz; (25)

where c > 0. The relation (25) holds a priori for 1 6 ` 6 m, but the right-hand side becomes
zero for ` > m. It follows, by multiplying both sides by a` and summing over 1 6 ` 6 m for
the left-hand side and over all ` > 1 for the right-hand side, that

A�n;m D
1

2� i

I
jzjDc

A.z/
�
1C

1

nz

�m �
1C

z

n

�nC1�m

dz;

where 0 < c < %, % being the radius of convergence of A. By the asymptotic expansion�
1C

1

nz

�m�
1C

z

n

�nC1�m

D exp
�
˛n log

�
1C

1

nz

�
C .1 � ˛/n log

�
1C

z

n

���
1C

z

n

�
D e

˛
z C.1�˛/z

�
1 �

1

2n

�
.1 � ˛/z2

� 2z C
˛

z2

�
CO

�
.1 � ˛/2jzj4 C 1C jzj�4

n2

��
;

for large n and bounded jzj and 1
jzj

, where the O-term holds uniformly for z on the integration
path, and the integral representations

QA0.˛/ D
1

2� i

I
jzjDc

A.z/e
˛
z C.1�˛/z dz;

QA1.˛/ D �
1

4� i

I
jzjDc

A.z/
�
.1 � ˛/z2

� 2z C
˛

z2

�
e
˛
z C.1�˛/z dz;

(26)

we deduce (22). The expression (23) is then obtained by first expanding e
˛
z (in decreasing

powers of z) and then by integrating term-by-term:

QA0.˛/ D
X
`>0

˛`

`!
�

1

2� i

I
jzjDc

z�`�1A.z/e.1�˛/z dz D
X
`>0

˛`

`!
� Œz`�A.z/e.1�˛/z :
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Note that a0 D 0. For (24), we apply an integration by parts using the relation

d
dz

e
˛
z C.1�˛/z D

�
�
˛

z2
C 1 � ˛

�
e
˛
z C.1�˛/z ;

and the decomposition

.1 � ˛/z2
� 2z C

˛

z2
D �.1 � z2/

�
�
˛

z2
C 1 � ˛

�
C 1C 2z;

giving

QA1.˛/ D �
1

4� i

I
jzjDc

�
.1 � z2/A0.z/C .1 � 4z/A.z/

�
e
˛
z C.1�˛/z dz: (27)

Substituting the series expansion A.z/ D
P
`>1 a`z

`�1 and then integrating term by term, we
get (24).

When ˛ tends to the two boundaries 0 and 1, we have

A�n;m �
QA0.˛/ �

8̂<̂
:

ak

k!
˛k ; as ˛ ! 0C;X

`>1

a`

`!
; as ˛ ! 1�;

where k is the smallest integer such that ak ¤ 0.

3.2 Asymptotics of
P

16`6m `
r��

n;m;`

We now discuss special sums of the form (when a` D `
r ) and define

ƒ.r/n;m WD

X
16`6m

`r�n;m;` .r > 0/;

which will be repeatedly encountered below. Define also ƒ� .r/n;m WD
P

16`6m `
r��

n;m;`
, so that

ƒ
.r/
n;m D enƒ

� .r/
n�1;m

. For convenience, we write

ƒ�n;m WD ƒ
� .0/
n;m D

X
16`6m

��n;m;`: (28)

Let Ik denote the modified Bessel functions

Ik.2z/ WD
X
j>0

z2jCk

j !.j C k/!
.k 2 Z/:

We now show that QA0.˛/ D Sr .˛/ and QA1.˛/ in (22) can be expressed in terms of linear
combination of Sr and Ik .

Corollary 3. Uniformly for 1 6 m 6 n

ƒ� .r/n;m D Sr .˛/C
Ur .˛/

n
CO

�
˛n�2

�
; (29)

for r D 0; 1; : : : , where both Sr and Ur are entire functions given by

Sr .z/ D
X
`>1

z`

`!

X
06j<`

.` � j /r
.1 � z/j

j !
;
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and

Ur .˛/ D

8̂̂̂<̂
ˆ̂:

S0.˛/

2
�

3

2

r
˛

1 � ˛
I1

�
2
p
˛.1 � ˛/

�
; if r D 0

�
1

2

 
.2r � 1/Sr .˛/C

X
06j<r

�
r

j

�
j � .�1/r�j .2r C 2 � 3j /

r C 1 � j
Sj .˛/

!
; if r > 1:

(30)

In particular,

U1.˛/ D �S0.˛/ �
1
2
S1.˛/

U2.˛/ D S0.˛/ � 2S1.˛/ �
3
2
S2.˛/

U3.˛/ D �S0.˛/C 2S1.˛/ � 3S2.˛/ �
5
2
S3.˛/:

(31)

These are sufficient for our uses.

Proof. By applying (22), (23), and (26) with a` D `
r , we see that

QA0.˛/ D Sr .˛/ D
1

2� i

I
jzjDc

Er .z/e
˛
z C.1�˛/z dz .r D 0; 1; : : : /; (32)

where Er .z/ WD
P
`>1 `

r z`�1. It remains to simplify QA1.˛/. To that purpose, we start with the
integral representation (see (27))

Ur .˛/ D �
1

4� i

I
jzjDc

�
.1 � z2/E0r .z/C .1 � 4z/Er .z/

�
e
˛
z C.1�˛/z dz; (33)

When r D 0, we have E0.z/ D .1 � z/�1. Thus

U0.˛/ D
1

2� i

I
jzjDc

�
1

2.1 � z/
�

3

2

�
e
˛
z C.1�˛/z dz

D
S0.˛/

2
�

3

2

X
`>1

˛`.1 � ˛/`�1

`!.` � 1/!
;

which proves (30) for r D 0. For r > 1, we have

.1 � z2/E0r .z/C .1 � 4z/Er .z/

D .1 � z2/
X
`>2

`r .` � 1/z`�2
C .1 � 4z/

X
`>1

`r z`�1

D

X
`>1

`.`C 1/r z`�1
�

X
`>2

.`C 2/.` � 1/r z`�1
CEr .z/

D

X
06j6r

�
r

j

�
EjC1.z/ �

X
06j6r

�
r

j

�
.�1/r�j

�
EjC1.z/C 2Ej .z/

�
CEr .z/:

From this and the relation (33), we obtain (30). Note that the coefficient of ErC1.z/ is zero.

The Corollary implies specially that

ƒ.r/n;m D e�1Sr .˛/
�
1CO

�
n�1

��
; (34)
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uniformly for 1 6 m 6 n. Since Sr .z/ D z CO.jzj2/ as jzj ! 0, we have the uniform bound

ƒ� .r/n;m � Sr .˛/ � ˛ .1 6 m 6 n/; (35)

meaning that the ratio of ƒ
� .r /
n;m

˛
remains bounded away from zero and infinity for all m in the

specified range.
The following expansions for Sr .z/ and Ur .z/ as z ! 0 will be used later

Sr .z/ D z C
2r C 1

2
z2
CO.z3/;

Ur .z/ D �
2r C 1

2
z CO.z2/;

(36)

for r D 0; 1; : : : . See also Appendix A for other properties of Sr .˛/.

4 The expected values of Xn;m and their asymptotics

We will derive in this section a more precise expansion for the mean �n;m WD E.Xn;m/.

Theorem 2. The expected optimization time of the .1 C 1/-EA when starting with n � m 1s
satisfies the asymptotic approximation

E.Xn;m/

en
D Hm C �1.˛/C

Hm � �1.˛/C 2�2.˛/C 2˛�01.˛/

2n
CO

�
n�2Hm

�
; (37)

uniformly for 1 6 m 6 n, where �1 is defined in (3) and �2 is an analytic function defined by

�2.˛/ D
1

2
�

Z ˛

0

�
S2.x/S

0
1
.x/

2S1.x/3
�

S0.x/

S1.x/2
�

1

2S1.x/
�

1

2x2
C

1

x

�
dx; (38)

the integrand having a removable singularity at x D 0.

As discussed above, we consider for simplicity ��n;m WD
en

n
�nC1;m, and we will prove the

slightly simpler expansion

��n;m D Hm C �1.˛/C
Hm C �2.˛/

n
CO

�
n�2Hm

�
; (39)

for 1 6 m 6 n, which is identical to (37) by using the relation �n;m D
n�1
en�1

��n�1;m and the
asymptotic expansions

�1

� m

n � 1

�
D �1.˛/C

˛�0
1
.˛/

n
CO

�
n�2

�
;

and

e�1

�
1 �

1

n

��n

D 1C
1

2n
CO

�
n�2

�
:

See Figure 4 for graphic renderings. More figures are collected in Appendix C.
Our analysis will be based on the recurrence (16) for ��n;m and use the idea of successive

asymptotic iteration (or bootstrapping; see de Bruijn (1981) or Flajolet and Sedgewick (2009)),
which proceeds as follows. We consider first the difference ��n;m �Hm ��1.˛/, which satisfies
itself a recurrence of the same type but with a different non-homogeneous part. We bound
this difference by Lemma 4 and a transfer technique, which deduces a uniform bound for the
difference from that of the non-homogeneous part. Then we repeat the same procedure by
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Figure 4: Left: the differences ��n;m � .Hm C �1.˛/C
HmC�2.˛/

n
/ for 1 6 m 6 n (normalized

to the unit interval) and n D 10; : : : ; 50 (in top-down order); Right: the normalized differences
n2

Hm
.��n;m � .HmC �1.˛/C

HmC�2.˛/
n

// for n D 10; : : : ; 50 (in bottom-up order when viewing
from the point .1; 0/.

subtracting more terms and get a refined expansion. This same procedure can then be extended
and yields a more precise expansion; see Appendix D.

Instead of starting from a state with a fixed number of 1s, the first step of the Algorithm
(1C 1)-EA described in the introduction corresponds to the situation when the initial state f .x/
(the number of 1s) is not fixed but random. Assume that this input follows a binomial distribution
of parameter 1 � � 2 .0; 1/ (each bit being 1 with probability 1 � � and 0 with probability �).
Denote by Xn the number of steps taken by (1C1)-EA to reach the optimum state. The following
result describes precisely the asymptotic behavior of the expected optimization time.
Theorem 3. The expected value of Xn satisfies

E.Xn/

en
D log �nC 
 C �1.�/C

log �nC 
 C c3

2n
CO

�
log n

n2

�
;

where c3 WD 1 � �1.�/C 2��0
1
.�/C �.1 � �/�00

1
.�/C 2�2.�/.

Note that e.log �C 
 C �1.�// is an increasing function of �, which is consistent with the
intuition that it takes less steps to reach the final state if we start with more 1s (small � means
1 � � closer to 1, or 1 occurring with higher probability). Also

1C 2��01.�/C �.1 � �/�
00
1 .�/ D �2C

1

�
C

2�

S1.�/
� �.1 � �/

S 0
1
.�/

S1.�/2
:

The constant c2 in (2) can now be computed and has the value (� D 1
2

)

c2 D
e

2

 
� log 2C 
 � �1.

1
2
/C 2�2.

1
2
/C

1

S1.
1
2
/
�

S 0
1
.1

2
/

4S1.
1
2
/2

!
� 0:59789875 : : : : (40)

Figure 5: S1.x/ has an infi-
nite number of zeros on R�.

Numerically, to compute the value of �1.˛/ for ˛ 2 .0; 1�,
the most natural way consists in using the Taylor expansion

1

S1.x/
�

1

x
D

X
j>0

�j xj ;

and after a term-by-term integration

�1.˛/ D
X
j>0

�j

j C 1
˛jC1:
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While S1.x/ is an entire function with rapidly decreasing
coefficients, such an expansion converges slowly when ˛ is
close to 1, the main reason being that the smallest nonzero jxj
for which S1.x/ D 0 occurs when x � �1:0288, implying that the radius of convergence of
this series is only slightly larger than unity. Note that S1.0/ D 0 but the simple pole is removed
by subtracting 1

x
. A better idea is then expanding 1

S1.x/
�

1
x

at x D 1 and then integrating
term-by-term, giving

�1.˛/ D
X
j>0

� 0j

j C 1

�
1 � .1 � ˛/jC1

�
where

1

S1.1 � x/
�

1

1 � x
D

X
j>0

� 0j xj :

This expansion is numerically more efficient and stable because of better convergence when
˛ 2 Œ0; 1�. The same technique also applies to the calculation of �2 and other functions in this
paper.

A direct consequence of the precise estimates we derived is the following asymptotic ap-
proximation measuring the difference between E.Xn/ (random input) and E.Xn;�nCo.n// (fixed
input), which improves the O.1/-bound for � D 1

2
derived in the recent paper Doerr and Doerr

(2014).

Corollary 4. The difference between E.Xn/ and E.Xn;�nCo.n// satisfies

E.Xn/ � �n;�n�#n
D

e

2�

�
2.1C ��01.�//#n C �

2.1 � �/�001 .�/ � 1C �
�

C
e

2n

�
�2#

2
n C �1#n C �0

�
CO

�
j#nj

3 C 1

n2

�
;

(41)

uniformly for #n D o.n/, where

�2 WD
1 � �2�00

1
.�/

�2
; �1 WD

2�3�00
1
.�/C �2�0

1
.�/C 2�2�0

2
.�/ � 1C �

�2

�0 D .1 � �/

 
�2.1C �/�

.4/
1 .�/

4
C
�.1C �/�0001 .�/

3
C

3��001 .�/

2
C ��002 .�/C

1 � 2�

6�2

!
:

Note that the dominant term on the right-hand side is bounded when #n is so. Also the
coefficients here can be completely written in terms of the Sr .�/’s; for example

1

2�

�
2.1C ��01.�//#n C �

2.1 � �/�001 .�/ � 1C �
�
D

#n

S1.�/
�
�.1 � �/S 01.�/

2S1.�/2
:

Since the proof is straightforward either from the expansions in Theorems 2 and 3 or by
the same method of proof of Theorem 3, we omit the details, which can be readily manipulated
by standard symbolic computation tools.

4.1 More asymptotic tools
We develop here some other asymptotic tools that will be used in proving Theorem 2.

The following lemma is very helpful in obtaining error estimates to be addressed below. It
also sheds new light on the occurrence of the harmonic numbers Hm in (39).

Lemma 4. Consider the recurrenceX
16`6m

��n;m;`.an;m � an;m�`/ D bn;m .m > 1/;
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Figure 6: The differences E.Xn/ � E.Xn;b n
2
c/ when � D 1

2
for n D 2; : : : ; 100 (left) and the O-

term of (41) (right). The blue curves (left) correspond to the right-hand side of (41) without the
O-term. The periodic fluctuations come from #n D f

n
2
g, where fxg denotes the fractional part

of x. Numerically, when n is even (odd), the first term on the right-hand side is approximately
�1:00875 (0:47564). Note here that Xn;b n

2
c starts with dn

2
e 1s.

where bn;m is defined for 1 6 m 6 n and n > 1. Assume that jan;0j 6 d for n > 1, where
d > 0. If jbn;mj 6

c
n

holds uniformly for 1 6 m 6 n and n > 1, where c > 0, then

jan;mj 6 cHm C d .0 6 m 6 n/:

Proof. The result is true for m D 0. For m > 1, we start from the simple inequality

ƒ�n;m D
X

16`6m

��n;m;` >
m

n
.1 6 m 6 n/;

because all terms in the sum expression (17) are positive and taking only one term (j D 0 and
` D 1) gives the lower bound. Then, by the induction hypothesis,

jan;mj 6
jbn;mj

ƒ�n;m
C jan;m�1j

6
c

n
�

n

m
C cHm�1 C d

D cHm C d;

proving the lemma.
Applying this lemma to the recurrence (16), we then get a simple upper bound for ��n;m.

Corollary 5. For 0 6 m 6 n, the inequality ��n;m 6 Hm holds.

Lemma 5. If � is a C 2Œ0; 1�-function (twice continuously differentiable in the unit interval),
then X

16`6m

��n;m;`

�
�
�m

n

�
� �

�
m � `

n

��
D
�0 .˛/

n

X
16`6m

`��n;m;` CO
�
n�2

�
;

uniformly for 1 6 m 6 n.

Uniformity of the estimate in the lemma and the asymptotic expansion (29) play a crucial
rôle in our analysis.
Proof. A direct Taylor expansion with remainder gives

�.˛/ � �
�
˛ � `

n

�
D �0.˛/ `

n
CO

�
`2n�2

�
;
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uniformly for 1 6 ` 6 m, since �00.t/ D O.1/ for t 2 Œ0; 1�. The lemma follows from the
estimates (29).

The approximation can be easily extended and refined if more smoothness properties of �
are known, which is the case for all functions appearing in our analysis (they are all C1Œ0; 1�).

Another standard technique we need is Stirling’s formula for the factorials

log n! D log�.nC 1/ D
�
nC 1

2

�
log n � nC 1

2
log.2�/C 1

12
n�1
CO

�
n�3

�
; (42)

where � denotes Euler’s Gamma function.

4.2 Proof of Theorem 2
Our method of proof consists in three steps: first a heuristic calculation to get the dominant term,
then an error analysis to justify the dominant term with an explicit error term, and finally another
refined analysis (of the same inductive argument) to complete the proof of Theorem 2. The main
idea of the error analysis is to express the error term as another recurrence of the same type but
with a different non-homogeneous part. Then showing the smallness of the non-homogeneous
part will then lead to the required order estimate for the error.

We start with the following identity whose proof is straightforward.

Lemma 6. For a given sequence f .k/, letr denote the backward difference operatorrf .k/ D
f .k/ � f .k � 1/. Then for 0 6 ` 6 m

f .m/C f .m � 1/C � � � C f .m � `C 1/ D
X

16k6m

�
`

k

�
.�1/k�1

r
k�1f .m/:

Note that the sum vanishes for k > `. Take f .k/ D 1
k

. Then we obtain the following
identity, which is itself an asymptotic expansion for large m (and ` D o.m/).

Corollary 6. For m > 1 and 0 6 ` 6 m,

Hm �Hm�` D

X
16k6m

`.` � 1/ � � � .` � k C 1/

km.m � 1/ � � � .m � k C 1/
:

Formal calculations. Assuming the validity of (19), we can make the formal calculations in
(20) more precise by (29), (39), Lemma 5, and Corollary 6, obtaining

1

n
D

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�
�

1

n

�
1

˛
C �0.˛/

�
S1.˛/:

Thus we see that � satisfies

�0.z/ D
1

S1.z/
�

1

z
:

We now specify the initial condition �.0/. Since the postulated form (19) holds for 1 6 m 6 n

(indeed also true for m D 0), we take m D 1 and see that �.0/ D 0 because ��n;1 D 1. This
implies that � D �1. The first few terms in the Taylor expansion of �1 read as follows.

�1.z/ D �
3
2
z C 11

12
z2
�

283
432

z3
C

5759
11520

z4
�

57137
144000

z5
C

2353751
7257600

z6
C � � � ; (43)

which can then be checked with the explicit expressions of ��n;m for small m (see Section 2.4).
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Error analysis. To justify the form (19) (with � D �1), we consider the difference

��n;m WD �
�
n;m �Hm � �1.˛/;

which satisfies, by (16), the recurrenceX
16`6m

��n;m;`

�
��n;m ��

�
n;m�`

�
D E1.n;m/; (44)

where
E1.n;m/ WD

1

n
�

X
16`6m

��n;m;`

�
Hm �Hm�` C �1.˛/ � �1

�
˛ � `

n

��
:

We first show that E1 D O
�
n�2

�
, and this will imply, by Lemma 4, the estimate ��n;m D

O.n�1Hm/.
By the asymptotic relation (29) with r D 1 and the definition of �1, we have

1

n
D

X
16`6m

��n;m;`

�
`
m
C �01.˛/

`
n

�
CO

�
n�2

�
;

and thus

E1.n;m/ D �
X

16`6m

��n;m;`

�
Hm �Hm�` �

`
m
C �1.˛/ � �1

�
˛ � `

n

�
� �01.˛/

`
n

�
CO

�
n�2

�
By Lemma 5, we see thatX

16`6m

��n;m;`

�
�1.˛/ � �1

�
˛ � `

n

�
� �01.˛/

`
n

�
D O

�
n�2

�
;

uniformly for 1 6 m 6 n. On the other hand, we have the upper bounds (see Corollary 6)

Hm �Hm�` �
`
m
D

(
O
�
`2m�2

�
; if ` D o.m/;

O.Hm/; for 1 6 ` 6 m:

Note that the first estimate is only uniform for 1 6 ` D o.m/. When ` is close to m, say
m� ` D O.m1�"/, where " 2 .0; 1/, the left-hand side blows up with m but the right-hand side
O
�
`2m�2

�
remains bounded. Thus we split the sum at d

p
me and then obtain (Hm �Hm�` �

`
m
D 0 when ` D 1)X

16`6m

��n;m;`

�
Hm �Hm�` �

`
m

�

D O

0@m�2
X

26`6d
p

me

`2��n;m;` CHm

X
d
p

meC16`6m

��n;m;`

1A : (45)

Now, by (17) and an analysis similar to that in (21),

m�2
X

26`6d
p

me

`2��n;m;` D O

0@m�2
X
j>0

.1 � ˛/j

j !

X
jC26`6m

.j C `/2˛`

`!

1A
D O

�
m�2˛2

�
D O

�
n�2

�
I

(46)
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similarly,

Hm

X
p

mC16`6m

��n;m;` D O

0@Hm

X
j>0

.1 � ˛/j

j !

X
jC
p

mC16`6m

˛`

`!

1A
D O

0@Hm

X
`>
p

mC1

˛`

`!

1A :
Let M WD d

p
me C 1. Then

Hm

X
`>
p

mC1

˛`

`!
D Hm

˛M

M !

X
`>0

˛`

.M C 1/ � � � .M C `/
D O

 
Hm˛

p
mC1

�.
p

mC 2/

!
: (47)

By Stirling’s formula (42), the last O-term is of order

m
1
4 Hm

n
e�
p

m.log n� 1
2

log m�1/
D O

�
n�2

�
;

for m > 1. Combining these estimates, we then obtain

E1.n;m/ D O
�
n�2

�
;

uniformly for 1 6 m 6 n. Thus �n;m WD n��n;m satisfies, by (44), a recurrence of the formX
16`6m

��n;m;`
�
�n;m ��n;m�`

�
D O

�
n�1

�
.1 6 m 6 n/;

with �n;0 D 0. It follows, by applying Lemma 4, that �n;m D O.Hm/, and we conclude that,
uniformly for 0 6 m 6 n,

��n;m D Hm C �1.˛/CO
�
n�1Hm

�
:

This proves the first two terms of the asymptotic approximation to ��n;m in (39). The more
refined expansion is obtained by refining the same calculations and justification the main steps
of which are carried out in Appendix B.

We summarize this proof by the following “asymptotic transfer” for the recurrenceX
16`6m

��n;m;`.an;m � an;m�`/ D bn;m;

where bn;m is a given sequence:

1 6 m 6 n W

�
bn;m D n�1 H) an;m � Hm C �1.˛/

bn;m D O
�
n�2

�
H) an;m D O.n�2Hm/:

4.3 Proof of Theorem 3
We now prove Theorem 3 concerning the asymptotics of E.Xn/, which, by linearity of expecta-
tion, satisfies

E.Xn/ D
X

06m6n

�n;m �n;m D
n � 1�

1 � 1
n

�n

X
06m6n

�n;m�
�
n�1;m;
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where �n;m WD
�

n
m

�
�m O�n�m ( O� WD 1 � �). Roughly, since the binomial distribution is highly

centered around its mean value �n, we expect that the right-hand side behaves like

en��n;b�nc � enHb�nc � en log �n:

To justify and refine this, the most straightforward means is to apply the local limit theorem of
the binomial distribution and then approximate the sum by a Gaussian integral; all details are
messy but can be readily assisted by a symbolic computation software.

Here, due to the simple form of the asymptotic expansion (39), we use instead a different,
self-contained approach relying partly on the following identity.

Lemma 7. For n > 1,

X
06m6n

�n;mHm D Hn �

X
16k6n

O�k

k
: (48)

Note that

X
16k6n

O�k

k
D � log �CO

�
n�1
O�n
�
; (49)

the O-term being exponentially small. So we can replace the right-hand side by Hn C log �,
introducing only an asymptotically negligible error.

Proof. We begin with the identity

X
06m6n

�n;mam D Œz
n�

1

1 � O�z
A
�

�z

1 � O�z

�
;

for any given sequence am, where A.z/ WD
P

m>0 amzm. The proof of this identity is as
follows.

1

1 � O�z
A
�

�z

1 � O�z

�
D

X
m>0

am

.�z/m

.1 � O�z/mC1
D

X
m>0

am.�z/m
X
`>0

�
mC `

`

�
O�`z`;

and by collecting the coefficient of zn, we obtain the identity. Now substituting am D Hm so
that A.z/ D 1

1�z
log 1

1�z
and we get

X
06m6n

�n;mHm D Œz
n�

1

1 � O�z

1

1 � �z
1� O�z

log
1

1 � �z
1� O�z

D Œzn�
1

1 � z
log

1 � O�z

1 � z
;

which proves (48).

On the other hand, we also need an estimate for the following binomial sum.

Lemma 8. Let � be a C 4Œ0; 1� function. Then

X
06m6n

�n;m�.˛/ D �.�/C
� O��00.�/

2n
CO

�
n�2

�
; (50)
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Proof. By a Taylor expansion of �.˛/ D �.m
n
/ D �.�C m��n

n
/ at � of order four and then by

exchanging the summations, we obtain

X
06m6n

�n;m�.˛/ D
X

06j63

�.j/.�/

j !

X
06m6n

�n;m

.m � �n/j

nj
CO

0@ X
06m6n

�n;m

.m � �n/4

n4

1A :
Then (50) follows from known estimates for the central moments of a binomial distribution:
if Bn is binomially distributed with parameters n and �, then its variance equals � O�n, its third
central moment is linear, and its fourth quadratic.

Now, by replacing n by n � 1 in (39), we have the expansion

��n�1;m D Hm C �1.˛/C
Hm C �2.˛/C ˛�

0
1
.˛/

n
CO

�
n�2Hm

�
:

By applying (48) and (50) term by term (and using (49)), we obtainX
06m6n

�n;m�
�
n�1;m D Hn C log �C �1.�/

C
2.Hn C log �/C �2.�/C ��

0
1
.�/C � O��00

1
.�/

2n
CO

�
n�2Hn

�
:

Then Theorem 3 follows from this and the expansions

n � 1�
1 � 1

n

�n D e

�
n �

1

2
�

1

24n

�
CO

�
n�2

�
;

Hn D log nC 
 C
1

2n
CO

�
n�2

�
:

5 Asymptotics of the variance of Xn;m

We prove in this section that the variance �2
n;m WD V.Xn;m/ D E.X 2

n;m/ � .E.Xn;m//
2 of Xn;m

is asymptotically quadratic.

Theorem 4. For 1 6 m 6 n, the variance of Xn;m satisfies

V.Xn;m/

en
D eH .2/

m n � .2e C 1/Hm C eH .2/
m C e 1.˛/ � �1.˛/ �

11e C 1

2n
Hm

C
5eH

.2/
m C 2e 2.˛/ � 2�2.˛/C 2e˛ 0

1
.˛/ � 2˛�0

1
.˛/C �1.˛/

2n
CO

�
n�2Hm

�
;

where

 1.˛/ D

Z ˛

0

�
S2.x/

S1.x/3
�

1

x2
C

2

x

�
dx; (51)

and

 2.˛/ D
7

12
�

Z ˛

0

 
5S 0

1
.x/S2.x/

2

2S1.x/5
�

2S 0
1
.x/S3.x/C S2.x/S

0
2
.x/C 6S0.x/S2.x/

2S1.x/4

�
S0.x/

S1.x/3
C

2

S1.x/2
�

1

x3
C

3

x2
�

11

2x

�
dx:
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Note that x D 0 is a removable singularity for both integrands inside the parentheses above
although S1.x/ D x CO.x2/ for x � 0.

Similar to the mean, we work on the sequence V �n;m WD e2
n.�

2
nC1;m

C �nC1;m/n
�2 and

prove that (see Figure 7 and Appendix F)

V �n;m D H .2/
m �

2Hm �  1.˛/ � 2H
.2/
m

n
�

11
2

Hm �  2.˛/ �
7
3
H
.2/
m

n2
(52)

CO.n�3Hm/ .2 6 m 6 n/;

which can be proved to be equivalent to the expansion of Theorem 4.

Figure 7: The absolute differences jV �n;m� RHS of (52)j for 2 6 m 6 n (normalized to the unit
interval) and n D 10; : : : ; 50 (left in top-down order), and the absolute normalized differences
n3H�1

m jV
�

n;m� RHS of (52)j for n D 10; : : : ; 50 (right).

The variance of Xn is computed by the relation

V.Xn/ D
X

06m6n

�n;m

�
�2

n;m C �
2
n;m

�
�

0@ X
06m6n

�n;m�n;m

1A2

; (53)

where �n;m D
�

n
m

�
�m.1 � �/n�m, �n;m WD E.Xn;m/ and �2

n;m WD V.Xn;m/.
Theorem 5. The variance of Xn satisfies asymptotically

V.Xn/

en
D
�2

6
en � .2e C 1/.log �nC 
 /C v1

�
.11e C 1/.log �nC 
 / � v2

2n
CO

�
n�2 log n

�
;

where ( O� WD 1 � �) v1 WD e
�
�2

6
� 1

�
� �1.�/C e 1.�/C 2e O��01.�/C e O���01.�/

2, and

v2 D e O�2�2�001 .�/
2
C 2e O�2�.1C ��01.�//�

000
1 .�/C 2e� O�.1C �01.�//�

00
1 .�/

C 4e O�.1C ��02.�//�
0
1.�/C 2e O���01.�/

2
C 4e O��02.�/C e O�� 001 .�/ � O���

00
1 .�/

C 2e 2.�/ � 2�2.�/C 2e� 01.�/ � 2��01.�/C �1.�/C
5
6

e�2
� 3e � 1:

Recurrence satisfied by the variance. As in the case of m D O.1/, we begin our asymptotic
analysis with the recurrence (15), which, in terms of V �n;m WD e2

n.�
2
nC1;m

C�nC1;m/n
�2, has the

form: V �
n;0
D 0, and for 1 6 m 6 nX

16`6m

��n;m;`

�
V �n;m � V �n;m�`

�
D T �n;m; (54)
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where

T �n;m WD
X

16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�2

: (55)

In particular, this gives

V �n;1 D 1;

V �n;2 D
5n4 C 8n3 � n2 � 4nC 1

.2n2 C 2n � 1/2
:

The expressions become very lengthy as m increases. In Appendix E we give asymptotic expan-
sions for V �n;m for a few small m as n ! 1. Based on these expansions, a suitable Ansatz for
the asymptotic behavior of V �n;m can be deduced (assisted again by a computer algebra system),
which can then be proved by the same method of proof presented in Section 4 for the mean.

Proof of the first-order asymptotics with error analysis. By the same procedure used for
��n;m, we start from computing the asymptotic expansions for V �n;m for small m. These expan-
sions suggest the more uniform (for 1 6 m 6 n) asymptotic expansion

V �n;m � c4H .2/
m C

a1Hm C  1.˛/C c5H
.2/
m

n
;

for some constants c4, c5 and a1, and some function  1.z/. Such an asymptotic form can be
justified by the same approach we used above for ��n;m. More precisely, we now prove that

V �n;m D H .2/
m �

2Hm �  1.˛/ � 2H
.2/
m

n
CO.n�2Hm/; (56)

uniformly for 0 6 m 6 n and n > 1, where  1.z/ is given in (51). Our proof starts from
considering the difference

��n;m WD V �n;m � c4H .2/
m �

a1Hm C  1.˛/C c5H
.2/
m

n
;

and specify the involved coefficients and  1.z/ such that ��n;m D O.n�2Hm/. By (54), ��n;m
satisfies, for 1 6 m 6 n, the recurrenceX

16`6m

��n;m;`

�
��n;m ��

�
n;m�`

�
D QE1.n;m/; (57)

with the initial value ��n;0 D �
 1.0/

n
, where (T �n;m being defined in (55))

QE1.n;m/ WD T �n;m �
X

16`6m

��n;m;`

��
c4 C

c1

n

� �
H .2/

m �H
.2/

m�`

�
C

a1

n
.Hm �Hm�`/

C
 1

�
m
n

�
�  1

�
m�`

n

�
n

�
:

We will derive an asymptotic expansion for QE1.n;m/. For that purpose, we use the expan-
sions (82), (83) as well as Theorem 2 in Section 4, and apply the same error analysis used for
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��n;m. A careful analysis then leads to

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�2

D
1

mn
C

1

n2

 
�

1

˛
C
.1C ˛�0

1
.˛//2

˛2
S2.˛/

!
(58)

C
3

2mn2
C

Jm > 2K
2m.m � 1/n2

�
Jm D 1K

n2
CO

�
n�3

�
;

and X
16`6m

��n;m;`

�
H .2/

m �H
.2/

m�`

�
D

1

mn
C

1

n2

�
S1.˛/ � ˛

˛2

�
�

1

2mn2
C

Jm > 2K
2m.m � 1/n2

�
Jm D 1K

n2
CO

�
n�3

�
;

(59)

both holding uniformly for 1 6 m 6 n as n!1.
Collecting the expansions (82), (83), (58) and (59), we obtain

QE1.n;m/ D
1 � c4

mn
C

1

n2

�
�

1

˛
C
.1C ˛�0

1.˛//
2

˛2
S2.˛/ �

c4

˛2
.S1.˛/ � ˛/

�

�a1

˛
C  01.˛/

�
S1.˛/

�
C

1

mn2

�
3

2
C

c4

2
� c5

�
�

Jm D 1K.1 � c4/

n2
C

Jm > 2K.1 � c4/

2m.m � 1/n2
CO

�
n�3

�
;

uniformly for 1 6 m 6 n.
We can now specify all the undetermined constants and  1.z/ such that all terms except

the last will vanish and QE1.n;m/ D O
�
n�3

�
. This entails first the choices c4 D 1 and c1 D 2.

It remains only the 1
n2 -term. We consider the limit when ˛ tends to zero using the Taylor

expansions (36), and deduce that a1 D �2. These values give the equation satisfied by  01.z/

 01.z/S1.z/ D �
S1.z/

z2
C
.1C z�0

1
.z//2

z2
S2.z/C

2S1.z/

z
;

which in view of (3) leads to the differential equation

 01.z/ D
S2.z/

S3
1 .z/

�
1

z2
C

2

z
: (60)

Thus with the choices c4 D 1, a1 D �2, c5 D 2, and the function  01.z/ by (60), we get
the bound QE1.n;m/ D O

�
n�3

�
uniformly for 1 6 m 6 n. Accordingly, by (57), the sequences

�n;m WD n2��n;m satisfy the recurrenceX
16`6m

��n;m;`
�
�n;m ��n;m�`

�
D O

�
n�1

�
.1 6 m 6 n/;

with�n;0 D � 1.0/n. Choose now the initial value  1.0/ D 0, so that�n;0 D 0 and Lemma 4
can be applied. This implies that �n;m D O.Hm/, and consequently ��n;m D O.n�2Hm/.

Also 1.z/ is indeed given by (51). In particular, the first few terms in the Taylor expansion
of  1.z/ are given as follows.

 1.z/ D
11
4

z � 49
36

z2
C

2473
4320

z3
C

1307
14400

z4
�

12743687
18144000

z5
C

194960323
152409600

z6
C � � � :

This completes the proof of the asymptotic expansion (56) for V �n;m. The more refined approx-
imation (52) follows the same line of proof but with more detailed expansions; see Appendix E.
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The variance of Xn. The method of proof used for characterizing the asymptotics of E.Xn/

(namely, ~ 4.3) can be applied here but requires slight modifications because unlike (48) we do
not have simple closed-form expressions for the sum

P
06m6n �n;m.H

.2/
m CH 2

m/, which arises
from the first sum on the right-hand side of (53). There are a few different ways to manipulate the
corresponding asymptotic expansion. One simple idea is to apply Lemma 8 using the relations

Hm D ‰.mC 1/C 
; H .2/
m D

�2

6
�‰0.mC 1/;

where ‰.x/ D �0.x/
�.x/

denotes the digamma function. Noting that ‰0.x/ D
P

j>0
1

.jCx/2
, we

see that successive derivatives of ‰.j/.x/ behave like j !x�j for large x. We then group terms
of the same power and deduce Theorem 5.

6 Limit laws of Xn;m when m!1

We show in this section that the distribution of Xn;m, when properly normalized, tends to a
Gumbel (or extreme-value or double exponential) distribution, as m ! 1, m 6 n. The proof
consists in showing that the result (9) when m D O.1/ extends to all m 6 n but requires
an additional correction term �1 coming from the linear part of the random variables, which
complicates significantly the proof.

The standard Gumbel distribution G .1/ (with mode zero, mean 
 ) is characterized by the
distribution function e�e�x

and the characteristic function �.1 � i�/, respectively. Note that if
X � Exp.1/, then � log X � G .1/, which was the description used in Garnier et al. (1999).

The genesis of the Gumbel distribution is easily seen as follows.
Lemma 9. Let Wm WD

P
16r6m Exp.r/, where the m exponential random variables are inde-

pendent. Then Wm � log m converges in distribution to the Gumbel distribution

P .Wm � log m 6 x/! e�e�x

.x 2 RIm!1/:

Proof. We have

E
�
e.Wm�Hm/i�

�
D

Y
16r6m

e�
i�
r

1 � i�
r

!

Y
r>1

e�
i�
r

1 � i�
r

D e�
 i��.1 � i�/;

for each bounded � 2 R. Here we used the infinite-product representation of the Gamma
function

�.1C s/ D e�
 s
Y
r>1

e
s
r

1C s
r

.s 2 C n Z�/:

The lemma then follows from the asymptotic estimate

Hm D log mC 
 CO.m�1/ .m!1/;

and Lévy’s continuity theorem (van der Vaart, 1998, ~2.3).
Unlike the case when m D O.1/, we need to subtract more terms to have the limiting dis-

tribution. Throughout this section, let � 2 .0; 1/ be a generic symbol whose value is independent
of m; n and may differ from one occurrence to another.
Proposition 1. For 1 6 m 6 n, we have the uniform asymptotic approximation

E
�
e

Xn;m
en s�.HmC�1.

m
n //s

�
D

�
1CO

�
Hm

n

�� Y
16r6m

e�
s
r

1 � s
r

;

for jsj 6 �, where �1 is defined in (3).
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Note that �1.x/ D O.x/ as x ! 0, and thus �1.
m
n
/ D o.1/ when m D O.1/. In this case,

the proposition re-proves Theorem 1 (with a better error term).
A combination of Lemma 9 and Proposition 1 leads to the limit law for Xn;m in the remain-

ing range.
Theorem 6. If m!1 with n and m 6 n, then the number Xn;m of steps taken by the (1C 1)-
EA to reach the optimal state with all bits 1 (when starting from the initial state with n �m 1s)
satisfies

P
�

Xn;m

en
� log m � �1.

m
n
/ 6 x

�
! e�e�x

.x 2 R/;

where �1 is defined in (3).
Theorem 7. The number Xn of steps taken by the (1C 1)-EA to reach the final state f .x/ D n,
when starting from a random initial state where each bit assumes 1 with probability �, satisfies

P
�

Xn

en
� log �n � �1.�/ 6 x

�
! e�e�x

.x 2 R/:

From Figure 8, we see the fast convergence of the distribution to the limit law.

Figure 8: Left: distributions of X �n WD
Xn

en
� log nC log 2� �1.

1
2
/ for n D 15; : : : ; 35 (in blue),

and the limiting Gumbel curve (in red); Right: the difference between the distribution function
of Xn and that of a Gumbel.

Outline of proofs. We focus on the proof of Proposition 1, which is the main hard part of all
the proofs. Since we want to prove that the two moment generating functions are asymptotically
close, we introduce the normalized function

Fn;m.s/ WD
E
�
e

Xn;m
en s

�
e��.

m
n /sQ

16r6m

1
1� s

r

D
Pn;m

�
e

s
en

�
e�Hms��.m

n /sQ
16r6m

e�
s
r

1� s
r

:

If we assume � to be a C 2Œ0; 1�-function and choose �.x/ D �1.x/, where �1 (see (3)) appears
as the second-order term in the asymptotic expansion of the mean (see (39)), then

Fn;m.s/ � 1; (61)

uniformly for all 1 6 m 6 n, n ! 1, and jsj 6 �, and this will prove Proposition 1. Indeed,
our induction proof here does not rely on any information of the mean asymptotics and entails
particularly the right choice of �.x/. This is why we specify � only at a later stage.

The idea of our proof for (61) relies again on a similar inductive argument we used above
but with more parameters (n;m; s) involved in the analysis, which adds to the technical compli-
cation, notably in controlling the uniformity of the error terms. To simplify the proof, we thus
assume that s is real (implying that es > 0), so that all inequalities become easier to handle.
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The recurrence satisfied by Fn;m. Rewriting Pn;m in terms of Fn;m

Pn;m

�
e

s
en

�
D Fn;m.s/e

HmsC�.m
n /s

Y
16r6m

e�
s
r

1 � s
r

;

and substituting t D e
s

en in (4), we see that Fn;m.s/ satisfies the recurrence

Fn;m.s/ D

e
s

en

P
16`6m

�n;m;`Fn;m�`.s/e
�

�
�.m

n /��.
m�`

n /
�

s Q
m�`C16r6m

�
1 � s

r

�
1 �

�
1 �ƒn;m

�
e

s
en

;

for 1 6 m 6 n, with Fn;0.s/ D 1, where ƒn;m WD
P

16`6m �n;m;`.

An auxiliary sum. Since we expect Fn;m.s/ to be close to 1, we replace all occurrences of F

on the right-hand side by 1 and consider the function

Gn;m.s/ WD

e
s

en

P
16`6m

�n;m;`e
�

�
�.m

n /��.
m�`

n /
�

s Q
m�`C16r6m

�
1 � s

r

�
1 �

�
1 �ƒn;m

�
e

s
en

: (62)

We will show how to choose � so that Gn;m.s/ will be very close to 1. The following lemma is
the crucial step in our proof.

Lemma 10. Let �.x/ be a C 2-function on the unit interval satisfying �.0/ D 0. Then

Gn;m.s/ D
1 � s

m
.1C ˛�0.˛// S1.˛/

S.˛/
CO

�
1

mn

�
1 � s

m
�

˛
S.˛/
CO

�
1

mn

� ; (63)

where the O-terms hold uniformly for 1 6 m 6 n and jsj 6 �.

Proof. The proof consists in a detailed inspection of all factors, using estimates (34) and (35)
we derived earlier for ƒ.r/n;m. We consider first the case when m D O.1/. In this case,
S.˛/;S1.˛/ D ˛ C O.˛2/ (see (35)) and the numerator and the denominator of (62) both
have the form

1 �
s

m
CO

�
n�1

�
;

which can be readily checked by using the estimates (10) and

ƒn;m D e�1˛ CO.˛2/:

From now on, we assume m > m0, where m0 is sufficiently large, say m0 > 10. Throughout
the proof, all O-terms hold uniformly for jsj 6 � and m0 6 m 6 n and n large enough.

We begin with the denominator of Gn;m.s/, which satisfies

1 � .1 �ƒn;m/e
s

en D ƒn;m �
s

en
Cƒn;m

s

en
CO

�
n�2

�
D ƒn;m

�
1C

s

en

��
1 �

s

enƒn;m

CO
�
.mn/�1

��
;

where we used the estimate ƒn;m D �.˛/; see (35). By (34) and (35), the second-order term
on the right-hand side satisfies

s

enƒn;m

D
s

nS.˛/.1CO
�
n�1

�
/
D

s

m
�
˛

S.˛/
CO

�
.mn/�1

�
:
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Thus we obtain

1 � .1 �ƒn;m/e
s

en D ƒn;m

�
1C

s

en

��
1 �

s

m
�
˛

S.˛/
CO

�
.mn/�1

��
: (64)

Now we turn to the numerator of Gn;m.s/ and look first at the exponential term

e�
�
�.m

n /��.
m�`

n /
�

s
D e

� `n�
0.˛/sCO

�
`2

n2

�

D

�
1 �

`

n
�0.˛/s

��
1CO

�
`2

n2

��
;

uniformly for 1 6 ` 6 m, where we used the twice continuous differentiability of �.
Consider now the finite product

Q
m�`C16r6m

�
1 � s

r

�
. Obviously, for jsj 6 1, we have

the uniform bound Y
m�`C16r6m

ˇ̌̌
1 �

s

r

ˇ̌̌
6

Y
m�`C16r6m

�
1C

1

r

�
6 eHm D O.m/:

On the other hand, we also have the finer estimates

Y
m�`C16r6m

�
1 �

s

r

�
D e�.Hm�Hm�`/s

�
1CO

�
`2

m2

��

D e
� `m sCO

�
`2

m2

� �
1CO

�
`2

m2

��
D

�
1 �

`

m
s

��
1CO

�
`2

m2

��
;

uniformly for 1 6 ` D o.m/.
Combining these two estimates, we obtain the approximation

Y
m�`C16r6m

�
1 �

s

r

�
D

�
1 �

`

m
s

��
1C J` > 2KO

�
`2

m2

�
C J` > d

p
meKO.m/

�
;

which holds uniformly for 1 6 ` 6 m. Thus the numerator, up to the factor e
s

en , satisfiesX
16`6m

�n;m;`e
�

�
�.m

n /��.
m�`

n /
�

s
Y

m�`C16r6m

�
1 �

s

r

�
D

X
16`6m

�n;m;` �
s

m

�
1C ˛�0.˛/

� X
16`6m

`�n;m;`

CO

0@ 1

m2

X
26`6m

`2�n;m;` C
1

mn

X
16`6m

`2�n;m;` Cm
X

d
p

meC16`6m

�n;m;`

1A :
Each of the sums can be readily estimated as in (46) and (47), and we have

m�2
X

26`6m

`2�n;m;` D O
�
n�2

�
:
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Similarly,

.mn/�1
X

16`6m

`2�n;m;` D O
�
.mn/�1˛

�
D O

�
n�2

�
:

Finally, for m > 1,

m
X

d
p

meC16`6m

�n;m;` D O

 
m˛
p

mC1

�.
p

mC 2/

!

D O
�
m

7
4 n�1e�

p
m.log n� 1

2
log m�1/

�
D O

�
n�2

�
:

Collecting these estimates, we getX
16`6m

�n;m;`e
�

�
�.m

n /��.
m�`

n /
�

s
Y

m�`C16r6m

�
1 �

s

r

�
D ƒn;m �

s

m

�
1C ˛�0.˛/

�
ƒ.1/n;m CO

�
n�2

�
D ƒn;m

 
1 �

s

m

�
1C ˛�0.˛/

� ƒ.1/n;m

ƒn;m

CO
�
.mn/�1

�!

D ƒn;m

�
1 �

s

m

�
1C ˛�0.˛/

� S1.˛/

S.˛/
CO

�
.mn/�1

��
; (65)

by applying (34).
By (64), (65) and the simple estimate

e
s

en D
�
1C s

en

� �
1CO

�
n�2

��
;

we conclude (63).

Corollary 7. Let �.x/ D �1.x/ D
R x

0

�
1

S1.t/
�

1
t

�
dt . Then

Gn;m.s/ D 1CO
�
.mn/�1

�
;

where the O-term holds uniformly for 1 6 m 6 n, n large enough and jsj 6 �.

Proof. To obtain the error term O..mn/�1/, we choose � in a way that the two middle terms in
the fraction of (63) are identical, which means

x

S.x/
D .1C x�0.x//

S1.x/

S.x/
:

Observe that S.x/ > 0 for x > 0. This, together with �1.0/ D 0, implies � D �1, which is not
only a C 2-function but also analytic in the unit circle.

Proof of Proposition 1. We now prove Proposition 1 by induction.

Lemma 11. Let � D �1. Then there exists an n0 > 0 such that

Fn;m.s/ D 1CO
�
n�1Hm

�
;

uniformly for 0 6 m 6 n, n > n0 and jsj 6 �, � 2 .0; 1/.
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Proof. We use induction on m and show that there exists a constant C > 0, such that

jFn;m.s/ � 1j 6 C n�1Hm;

for all 1 6 m 6 n, n > n0 and jsj 6 �. Here C is independent of n0.
When m D 0, the lemma holds, since Fn;0.s/ � 1.
Assume that the lemma holds for all functions Fn;k.s/ with 0 6 k 6 m and n > n0. By

Corollary 7, there exists a constant C1 > 0 such that for all 1 6 m 6 n, n > n1 and jsj 6 �1,
0 < �1 < 1,

jGn;m.s/ � 1j 6 C1.mn/�1:

Now

jFn;m.s/ � 1j D jFn;m.s/ �Gn;m.s/CGn;m.s/ � 1j

6 jFn;m.s/ �Gn;m.s/j C C1.mn/�1:

The first term on the right-hand side can be re-written as

jFn;m.s/ �Gn;m.s/j

D

ˇ̌̌̌
ˇe s

en

P
16`6m

�n;m;`.Fn;m�`.s/ � 1/e�
�
�.m

n /��.
m�`

n /
�

s Q
m�`C16r6m

�
1 � s
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1 �

�
1 �ƒn;m

�
e

s
en

ˇ̌̌ :

Since we assume jsj 6 1, the product involved in the sum on the right-hand side is nonnegative
and we have, by the induction hypothesis,

jFn;m.s/ �Gn;m.s/j 6

e
s

en

P
16`6m

�n;m;`e
�

�
�.m

n /��.
m�`

n /
�

s CHm�`

n

Q
m�`C16r6m

�
1 � s

r

�
1 �

�
1 �ƒn;m

�
e

s
en

6
CHm�1

n
Gn;m.s/ 6

CHm�1

n
C

CHm�1

n
� jGn;m.s/ � 1j

6
CHm�1

n
C

CHm�1

n
�

C1

mn
:

It follows that

jFn;m.s/ � 1j 6
CHm

n
C

1

mn

�
C1 � C C C1C

Hm�1

n

�
:

Choose first n2 > n1 such that
Hn2�1

n2
6 1

2C1
, which implies that C1C Hm�1

n
6 C

2
for 1 6 m 6

n and n > n2. Then choose C D 2C1. We then have

C1 � C C
C1CHm�1

n
6 C1 �

C

2
6 0;

and thus
jFn;m.s/ � 1j 6

CHm

n
:

Note that apart from requiring jsj 6 1 the only restriction on s comes from Gn;m.s/, thus we
may choose � D min.1; �1/. This completes the proof.
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The Gumbel limit laws for Xn;m (m ! 1). We prove Theorem 6 by Proposition 1. Since
m!1, we have

E
�
e

Xn;m
en s�.log mC�1.˛//s

�
D Pn;m

�
e

s
en

�
e�.Hm�
C�1.

m
n //s

�
1CO

�
m�1

��
D e
 sFn;m.s/

Y
16r6m

e�
s
r

1 � s
r

�
1CO

�
m�1

��
D �.1 � s/

�
1CO

�
log m

n
C

1

m

��
: (66)

Thus Theorem 6 follows from an application of Curtiss’ theorem (Flajolet and Sedgewick, 2009,
IX 4.2), which is similar to Lévy’s continuity theorem but with characteristic function replaced
by moment generating function.

The Gumbel limit law for Xn. We now prove Theorem 7, starting from the moment generat-
ing function

E
�
eXns

�
D

X
06m6n

�n;mPn;m .e
s/ ;

where �n;m D
�

n
m

�
�m O�n�m ( O� WD 1 � �). Then

E
�
e

Xn
en s�.log�nC�1.�//s

�
D

X
06m6n

�n;m Pn;m

�
e

s
en

�
e�.Hm�
C�1.˛//s„ ƒ‚ …

(66)

�eın;ms;

where

ın;m WD Hm � log �n � 
 C �1.˛/ � �1.�/:

Since the binomial distribution is highly concentrated around the range m D �n C x
p
� O�n

where x D o.n
1
6 /, we see that

ın;m D

p
� O�

S1.�/
p

n
x C

1

2�n
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�2 O�S 0
1
.�/

S1.�/2
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!
CO

�
jxj C jxj3

n
3
2

�
;

for m in this range.
By a standard argument (Gaussian approximation of the binomial and exponential tail esti-

mates) using the expansion (66), we then deduce that

E
�
e

Xn
en s�.log�nC�1.�//s

�
D �.1 � s/

X
jm��nj6n
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1CO
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CO

0B@ X
jm��nj>n

7
12
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1CA
D �.1 � s/

�
1CO
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n�1 log n

��
:

This proves Theorem 7.
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7 Analysis of the (1C 1)-EA for LEADINGONES

We consider the optimization time Yn of the (1 C 1)-EA when the underlying fitness function
is the number of leading 1s. This problem has been examined repeatedly in the literature due
to the simple structural properties it exhibits; see Böttcher et al. (2010); Droste et al. (2002);
Ladret (2005) and the references therein. The strongest results obtained were those in Ladret
(2005) (but almost unknown in the EA literature) where she proved that the optimization time
under LEADINGONES is asymptotically normally distributed with mean asymptotic to ec�1

2c2 n2

and variance to 3.e2c�1/

8c3 n3, where p D c
n

, c > 0.
We revisit this problem and obtain similar type of results by an analytic-combinatorial

approach (see Flajolet and Sedgewick (2009)) based on generating function and recurrence re-
lations. This approach is not only very different from the purely probabilistic techniques used in
Ladret (2005) but also differs significantly from the one we used for ONEMAX mainly because
the generating functions here have simpler forms. It can also be readily amended for obtaining
the convergence rate to the normal law.

Denote by Yn the number of steps taken by Algorithm .1 C 1/-EA to reach the optimum
state for LEADINGONES when starting from a random input (each bit being 1 with probability
1
2

). Then, similar to Xn for ONEMAX, its moment generating function satisfies

E
�
eYns

�
WD 2�n

C

X
16m6n

2m�n�1Qn;m.s/; (67)

where Qn;m.s/ represents the moment generating function of Yn;m, the conditional optimization
time when beginning with a random input (each bit being 1 with probability 1

2
) having n � m

leading 1s.
Throughout this section, the probability p still carries the same meaning from Algorithm

.1C 1/-EA and q D 1 � p, namely, each bit has flipping probability p at each stage, and one
independently of all the others.
Theorem 8. Assume p D c

n
, c > 0. The random variables Yn are asymptotically normally

distributed

P
�

Yn � �n

&n

6 x

�
! ˆ.x/ .x 2 R/;

with the mean �n D E.Yn/ and the variance &n D V.Yn/ asymptotic to

�n D
ec � 1

2c2
n2
C
.c � 2/ec C 2

4c
nCO.1/

&n D
e2c � 1

8c3
n3
C

3e2c.2c � 3/ � 8ec C 17

16c2
n2
CO.n/;

(68)

respectively. Here ˆ.x/ WD 1p
2�

R x

�1
e�

1
2

t2

dt denotes the standard normal distribution func-
tion.

In particular, we also have, by replacing the exact mean and variance by the corresponding
asymptotic approximations

P

0B@Yn �
ec�1
2c2 n2q

e2c�1
8c3 n3

6 x

1CA! ˆ.x/ .x 2 R/I

see Figure 9 for some graphical renderings of the distributions of Yn.
Our method of proof consists in deriving first a more manageable expression for Qn;m, and

then work on the corresponding characteristic functions.
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Figure 9: Distributions of Yn for n D 5; : : : ; 20 when the mutation rate is p D 1
n

: the density
functions scaled by n2 (left), distribution functions (middle), and the differences between the
distribution function of Yn��n

&n
and ˆ.x/ (right).

Lemma 12. The moment generating function Qn;m.s/ of Yn;m satisfies the recurrence relation

Qn;m.s/ D
pqn�mes

1 � .1 � pqn�m/es

0@21�m
C

X
16`<m

Qn;`.s/

2m�`

1A ; (69)

for 1 6 m 6 n, where q D 1 � p.

Proof. The probability of jumping from a state
with n �m leading 1s to another state with n �

mC ` leading 1s is given by

.1 � p/n�m
� p � 2�` .1 6 ` < m/;

1 0

1

1 0 *

n�m `

n

which corresponds to the situation when the first n � m bits do not toggle their values, the
.n�mC1/st bit toggles (from 0 to 1), together with the following `�1 bits also being 1. When
` D m, the probability becomes

.1 � p/n�m
� p � 2�mC1:

We thus obtain the recurrence relation

Qn;m.s/ D pqn�mes

0@21�m
C

X
16`<m

Qn;`.s/

2m�`

1AC .1 � pqn�m/esQn;m.s/; (70)

which implies (69).

A finite-product representation for Qn;m.s/. Unlike the case of ONEMAX (see (4)), the
recurrence relation (69) can be solved explicitly as follows.

Proposition 2. The moment generating function Qn;m.s/ of Yn;m has the closed-form

Qn;m.s/ D
1

1 � 1�e�s

pqn�m

Y
16j<m

1 � 1�e�s

2pqn�j

1 � 1�e�s

pqn�j

; (71)

for m > 1.

Let

Gm.t/ WD
pqn�mt

1 � .1 � pqn�m/t
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denote the probability generating function of a geometric distribution Geo.pqn�m/ with param-
eter pqn�m and support f1; 2; : : : g.

Corollary 8. The random variables Yn;m can be decomposed as the sum of m independent
random variables

Yn;m
d
D ZŒ0�

n;m C � � � CZŒm�1�
n;m ; (72)

where Z
Œ0�
n;m � Geo.pqn�m/ and the Z

Œj �
n;m are mixture of Geo.pqn�j /

E
�
tZ

Œj �
n;m

�
D

1

2
�

1 � .1 � 2pqn�j /t

1 � .1 � pqn�j /t
.j D 1; : : : ;m � 1/:

For the proof of Proposition 2, we need a lemma.

Lemma 13. The solution to the recurrence relation

am D bm C

X
16`<m

a`

2m�`
.m > 1/;

with a0 D b0, is given by the closed-form expression

am D bm C
1

2

X
16j<m

bj .m > 0/: (73)

Proof. The corresponding generating functions f .z/ WD
P

m>1 amzm and g.z/ WDP
m>1 bmzm satisfy the equation

f .z/ D g.z/C
z

2 � z
f .z/;

or

f .z/ D
1 � z

2

1 � z
g.z/:

This proves (73).

Proof of Proposition 2. Let ! WD 1
pqn .1 � e�s/. We start with the recurrence (from (70))

Qn;m.s/ D !qmQn;m.s/C 21�m
C

X
16`<m

Qn;`.s/

2m�`
;

which, by (73) with bm D !qmQn;m.s/C 21�m, has the alternative form

Qn;m.s/ D 1C !qmQn;m.s/C
!

2

X
16h<m

qhQn;h.s/; (74)

since 21�m C
1
2

P
16j<m 21�j D 1. From (74), we see that the bivariate generating function

Qn.z; s/ WD
P

m>1 Qn;m.s/z
m of Qn;m.s/ satisfies

Qn.z; s/ D
z

1 � z
C !Qn.qz; s/C

!

2
�

z

1 � z
Qn.qz; s/;

which implies the simpler functional equation

Qn.z; s/ D
z

1 � z
C !

1 � z
2

1 � z
Qn.qz; s/:
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Multiplying both sides by 1 � z gives

.1 � z/Qn.z; s/ D z C !
�
1 �

z

2

�
Qn.qz; s/;

implying the relation
Qn;m.s/

Qn;m�1.s/
D

1 � 1
2
!qm�1

1 � !qm
.m > 2/:

Accordingly, we obtain the closed-form expression (71).

By (72), the mean �n;m of Yn;m is given by

�n;m D

X
06j<m

E
�
ZŒj �

n;m

�
D

1

pqn�m
C

1

2

X
16j<m

1

pqn�j

D
1

pqn�1

�
1 � qm�1

2p
C qm�1

�
:

(75)

Similarly, the variance &2
n;m of Yn;m satisfies

&2
n;m D

X
06j<m

V
�
ZŒj �

n;m

�
D

3 � 2pqn�m

8.pqn�m/2
C

1

2

X
16j<m

1 � pqn�j

.pqn�j /2

D ��n;m C
3q2 � .4q2 � 1/q2m

4p3.1C q/q2n
:

(76)

These expressions are valid for any p but the most interesting cases are when p D c
n

because
the time complexity grows with c in an exponential rate.

Corollary 9. Assume that p D c
n

, where c D o.
p

n/. Then, uniformly for 0 6 ˛ WD m
n
6 1,

�n;m D
ec

2c2
.1 � e�c˛/ n2

C
ec

4c
.c � 2C e�c˛ .4 � c C c˛// nCO .c.c C 1/ec/ ; (77)

and

&2
n;m D

3e2c

8c3

�
1 � e�2c˛

�
n3
CO

�
c�2e2c.1C c/n2

�
: (78)

These two approximations are straightforward from (75) and (76).

Proof. (of Theorem 8) By (67) and (75), we have

�n D

X
16m6n

2�nCm�1�n;m D
q

2p2
.q�n

� 1/ ;

and then the first estimate in (68) follows. Similarly, by (76),

&2
n D

X
16m6n

2�nCm�1E.Y 2
n;m/ � �

2
n D

3q2

4p3.1C q/

�
q�2n

� 1
�
� �n;

and the second estimate in (68) also follows.

42 Evolutionary Computation Volume x, Number x



Analysis of the (1C 1)-Evolutionary Algorithm

For the asymptotic normality, we consider the characteristic function

E
�
e

Yn��n
&n

i�
�
D 2�n

C

X
16m6n

2�nCm�1Qn;m

�
i�
&n

�
e�

�n
&n

i� :

We split the sum into two parts: 0 6 n�m 6 2 log2 n and 1 6 m < n� 2 log2 n. Observe that
when n �m 6 2 log2 n, we have the uniform estimate

�n � �n;m D O.njn �mC 1j/ and &2
n � &

2
n;m D O

�
n2
jn �mC 1j

�
;

by (77) and (78). We then have the local expansion

Qn;m

�
i�
&n

�
e�

�n
&n

i�
D exp

 
�n;m � �n

&n

i� �
&2

n;m

2&2
n

�2
CO

�
j� j3
p

n

�!
;

uniformly for j� j D o.n
1
6 /. Thus

Qn;m

�
i�
&n

�
e�

�n
&n

i�
D exp

�
�
�2

2
CO

�
jn �mC 1j
p

n
j� j C

jn �mC 1j

n
�2

��
D exp

�
�
�2

2
CO

�
n�

1
2 .log n/j� j C n�1.log n/j� j2

��
D e�

�2

2 .1C o.1//;

uniformly in m. Consequently,X
n�2 log2 n6m6n

2�nCm�1Qn;m

�
i�
&n

�
e�

�n
&n

i�
D e�

�2

2 .1C o.1//:

The remaining part is negligible since jQn;m.e
i�
� /j 6 1 and

X
16m6n�2 log2 n

2�nCm�1Qn;m

�
i�
&n

�
e�

�n
&n

i�
D O

0@ X
m>2 log2 n

2�m

1A D O
�
2�2 log2 n

�
D O

�
n�2

�
:

We conclude that

E
�
e

Yn��n
&n

i�
�
! e�

�2

2 ;

which implies the convergence in distribution of Yn��n

&n
to the standard normal distribution by

Lévy’s continuity theorem.

8 Conclusion

Recurrence relations find their ubiquitous appearance in computer algorithms, and numerous
techniques have been developed in the literature for a better understanding of their asymptotic
behaviors. As a rich source of recurrences of diverse nature, evolutionary algorithms have
mostly been analyzed via tools from probability theory. We showed in this paper the possi-
bility of solving directly the recurrences via tools from asymptotic and complex analysis. It is
common that such tools are often applicable under stronger settings, yet they achieve higher pre-
cision than the others whenever they apply, as Odlyzko commented in (Odlyzko, 1995, p. 1152)
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“Analytic methods are extremely powerful, and when they apply, they often yield estimates of
unparalleled precision.”

We analyzed in detail the performance of the .1C1/-EA under two simple fitness functions
ONEMAX and LEADINGONES, and fully characterized the first two moments and the limit
laws. Similar techniques based on recurrence relations may also be applied to other problems
of a recursive nature; one of the simplest (even simpler than the .1 C 1/-EA) such algorithms
is the Randomized Local Search or the One-Bit-Flip heuristic in which only one bit mutates at
each stage; see Garnier et al. (1999); Ladret (2005); Doerr and Lengler (2016) for details. Such
a simple heuristic yields the same type of stochastic behaviors for the optimization time as the
.1C1/-EA (see Table 1) but with different (smaller) coefficients for the means and the variances.
For completeness and ease of comparison, we list the corresponding results in Table 2; see He
and Yao (2002, 2003) for other potential algorithms.

Properties ONEMAX (Xn) LEADINGONES (Yn)
Reference Garnier et al. (1999) Ladret (2005)
Probability
generating
function

P
06m6n

.n
m/
2n

Q
16k6m

k
n t

1�.1� k
n /t

�
1
2
C

1
n t

2.1�.1� 1
n /t/

�n

Mean � .log n
2
C 
 /nC 1

2
1
2

n2

Variance � �2

6
n2 � .log n

2
C 
 C 1/n 3

4
n3

Limit law

Gumbel distribution

P
�

Xn

n
� log n

2
6 x

�
! e�e�x

Gaussian distribution

P

 
Yn�

1
2

n2q
3
4

n3
6 x

!
!

1p
2�

R x

�1
e�

t2

2 dt

Approach method of moments characteristic function

Table 2: A summary of known results for the optimization time of One-Bit-Flip under the ONE-
MAX (Xn) and LEADINGONES (Yn) fitness function, respectively, when starting from a random
initial state and when the mutation probability is 1

n
.
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Appendices

A Some properties of Sr .z/

We collected here some interesting expressions for Sr .z/.
We begin with proving that all Sr can be expressed in terms of S0 and the two modified

Bessel functions

I0.˛/ WD I0

�
2
p
˛.1 � ˛/

�
D

X
`>0

˛`.1 � ˛/`

`!`!
;

I1.˛/ WD

r
˛

1 � ˛
I1

�
2
p
˛.1 � ˛/

�
D

X
`>1

˛`.1 � ˛/`�1

`!.` � 1/!
:

The starting point is the obvious relation (Er .z/ WD
P
`>1 `

r z`�1)

Er .z/ D zE0r�1.z/CEr�1.z/ .r > 1/:

Applying the integral representation (32) and integration by parts, we have

Sr .˛/ D
1

2� i

I
jzjDc

�˛
z
� .1 � ˛/z

�
Er�1.z/e

˛
z C.1�˛/z dz:

By the same argument used for Corollary 3, we deduce the recurrence

Sr .˛/ D ˛I0.˛/C
X

06j<r

�
r � 1

j

� �
˛ C .�1/r�j .1 � ˛/

�
Sj .˛/; (79)

for r > 2 with
S1.˛/ D .2˛ � 1/S0.˛/C ˛I0.˛/C .1 � ˛/I1.˛/:

A closed-form expression can be obtained for the recurrence (79) but it is very messy. More
precisely, let f .z/ WD

P
r>0 Sr .˛/

zr

r!
. Then f satisfies the first-order differential equation

f 0.z/ D .˛ez
� .1 � ˛/e�z/ f .z/C ˛I0.˛/C .1 � ˛/I1.˛/:

The solution to the differential equation with the initial condition f .0/ D S0.˛/ is given by

f .z/ D S0.˛/e
˛.ez�e�z /Ce�1�1

C e˛ezC.1�˛/e�z

Z z

0

�
˛I0.˛/e

u
C .1 � ˛/I1.˛/

�
e�˛eu�.1�˛/e�u

du:

This implies that Sr .˛/ has the general form

Sr .˛/ D pŒ0�r .˛/I0.˛/C pŒ1�r .˛/I1.˛/C pŒ2�r .˛/S0.˛/ .r > 1/;
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where the p
Œi�
r are polynomials of ˛ of degree r . Closed-form expressions can be derived but are

less simple than the recurrence (79) for small values of r .
On the other hand, the same argument also leads to

S 0r .˛/ D I0.˛/C
X

06j<r

�
r

j

� �
1 � .�1/r�j

�
Sj .˛/. .r > 1/:

In particular, S 0
1
.˛/ D I0.˛/C 2S0.˛/. Note that

S 00.˛/ D I0.˛/C I1.˛/;

implying that

S0.˛/ D

Z ˛

0

�
I0.u/C I1.u/

�
du:

This in turn gives

S1.˛/ D

Z ˛

0

�
.1C 2.˛ � u//I0.u/C 2.˛ � u/I1.u/

�
du:

This expression can be further simplified by taking second derivative with respect to ˛ of the
integral representation

S1.˛/ D
1

2� i

I
jzjDc

e
˛
z C.1�˛/z

.1 � z/2
dz;

giving
S 001 .˛/ D 2I0.˛/C ˛

�1I1.˛/;

which implies that (with S1.0/ D 0;S 0
1.0/ D 1)

S1.˛/ D

Z ˛

0

.˛ � u/
�
2I0.u/C u�1I1.u/

�
du

Similarly, since S 0
2
D I0 C 4S1, we have

S2.˛/ D

Z ˛

0

.1C 4.˛ � u/.˛ � uC 1//I0.u/ duC 4

Z ˛

0

.˛ � u/2I1.u/ du:

These expressions show not only the intimate connections of Sr to Bessel functions but also
their rich algebraic aspects.

We now consider Sr .1�˛/. By the same integral representation and a change of variables,
we see that, for r > 1,

.�1/r Sr .˛/C Sr .1 � ˛/ D Œz
0�Er .1 � z/e

˛
1�z
C.1�˛/.1�z/:

Now

Er .1 � z/ D r !Œwr �
ew

1 � .1 � z/ew
D

X
06j6r

.�1/rCj j ! Stirling2.r; j /z
�j�1:

Thus we deduce the identity (for r > 1)

.�1/r Sr .˛/C Sr .1 � ˛/

D e
X

06`6r

.�1/rC``! Stirling2.r; `/
X

06h6`
06j< h

2

�
h � j � 1

j � 1

�
.2˛ � 1/`�h˛j

.` � h/!j !
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or

.�1/r Sr .˛/C Sr .1 � ˛/

D e
X

06`6r

.�1/rC``! Stirling2.r; `/

0BB@ .˛ � 1/`

`!
C

X
06h6`
06j<h

�
h � 1

j

�
˛h�j .˛ � 1/`�h

.` � h/!.h � j /!

1CCA :
Note that for r D 0

S0.˛/C S0.1 � ˛/ D e � I0.˛/:

In particular, this gives S.1
2
/ D 1

2
.e � I0.1// � 0:726107. For r > 1

S1.˛/ � S1.1 � ˛/ D e.2˛ � 1/

S2.˛/C S2.1 � ˛/ D e.4˛2
� 4˛ C 2/

S3.˛/ � S3.1 � ˛/ D e.8˛3
� 12˛2

C 14˛ � 5/

S4.˛/C S4.1 � ˛/ D e.16˛4
� 32˛3

C 64˛2
� 48˛ C 15/:

On the other hand, we also have the limiting behaviors

lim
˛!0

Sr .˛/

˛
D 1;

and

lim
˛!1

Sr .˛/ D
X
`>1

`r

`!
D fe � 1; e; 2e; 5e; 15e; � � � g:

Without the first term, the right-hand side is, up to e, the Bell numbers (all partitions of a set;
Sequence A000110 in Sloane’s Encyclopedia of Integer Sequences Sloane (1995)).

B The refined approximation (39) to the asymptotics of ��n;m
We consider now the difference

��n;m WD �
�
n;m � .Hm C �1.˛// �

1

n
.b1Hm C �2.˛// ;

and will determine the constant b1 and the function �2.z/ such that

��n;m D O.n�2Hm/; (80)

uniformly for 1 6 m 6 n, which then proves Theorem 2. By (16), ��n;m satisfies, for 1 6 m 6
n, the recurrence X

16`6m

��n;m;`

�
��n;m ��

�
n;m�`

�
D E2.n;m/; (81)

where

E2.n;m/ WD
1

n
�

X
16`6m

��n;m;` .Hm �Hm�`/ �
X

16`6m

��n;m;`

�
�1

�m

n

�
� �1

�m � `

n

��

�
b1

n

X
16`6m

��n;m;` .Hm �Hm�`/ �
1

n

X
16`6m

��n;m;`

�
�2

�m

n

�
� �2

�m � `

n

��
:
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In particular, ��
n;0
D �

�2.0/
n

.
The hard part here is to derive an asymptotic expansion for E2.n;m/ that holds uniformly

for 1 6 m 6 n as n ! 1. To that purpose, we first extend Lemma 5 by using a Taylor
expansion of third order for a C1Œ0; 1�-function �.z/, which then gives, uniformly for 1 6 m 6
n, X

16`6m

��n;m;`

�
�
�m

n

�
� �

�m � `

n

��

D
�0.˛/

n

X
16`6m

`��n;m;` �
�00.˛/

2n2

X
16`6m

`2��n;m;` CO
�
n�3

�
D
�0.˛/

n
S1.˛/C

1

2n2

�
2�0.˛/U1.˛/ � �

00.˛/S2.˛/
�
CO

�
n�3

�
; (82)

where we used Corollary 3.
On the other hand, by Corollary 6, we have

Hm �Hm�` D
`

m
C

Jm > 2K `.` � 1/

2m.m � 1/
CO

�`.` � 1/.` � 2/

m3

�
;

for 0 6 ` 6 m
2

and m > 1. By the same argument used above for (45), we get the expansionX
16`6m

��n;m;` .Hm �Hm�`/

D

X
16`6m

�
`

m
C

Jm > 2K `.` � 1/

2m.m � 1/
CO

�`.` � 1/.` � 2/

m3

��
��n;m;` CO

�
n�3

�
D

1

m

X
16`6m

`��n;m;` C
Jm > 2K

2m.m � 1/

X
16`6m

`.` � 1/��n;m;` CO
�
n�3

�
D

S1.˛/

˛n
C

1

2n2

�
U1.˛/

˛
C

S2.˛/ � S1.˛/

˛2

�
�

Jm D 1K
2n2

CO
�
n�3

�
; (83)

which holds uniformly for 1 6 m 6 n. Note that for m D 1 a correction term is needed; more
correction terms have to be introduced in more refined expansions (see Appendix C).

Combining the estimates (82) (with � D �1; �2) and (83), we see that

E2.n;m/ D
J1.˛/

n
C

J2.˛/

2n2
C

Jm D 1K
2n2

CO
�
n�3

�
;

uniformly for 1 6 m 6 n, where

J1.z/ D 1 �
S1.z/

z
� �01.z/S1.z/;

J2.z/ D �
S2.z/ � S1.z/

z2
�

2b1

z
S1.z/ �

�
2

z
C 2�01.z/

�
U1.z/

C �001 .z/S2.z/ � 2�02.z/S1.z/:

Obviously, J1.z/ D 0 because �0
1
.z/ D 1

S1.z/
�

1
z

. To determine b1 and �2, we observe that

lim
z!0

J2.z/ D lim
z!0

�
�

S2.z/ � S1.z/

z2
�

2b1

z
S1.z/ �

2

z
U1.z/

�
D 2b1 � 2;
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where we used the relation U1.˛/ D �S0.˛/ �
1
2
S1.˛/ (see (31)). In order that E2 D o.n�2/

uniformly for 1 6 m 6 n, we need 2b1 � 2 D 0, so that b1 D 1.
Now the equation J2.z/ D 0 also implies, by (31), that

�02.z/ D �
S 0

1
.z/S2.z/

2S3
1
.z/

C
S0.z/

S1.z/2
C

1

2S1.z/
C

1

2z2
�

1

z
: (84)

With these choices of b1 and �2.z/, we have

E2.n;m/ D
Jm D 1K

2n2
CO

�
n�3

�
;

uniformly for 1 6 m 6 n.
The exact solution to the differential equation (84) requires the constant term �2.0/, which

we have not yet specified. To specify this value, we take m D 1 in (80) and then obtain, by the
recurrence (81),

��n;1 D �
�
n;0 C

E2.n; 1/

ƒ�
n;1

D �
�2.0/

n
C nE2.n; 1/ D �

�2.0/

n
C

1

2n
CO

�
n�2

�
:

This entails the choice �2.0/ D
1
2

in order that ��
n;1
D O

�
n�2

�
. Thus we obtain the integral

solution (38) for �2.z/. In particular, the first few terms of �2.z/ in the Taylor expansion are
given as follows.

�2.z/ D
1
2
�

7
4
z C 23

18
z2
�

19951
17280

z3
C

64903
57600

z4
�

13803863
12096000

z5
C � � � :

As a function in the complex plane, the region where �2.z/ is analytic is dictated by the first
zeros of S1.z/, which exceeds unity.

To complete the proof of (80), we require a variation of Lemma 4, since the assumption on
an;0 given there is not satisfied here.

Lemma 14. Consider the recurrenceX
16`6m

��n;m;` .an;m � an;m�`/ D bn;m .m > 1/;

where bn;m is defined for 1 6 m 6 n and n > 1. Assume that jan;0j 6 cn for n > 1, and
jan;1j 6 2c for n > 1. If there exists a constant c > 0 such that jbn;mj 6

c
n

holds uniformly for
2 6 m 6 n and n > 1, then

jan;mj 6 2cHm .1 6 m 6 n/: (85)

Proof. The inequality (85) holds when m D 1 by assumption. For m > 2, we write the recur-
rence as follows

an;m D
1

ƒ�n;m

X
16`<m

��n;m;` an;m�` C
��n;m;man;0

ƒ�n;m
C

bn;m

ƒ�n;m
:

By induction hypothesis and the two inequalities (see Lemma 4)

ƒ�n;m >
m

n
; and ��n;m;m D n�m 6 n�2;

we obtain
jan;mj 6 2cHm�1 C

n

m
�

1

n2
� cnC

n

m
�

c

n
6 2cHm;
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and this proves the lemma.
In view of the estimates ��

n;0
D O

�
n�1

�
, ��

n;1
D O

�
n�2

�
and E2.n;m/ D O

�
n�3

�
, for

2 6 m 6 n, there exists a constant c > 0 such that the quantity �n;m WD n2��n;m satisfies
the assumptions of Lemma 14, which implies the bound �n;m D O.Hm/, or, equivalently
��n;m D O.n�2Hm/, uniformly for 1 6 m 6 n. This completes the proof of Theorem 2.

C Closeness of the approximation (39) for ��n;m: graphical representations

The successive improvements attained by adding more terms on the right-hand side of (39) can
be viewed in Figures 10 and 11.

Figure 10: Left: the sequence ��n;m for 1 6 m 6 n and n D 10; : : : ; 60; Right: the difference
��n;m �Hm for n;m in the same ranges.

Figure 11: The difference ��n;m� .HmC�1.
m
n
// (left) and ��n;m�

�
HmC�1.

m
n
/C

HmC�2.
m
n /

n

�
(right) for 1 6 m 6 n and n D 10; : : : ; 60.

D An asymptotic expansion for the mean

The above procedure can be extended to get more smaller-order terms, but the expressions for
the coefficients soon become very involved. However, it follows from the discussions in ~ 2.4
that we expect the asymptotic expansion

��n;m �
X
k>0

bkHm C �kC1.˛/

nk
; (86)
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in the sense that the truncated asymptotic expansion

��n;m D
X

06k6K

bkHm C �kC1.˛/

nk
CO

�
n�K�1Hm

�
(87)

holds uniformly for K 6 m 6 n and introduces an error of order n�K�1Hm. This asymptotic
approximation may not hold when 1 6 m < K because additional correction terms are needed
in that case. Technically, the correction terms stem from asymptotic expansions for sums of the
form

P
16`6m �

�
n;m;`

.Hm �Hm�`/; see (83) and the comments given there.
We propose here a codable procedure for the coefficients in the expansion, whose justifi-

cation follows the same error analysis as above. We start with the formal expansion (86) and
expand in all terms for large m D ˛n in decreasing powers of n, match the coefficients of
n�K�1 on both sides for each K > 0, and then adjust the initial condition �KC1.0/ by taking
into account the extremal case when m D K (for m < K the expansion up to that order may
not hold). With this algorithmic approach it is possible to determine the coefficients bK and the
functions �KC1.z/ successively one after another.

Observe first that

Hm �Hm�` D

X
06j<`

1

m � j
D

X
06j<`

X
r>1

j r�1m�r
D

X
r>1

m�rˇr .`/ D
X
r>1

n�r˛�rˇr .`/;

where (00 D 1)

ˇr .`/ WD
X

06j<`

j r�1
D

1

r

X
06j<r

�
r

j

�
Bj`

r�j ;

the Bj representing the Bernoulli numbers. On the other hand,

�kC1.˛/ � �kC1

�
˛ �

`

n

�
D �

X
r>1

�
.r/

kC1
.˛/

r !

�
�
`

n

�r

:

Thus, by substituting these expansions into (86),

��n;m � �
�
n;m�` �

X
r>1

n�r
X

16j6r

�
ǰ .`/br�j

˛j .r � j /!
�
.�`/j

j !
�
.j/
r�jC1.˛/

�
:

Then, by (25),

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�
�

X
r>1

n�r Œt�1�

�
1C

1

nt

�m �
1C

t

n

�nC1�m

fr .t/;

where

fr .t/ WD
X
`>1

t`�1
X

16j6r

�
ǰ .`/br�j

˛j .r � j /!
�
.�`/j

j !
�
.j/
r�jC1.˛/

�
:

Now �
1C

1

nt

�m �
1C

t

n

�nC1�m

D exp

0@X
j>1

.�1/j�1

j

�
˛t�j C .1 � ˛/tj

nj�1
C

tj

nj

�1A :
Evolutionary Computation Volume x, Number x 53



H.-K. Hwang, A. Panholzer, N. Rolin, T.-H. Tsai, and W.-M. Chen

A direct expansion using Bell polynomials B�
k
.t1; : : : ; tk/ (see Comtet (1974)) then gives�

1C
1

nt

�m �
1C

t

n

�nC1�m

D e
˛
t C.1�˛/t

X
k>0

B�
k
.t1; : : : ; tk/

k!
n�k

D e
˛
t C.1�˛/t

X
k>0

QBk.t/
k!t2k

n�k

where QB0 D 1,

tj WD
.�1/j j !

j C 1

� ˛

tjC1
C .1 � ˛/tjC1

�
C .�1/j�1.j � 1/!tj .j D 1; 2; : : : /;

and QBk.t/ is a polynomial of degree 4k.
Collecting these expansions, we get

X
16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�
�

X
K>0

n�.KC1/
X

06r6K

Œt2r�1�e
˛
t C.1�˛/t

QBr .t/
r !

fKC1�r .t/:

All terms now have the form

Œt2r�1�e
˛
t C.1�˛/t F.t/ D

X
`>0

˛`

`!
Œt`C2r�1�e.1�˛/t F.t/

D

X
`>0

˛`

`!

X
06j<2rC`

.1 � ˛/j

j !
�

F .`C2r�1�j/.0/

.`C 2r � 1 � j /!
:

Since we are solving the recurrenceX
16`6m

��n;m;`
�
��n;m � �

�
n;m�`

�
D

1

n
;

we have the relations8̂̂̂<̂
ˆ̂:
�

b0

˛
C �01.˛/

�
Œt�1�

e
˛
t C.1�˛/t

.1 � t/2
D 1;X

06r6K

Œt2r�1�e
˛
t C.1�˛/t

QBr .t/
r !

fKC1�r .t/ D 0; .K > 1/:

By induction, each �KC1 satisfies a differential equation of the form�
bK

˛
C �0KC1.˛/

�
S1.˛/ D LKC1Œ�1; : : : ; �K �.˛/;

for some functional LKC1. Since S1.˛/ � ˛ as ˛ ! 0, we also have the relation

bK D LKC1Œ�1; : : : ; �K �.0/:

Once the value of bK is determined, we can then write

�KC1.˛/ D �KC1.0/C

Z ˛

0

�
LKC1Œ�1; : : : ; �K �.x/

S1.x/
�

bK

x

�
dx;

54 Evolutionary Computation Volume x, Number x



Analysis of the (1C 1)-Evolutionary Algorithm

and it remains to determine the initial value �KC1.0/, which is far from being obvious. The
crucial property we need is that the truncated expansion (87) holds when K 6 m 6 n, and
particularly when m D K. So we compute (87) with m D K and drop all terms of order smaller
than or equal to n�K�1. Then we match the coefficient of n�K with that in the expansion of
��

n;K
obtained by a direct calculation from the recurrence (16).

We illustrate this procedure by computing the first two terms in (86). First, we have�
b0

˛
C �01.˛/

�
S1.˛/ D 1;

which implies b0 D 1 and �0
1
.˛/ D 1

S1.˛/
�

1
˛

. Moreover, substituting the initial value m D

K D 0, we get

0 D ��n;0 D H0 C �1.0/CO
�
n�1

�
D �1.0/CO

�
n�1

�
;

entailing �1.0/ D 0, which is consistent with what we obtained above.
The next-order term when K D 1 is (after substituting the relations b0 D 1, �0

1
.˛/ D

1
S1.˛/

�
1
˛

and �00
1
.˛/ D 1

˛2 �
S 0

1
.˛/

S1.˛/
2 )

�
b1

˛
C �02.˛/

�
Œt�1�

e
˛
t C.1�˛/t

.1 � t/2

D Œt�1�e
˛
t C.1�˛/t

�
1

2˛2.1 � t/2
�

.1C t/S 0
1
.˛/

2.1 � t/3S1.˛/
C
˛ � 2t3 C .1 � ˛/t4

2t2.1 � t/2S1.˛/

�
;

implying that �
b1

˛
C �02.˛/

�
S1.˛/ D �

S 01.˛/S2.˛/

2S1.˛/2
C

S0.˛/

S1.˛/
C

1

2
C

S1.˛/

2˛2
: (88)

As ˛ ! 0, the right-hand side of (88) has the local expansion 1� 1
4
˛C� � � , forcing b1 D 1, and,

accordingly, we obtain the same differential equation (84). Substituting the value m D K D 1

in (87) yields

1 D ��n;1 D H1 C �1

�1

n

�
C

1

n

�
H1 C �2

�1

n

��
CO

�
n�2

�
D 1C

�01.0/

n
C

1

n
C
�2.0/

n
CO

�
n�2

�
;

implying, by using (43), �2.0/ D ��
0
1.0/ � 1 D 1

2
, which is consistent with Theorem 2.

Although the expressions become rather involved for higher-order terms, all calculations
(symbolic or numerical) are easily codable. For example, we have

�3.z/ D
1

12
�

575
432

z C 15101
11520

z2
�

8827
5400

z3
C

2229089
1036800

z4
�

361022171
127008000

z5
C � � � :

E Asymptotic expansions for V �n;m for small m and the refined approximation
(52) to V �n;m

Recall that

V �n;m D
e2

n

n2

�
V.XnC1;m/C E.XnC1;m/

�
:
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This sequence satisfies V �
n;0
D 0, and for 1 6 m 6 n,X

16`6m

��n;m;`

�
V �n;m � V �n;m�`

�
D T �n;m; (89)

where

T �n;m WD
X

16`6m

��n;m;`

�
��n;m � �

�
n;m�`

�2

:

From this recurrence, we obtain the expansions

V �n;1 D 1;

V �n;2 D
5
4
�

1
2
n�1
C

3
4
n�2
�

5
4
n�3
C

31
16

n�4
� 3n�5

CO
�
n�6

�
;

V �n;3 D
49
36
�

17
18

n�1
C

52
27

n�2
�

139
36

n�3
C

3157
432

n�4
�

361
27

n�5
CO

�
n�6

�
;

V �n;4 D
205
144
�

95
72

n�1
C

1489
432

n�2
�

1243
144

n�3
C

33091
1728

n�4
�

28979
864

n�5
CO

�
n�6

�
:

Observe that the leading constant terms are exactly given byn
H .2/

m

o
D

n
1; 5

4
; 49

36
; 205

144
; 5269

3600
; 5369

3600
; : : :

o
:

These expansions suggest the general form

V �n;m � H .2/
m C

X
k>1

Qdk.m/

nk
:

With this form using the technique of matched asymptotics, we are then led to the following
explicit expressions.

Qd1.m/ D �2Hm C 2H
.2/
m ; for m > 0;

Qd2.m/ D �
11
2

Hm C
7
3

H
.2/
m C

7
12
C

11
4

m; for m > 2;

Qd3.m/ D �
73
9

Hm C
7
3

H
.2/
m C

1
6
C

239
36

m � 49
36

m2; for m > 2;

Qd4.m/ D �
1349
144

Hm C 2H
.2/
m C

197
144
C

14135
1728

m � 6283
2880

m2
C

2473
4320

m3; for m > 4:

The above expansions for small m suggest the more uniform asymptotic expansion for V �n;m for
1 6 m 6 n

V �n;m � H .2/
m C

X
k>1

akHm C  k.˛/C ckH
.2/
m

nk
; (90)

in the sense that omitting all terms with indices k > K introduces an error of order n�.KC1/Hm;
furthermore, the expansion holds uniformly for K 6 m 6 n. We elaborate this approach by
carrying out the required calculations up to k D 2, which then characterizes particularly the
constant a3 and the function  2.z/.

We start with the formal expansion (90) and expand in recurrence (89) all terms for large
m D ˛n in decreasing powers of n; we then match the coefficients of n�.KC1/ on both sides
for each K > 1. To specify the initial condition  K .0/ we incorporate the information from
the asymptotic expansion for V �

n;K
(obtained by exact solution). With this algorithmic approach

it is possible to determine the coefficients ak and ck and the functions  k.z/ successively one
after another. We remark that a formalization of this procedure at the generating function level
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as carried out for the expectation in Appendix D could be given also, but here we do not pursue
this any further.

We use the expansions

�
�m

n

�
� �

�m � `

n

�
D �0.˛/

`

n
� �00.˛/

`2

2n2
C �000.˛/

`3

6n3
C � � � ;

Hm �Hm�` D
`

˛ n
C
`.` � 1/

2˛2 n2
C
`.` � 1/.2` � 1/

6˛3 n3
C � � � ;

H .2/
m �H

.2/

m�`
D

`

˛2 n2
C
`.` � 1/

˛3 n3
C
`.` � 1/.2` � 1/

2˛4 n4
C � � �

as well as those for ��n;m and ƒ� .r/n;m in (86) and (29), respectively. The expansion of the right-
hand side of (89) then starts as follows.

T �n;m D
T1.˛/

n2
C

T2.˛/

n3
C � � � ;

where

T1.z/ D
S2.z/

S2
1
.z/
;

T2.z/ D �
S2

2 .z/S
0
1.z/

S4
1
.z/

C
S3.z/S

0
1.z/

S3
1
.z/

C
2S0.z/S2.z/

S3
1
.z/

C
S0.z/

S2
1
.z/
�

S2.z/

2S2
1
.z/
�

2

S1.z/
:

For the left-hand side of (89), the asymptotic form (90) leads to

X
16`6m

��n;m;`

�
V �n;m � V �n;m�`

�
D

V1.˛/

n2
C

V2.˛/

n3
C � � � ;

where

V1.z/ D

�
1

z2
C

a2

z
C  01.z/

�
S1.z/;

V2.z/ D

�
�

1

z2
�

a2

z
�  01.z/

�
S0.z/

C

�
�

1

z3
�

1

2z2
C

c6

z2
�

a2

2z2
�

a2

2z
C

a3

z
�
 0

1
.z/

2
C  02.z/

�
S1.z/

C

�
1

z3
C

a2

2z2
�
 00

1
.z/

2

�
S2.z/:

Observe that all functions Vk.z/, Tk.z/ have a simple pole at z D 0.
We match the terms in the expansion and consider V1.z/ D T1.z/. First we compare the

first two terms of the Laurent expansions of both functions. Using (36), we get

V1.z/ D
1

z
C

�
3

2
C a2

�
CO.z/;

T1.z/ D
1

z
�

1

2
CO.z/;
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and by matching the two constant terms, we see that a2 D �2. The equation V1.z/ D T1.z/

characterizes then the function  0
1
.z/ of the form

 01.z/ D
S2.z/

S3
1
.z/
�

1

z2
C

2

z
:

Next we consider V2.z/ D T2.z/ and obtain

V2.z/ D

�
�

1

2
C c6

�
1

z
C

�
�

5

12
� a2 C

3c6

2
C a3

�
CO.z/;

T2.z/ D
3

2z
�

11

12
CO.z/;

and thus, by matching the terms and using the values already computed in the first-order ap-
proximation for V �n;m, c6 D 2 and a3 D �

11
2

. Then the function  02.z/ can be characterized by
equating V2.z/ D T2.z/, which then gives

 02.z/ D �
5S2

2 .z/S
0
1.z/

2S5
1 .z/

C
S3.z/S

0
1.z/

S4
1 .z/

C
3S2.z/S0.z/

S4
1 .z/

C
S2.z/S

0
2.z/

2S4
1 .z/

C
S0.z/

S3
1 .z/

�
2

S2
1 .z/

C
1

z3
�

3

z2
C

11

2z
:

All constants and functions here match with those obtained earlier in previous paragraphs, and
we can pursue the same calculations further and obtain finer approximations. For example, we
have c7 D

7
3

. But the calculations are long and laborious.
Finally, it remains to determine the constant terms in the Taylor expansion of the functions

 k.z/ by adjusting them to the expansion of V �n;m for small m. This yields  1.0/ D 0, and

 2.0/ D
7

12
:

This characterizes the function  2.z/ in Theorem 4 as follows.

 2.z/ D
7

12
C

Z z

0

�
�

5S2
2 .t/S

0
1.t/

2S5
1 .t/

C
S3.t/S

0
1.t/

S4
1 .t/

C
3S2.t/S0.t/

S4
1 .t/

C
S2.t/S

0
2.t/

2S4
1 .t/

C
S0.t/

S3
1 .t/
�

2

S2
1 .t/
C

1

t3
�

3

t2
C

11

2t

�
dt:

In particular, the first few terms in the Taylor expansion of  2.z/ are given by

 2.z/ D
7

12
C

239
36

z � 6283
2880

z2
�

4529
3600

z3
C

9283591
1814400

z4
�

137478949
14112000

z5
C � � � :

F Closeness of the approximation (52) for V �n;m: graphical representations
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Figure 12: Left: the sequence V �n;m for 2 6 m 6 n and n D 10; : : : ; 60; Right: the difference

V �n;m �H
.2/
m for n;m in the same ranges.

Figure 13: The difference V �n;m �
�
H
.2/
m C

�2HmC 1.˛/C2H
.2/
m

n

�
(left) and V �n;m �

�
H
.2/
m C

�2HmC 1.˛/C2H
.2/
m

n
C
� 11

2
HmC 2.˛/C

7
3

H
.2/
m

n2

�
(right) for 2 6 m 6 n and n D 10; : : : ; 60.
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