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1. INTRODUCTION
Random permutations are indispensable in widespread applications ranging from
cryptology to statistical testing, from data structures to experimental design, from
data randomization to random samplings, etc. Natural examples include Monte Carlo
simulations [Manly 2006], permutation tests [Berry et al. 2014] and the generalized
association plots [Chen 2002]. Random permutations are also central in the framework
of Boltzmann sampling for labeled combinatorial classes [Flajolet et al. 2007] where
they intervene in the labeling process of samplers. Finding simple, efficient, scalable
and easily parallelizable algorithms for generating random permutations is then of vi-
tal importance in the modern perspective. We are concerned in this paper with several
simple classical algorithms for generating random permutations (each with the same
probability of being generated), some having remained little known in the statistical
and computer science literature, and focus mostly on their stochastic behaviors for
large samples; implementation issues are also briefly discussed.
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1:2 A. BACHER et al.

Algorithm Laisant-Lehmer: when UnifŒ1; n!� is available. (Here and throughout this
paper UnifŒa; b� represents a discrete uniform distribution over all integers in the in-
terval Œa; b�.) The earliest algorithm for generating a random permutation dated back
to Laisant’s work near the end of the 19th century [Laisant 1888], which was later re-
discovered in [Lehmer 1960]. It is based on the factorial representation of an integer

k D c1.n � 1/!C c2.n � 2/!C � � � C cn�11! .0 6 k < n!/;

where 0 6 cj 6 n � j for 1 6 j 6 n � 1. A simple algorithm implementing this repre-
sentation then proceeds as follows; see [Devroye 1986, p. 648] or [Robson 1969].

Algorithm 1: LL.n; c/
Input: c: an array with n elements
Output: A random permutation on c
begin

u WD UnifŒ1; n!�;
for i WD n downto 2 do

t WD u
i ; j WD u � i t C 1;

swap.ci ; cj /; u WD t ;
end

end

Let k D UnifŒ0; n! � 1�. The first element of the
random permutation is c1 C 1, which is then re-
moved from f1; : : : ; ng. The next element of the
random permutation will then be the .c2 C 1/st
element of the n � 1 remaining elements. Con-
tinue this procedure until the last element is re-
moved. A direct implementation of this algorithm
results in a two-loop procedure; a simple one-loop
procedure was devised in [Robson 1969] and is
shown on the right; see also [Plackett 1968] and
Devroye’s book [Devroye 1986, ~XIII.1] for vari-
ants, implementation details and references.

This algorithm is mostly useful when n is
small, say less than 20 because n! grows very fast and the large number arithmetics in-
volved reduce its efficiency for large n. Also the generation of the uniform distribution
is better realized by the coin-tossing algorithms (essentially Knuth-Yao’s algorithm
[Knuth and Yao 1976]) described in Section 2; this generation algorithm will be re-
ferred to as LLKY later.

Algorithm Fisher-Yates (FY): when UnifŒ1; n� is available. One of the simplest and
mostly widely used algorithms (based on a given sequence of distinct numbers
fc1; : : : ; cng) for generating a random permutation is the Fisher-Yates or Knuth shuf-
fle (in its modern form due to Durstenfeld [Durstenfeld 1964]; see Wikipedia’s page
on Fisher-Yates shuffle and [Devroye 1986; Durstenfeld 1964; Fisher and Yates. 1948;
Knuth 1998a] for more information).

Algorithm 2: FY.n; c/
Input: c: an array with n > 2 elements
Output: A random permutation on c
begin

for i WD n downto 2 by �1 do
j WD UnifŒ1; i �; swap.ci ; cj /

end
end

The algorithm starts by swapping cn with a
randomly chosen element in fc1; : : : ; cng (each
with the same probability of being selected),
and then repeats the same procedure for cn�1,
. . . , c2. See also the recent book [Berry et al.
2014] or the survey paper [Ritter 1991] for a
more detailed account.

Such an algorithm seems to have it all: sin-
gle loop, one-line description, constant extra
storage, efficient and easy to code. Yet it is not
optimal in situations such as (i) when implemented on a non-array type data structure
such as a list (see [Ressler 1992]), (ii) when numerical truncation errors are inherent
(see [Kimble 1989]), and (iii) when a parallel or distributed computing environment
is available (see [Anderson 1990; Langr et al. 2014]); see also [Brassard and Kannan
1988] for generating random permutations on the fly. On the other hand, at the mem-
ory access level, a direct generation of the uniform random variable results in a higher
rate of cache miss (see [Andrés and Pérez 2011]), making it less efficient than it seems,
notably when n is very large; see also Section 7 for some implementation and simula-
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Algorithms for Generating Random Permutations 1:3

tion aspects. Finally, this algorithm is sequential in nature and the memory conflict
problem is subtle in parallel implementation; see [Waechter et al. 2011]. Note that
the implementation of this algorithm strongly relies on the availability of a uniform
random variate generator, and its bit-complexity (number of random bits needed) is of
linearithmic order (not linear); see [Lumbroso 2013; Sandelius 1962]) and below for a
detailed analysis.

From unbounded uniforms to bounded uniforms?. Instead of relying on uniform dis-
tribution with varying and possibly very large range, our starting question was: can
we generate random permutations by bounded uniform distributions (for example, by
flipping unbiased coins)? There are at least two different ways to achieve this:

— Fisher-Yates type: simulate the uniform distribution used in Fisher-Yates shuffle by
coin-tossing, which can be realized either by von Neumann’s rejection method [von
Neumann 1951] or by the Knuth-Yao algorithm (for generating a discrete distribution
by unbiased coins; see [Devroye 1986; Knuth and Yao 1976]) and Section 2, and

— divide-and-conquer type: each element flips an unbiased coin and then depending
on the outcome being head or tail divide the elements into two groups. Continue
recursively the same procedure for each of the two groups. Then a random resampling
is achieved by an inorder traversal on the corresponding digital tree; see the next
section for details. This realization induces naturally a binary trie [Knuth 1998b],
which is closely related to a few other binomial splitting processes that will be briefly
described below; see [Fuchs et al. 2014].

It turns out that exactly the same binomial splitting idea was already developed
in the early 1960’s in the statistical literature in [Rao 1961] and independently in
[Sandelius 1962], and analyzed later in [Plackett 1968]. The papers by Rao and by
Sandelius also propose other variants, which have their modern algorithmic interests
per se. However, all these algorithms have remained little known not only in computer
science but also in statistics (see [Berry et al. 2014; Devroye 1986]), partly because
they rely on tables of random digits instead of more modern computer generated ran-
dom bits although the underlying principle remains the same. Since a complete and
rigorous analysis of the bit-complexity of these algorithms remains open, for historical
reasons and for completeness, we will provide a detailed analysis of the algorithms pro-
posed in [Rao 1961] and [Sandelius 1962] (and partially analyzed in [Plackett 1968])
and two versions of Fisher-Yates with different implementations of the underlying
uniform UnifŒ0; n � 1� by coin-tossing: one relying on von Neumann’s rejection method
[Devroye and Gravel 2016; von Neumann 1951] and the other on Knuth-Yao’s tree
method [Devroye 1986; Knuth and Yao 1976].

As the ideas of these algorithms are very simple, it is no wonder that similar ideas
also appeared in computer science literature but in different guises; see [Barker and
Kelsey 2007; Flajolet et al. 2011; Koo et al. 2014; Ressler 1992] and the references
therein. We will comment more on this in the next section.

We describe in the next section the algorithms we will analyze in this paper. Then
we give a complete probabilistic analysis of the number of random bits used by each of
them. Implementation aspects and benchmarks are briefly discussed in the final sec-
tion. Note that Fisher-Yates shuffle and its variants for generating cyclic permutations
have been analyzed in [Louchard et al. 2008; Mahmoud 2003; Prodinger 2002; Wilson
2009] but their focus is on data movements rather than on bit-complexity.

2. GENERATING RANDOM PERMUTATIONS BY COIN-TOSSING
We describe in this section three algorithms for generating random permutations, as-
suming that a bounded uniform UnifŒ0; r � 1� is available for some fixed integer r > 2.
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The first algorithm relies on the divide-and-conquer strategy and was first proposed in
[Rao 1961] and independently in [Sandelius 1962], so we will refer to it as Algorithm
RS (Rao-Sandelius). The other two ones we study are of Fisher-Yates type but differ
in the way they simulate UnifŒ0; n � 1� by a bounded uniform UnifŒ0; r � 1�: the first of
these two simulates UnifŒ0; n�1� by a rejection procedure in the spirit of von Neumann
[von Neumann 1951] and was proposed and implemented in [Sandelius 1962], named
ORP (One-stage-Randomization Procedure) there, but for convenience we will refer to
it as Algorithm FYvN (Fisher-Yates-von-Neumann); see also [Moses and Oakford 1963];
and the other one relies on an optimized version of Lumbroso’s implementation [Lum-
broso 2013] of Knuth-Yao’s DDG-tree (discrete distribution generating tree) algorithm
[Knuth and Yao 1976], which will be referred to as Algorithm FYKY (Fisher-Yates-
Knuth-Yao). See also [Devroye 1986, Ch. XV] on the “bit model” and the more recent
updates [Devroye 2010; Devroye and Gravel 2016].

For simplicity of presentation and practical usefulness, we focus in what follows
on the binary case r D 2. For convenience, let rand-bit denote the random variable
Bernoulli.1

2
/, which returns zero or one with equal probability.

2.1. Algorithm RS: divide-and-conquer

Algorithm 3: RS.n; c/
Input: c: a sequence with n elements
Output: A random permutation on c
begin

if n 6 1 then
return c

end
if n D 2 then

if rand-bit D 1 then
return .c2; c1/

else
return .c1; c2/

end
end
Let A0 and A1 be two empty arrays
for i WD 1 to n do

add ci into Arand-bit

end
return RS.jA0j;A0/,RS.jA1j;A1/

end

We describe Algorithm RS only in the binary
case assuming an unbiased coin is available.
Since we will carry out a detailed analysis of
this algorithm, we give its procedure in recur-
sive form as follows. (For practical implemen-
tation, it is more efficient to remove the recur-
sions by standard techniques; see Section 7.)

A sequence of distinct numbers fc1; : : : ; cng is
given.

(1) Each ci generates a rand-bit, one indepen-
dently of the others;

(2) Group them according to the outcomes be-
ing 0 or 1, and arrange the groups in in-
creasing order of the group labels.

(3) For each group of cardinality �:
(a) if � D 1, then stop;
(b) if � D 2, then generate a rand-bit b and

reverse their relative order if b D 1;
(c) if � > 2, then repeat Steps 1–3 for each

group.

c1c2c3c4c5c6

c2c5c6

c2c5

c2 c5

c6

c1c3c4

c1c4

c4 c1

c3

As an illustrative example, we begin
with the sequence fc1; : : : ; c6g. Assume
that the flipped binary sequence is�

c1 c2 c3 c4 c5 c6
1 0 1 1 0 0

�
. Then we split the

ci ’s into the 0-group .c2; c5; c6/ and the 1-
group .c1; c3; c4/, which can be written in
the form .c2 c5 c6/ .c1 c3 c4/. As both groups
have cardinality larger than two, we run the
same coin-flipping process for both groups. Assume that further coin-flippings yield�

c2 c5 c6
0 0 1

�
and

�
c1 c3 c4
0 1 0

�
, respectively. Then we obtain .c2 c5/ c6 .c1 c4/ c3. If the
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two extra coin-flippings needed to permute the two subgroups of size two are 0 and 1,
respectively, then we get the random permutation . c2 c5 c6 c4 c1 c3 / :

The splitting process of this algorithm is, up to the boundary conditions, essentially
the same as constructing a random trie under the Bernoulli model or sorting using
radixsort (see [Fuchs et al. 2014; Knuth 1998b]), and was also briefly mentioned in
[Flajolet et al. 2011]. On the other hand, Ressler in [Ressler 1992] proposed an algo-
rithm for randomly permuting a list structure using a similar divide-and-conquer idea
but performed in a rather different way. To the best of our knowledge, except for these
references, this simple algorithm seems to remain unknown in the literature and we
believe that more attention needs to be paid on its practical usefulness and theoretical
relevance.

Essentially identical binomial splitting processes. In addition to the above connec-
tion to trie and radixsort, the splitting process of Algorithm RS is also reminiscent
of the so-called initialization problem in distributed computing (or processor identity
problem), where a unique identifier is to be assigned to each processor in some dis-
tributed computing environment; see [Nakano and Olariu 2000; Ravelomanana 2007].
Yet another context where exactly the same coin-tossing process is used to resolve
conflict is the tree algorithm (or CTM algorithm, named after Capetanikis, Tsybakov
and Mikhailov) in multi-access channel; see [Massey 1981; Wagner 2009]. For more
references on binomial splitting processes, see [Fuchs et al. 2014].

Nowadays, it is well-known that the stochastic behaviors of these structures can be
understood through the study of the binomial recurrence

fn D gn C

X
06k6n

2�n

�
n

k

�
.fk C fn�k/; (1)

with suitably given initial conditions. In almost all cases of interest, such a recurrence
often gives rise to asymptotic approximations (for large n) that involve periodic oscil-
lations with minute amplitudes (say, in the order of 10�5), which may lead to inexact
conjectures (see for example [Massey 1981]) but can be well described by standard
complex-analytic tools such as Mellin transform [Flajolet et al. 1995] and saddle-point
method [Flajolet and Sedgewick 2009] (or analytic de-Poissonization [Jacquet and Sz-
pankowski 1998]); see [Fuchs et al. 2014] and the references compiled there. From a
historical perspective, such a clarification through analytic means was first worked
out by Flajolet and his co-authors in the early 1980’s; see again [Fuchs et al. 2014] for
a brief account. However, the periodic oscillations had already been observed in the
1960’s by Plackett in [Plackett 1968] based on heuristic arguments and figures, which
seems less expected because of the limited computer power at that time and of the
proper normalization needed to visualize the fluctuations; see Figures 2 and 3 for the
subtleties involved.

Unlike Algorithm FY, Algorithm RS is more easily adapted to a distributed or
parallel computing environment because the random bits needed can be generated
simultaneously. Furthermore, we will prove that the total number of random bits
used is asymptotically optimal, namely, the expected complexity is asymptotic to
n log2 nC nFRS.log2 n/CO.1/, where FRS.t/ is a periodic function of period 1 with very
small amplitude (jFRS.t/j 6 1:1�10�5); see Figure 2. Another distinctive feature is that
FRS is very smooth (infinitely differentiable), differing from most other periodic func-
tions arising in the analysis below. Note that the information-theoretic lower bound
satisfies log2 n! D n log2 n � n

log 2
C O.log n/. While the asymptotic optimality of such

a simple algorithm was already discussed in detail in [Sandelius 1962] and such an
asymptotic pattern anticipated in [Plackett 1968], the rigorous proof and the explicit
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1:6 A. BACHER et al.

characterization of the periodic function FRS are new. Also we show that the variance
is relatively small (being of linear order with periodic fluctuations) and that the distri-
bution is asymptotically normal.

2.2. Algorithm FYvN and FYKY
We describe in this subsection the two versions of Algorithm FY: FYvN and FYKY. Both
algorithms follow the same loop of Fisher-Yates shuffle and simulate successively the
discrete uniform distributions UnifŒ1; n�, : : : , UnifŒ1; 2� by flipping unbiased coins. To
simulate UnifŒ1; k�, both algorithms generate first dlog2 ke random bits. If these bits,
when read as a binary representation, have a value less than k, then return this value
plus 1 as the required random element; otherwise, Algorithm FYvN rejects these bits
and restarts the same procedure until finding a value < k. Algorithm FYKY, on the
other hand, does not reject the flipped bits but uses the difference between this value
and k as the “seed” of the next round and repeats the same procedure with a smaller
parameter .

We modified and improved these two procedures from Lumbroso’s Fast Dice Roller
Algorithm [Lumbroso 2013] in a way to reduce the number of arithmetic operations,
their only difference (the last line) being marked by a box; see Algorithm 4 and 5.

Algorithm 4: Algorithm FYvN
Input: c: an array with n elements
Output: A random permutation on c
begin

for i WD n downto 2 by �1 do
j WD von-Neumann.i/C 1;
swap.ci ; cj /;

end
end
Procedure von-Neumann(n)

Input: a positive integer n
Output: UnifŒ0; n � 1�
begin

u WD 1; x WD 0;
while true do

while u < n do
u WD 2u;
x WD 2xCrand-bit;

d WD u � n;
if x > d then

return x � d ;
else

u WD 1; x WD 0 ;

end

Algorithm 5: Algorithm FYKY
Input: c: an array with n elements
Output: A random permutation on c
begin

for i WD n downto 2 by �1 do
j WD Knuth-Yao.i/C 1;
swap.ci ; cj /;

end
end
Procedure Knuth-Yao(n)

Input: a positive integer n
Output: UnifŒ0; n � 1�
begin

u WD 1; x WD 0;
while true do

while u < n do
u WD 2u;
x WD 2xCrand-bit;

d WD u � n;
if x > d then

return x � d ;
else

u WD d ;

end

Note that both algorithms are identical when n D 2k and n D 3; see Figure 1 for the
evolution of the parameters when n D 3.

While the difference of both algorithms in such a pseudo-code level is minor, we
show that the asymptotic behavior of their bit-complexity for generating a random
permutation of n elements differs significantly, as summarized in the following table:
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.u;x/
.1; 0/

.2; 0/

.4; 0/ .1; 0/ recursive

.4; 1/ x � d D 0

.2; 1/

.4; 2/ x � d D 1

.4; 3/ x � d D 2

n D 3 W

Fig. 1. n D 3: the changes of the major parameters in FYvN and FYKY.

Algorithm Mean � Variance � Method
LLKY log2 n!CO.1/ O.1/ Elementary
FYKY n log2 nC nFKY.�/ nGKY.�/ Analytic

RS n log2 nC nFRS.�/ nGRS.�/ Analytic
FYvN n.log n/FvN.�/CO.n/ n.log n/2GvN.�/ Elementary

Here, for ease of reference and comparison, we added a row on LLKY, which denotes
algorithm Laisant-Lehmer using procedure Knuth-Yao to simulate the required uni-
form UnifŒ1; n!�; also F�.�/ and G�.�/ are all bounded, continuous periodic functions of
parameter log2 n. The four algorithms are arranged in increasing order of their mean
complexity; see also Table I for more precise numerics for the mean values of the peri-
odic functions arising in FYKY and RS.

We see that the minor difference in Algorithm FYvN results not only in higher mean
but also larger variance, making FYvN less competitive in modern practical applica-
tions although it was used, for example, by Moses and Oakford to produce tables of
random permutations [Moses and Oakford 1963]. Also the procedure von-Neumann in
Algorithm 4, as one of the simplest and most natural ideas of simulating a uniform
by coin-tossing, was independently proposed under different names in the literature;
see, for example, [Granboulan and Pornin 2007; Koo et al. 2014]; in particular, it is
called “Simple Discard Method” in NIST’s [Barker and Kelsey 2007] “Recommenda-
tion for random number generation using deterministic random bit generators.” Thus,
we also include the analysis of FYvN in this paper although it is less efficient in bit-
complexity. The mean and the variance of Algorithm FYvN were already derived in
[Plackett 1968] but only when n D 2k . In addition to this approximation, we will also
show that the variance is of a less common higher order n.log n/2, and the distribution
remains asymptotically normal.

2.3. Outline of this paper
We focus in this paper on a detailed probabilistic analysis of the bit-complexity of the
three algorithms RS, FYvN and FYKY. Indeed, in all three cases we will establish a
very strong local limit theorem for the bit-complexity of the form (although the vari-
ances are not of the same order)

P
�
Wn D

�
E.Wn/C x

p
V.Wn/

˘�
D

e�
x2

2p
2�V.Wn/

�
1CO

�
1C jxj3
p

n

��
;

uniformly for x D o.n
1
6 /, where Wn represents the bit-complexity of any of the three al-

gorithms fRS, FYvN, FYKYg. Our method of proof is mostly analytic, relying on proper
use of generating functions (including characteristic functions) and standard complex-
analytic techniques (see [Flajolet and Sedgewick 2009]). The diverse uniform estimates
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needed for the characteristic functions constitute the hard part of our proofs. The same
method can be readily applied to compute the asymptotics of higher moments (which
satisfy the same type of equations); also by working on the moment generating func-
tions, one can clarify finer probabilities of moderate deviations. For simplicity, we con-
tent with the above result in the central range.

On the other hand, Algorithm LLKY is very stable (with bounded variance) whose
analysis is given in Section 5 and will be needed for understanding the bit-complexity
of FYKY in Section 6.

We also implemented these algorithms and tested their efficiency in terms of run-
ning time. The simulation results are given in the last section. Briefly, Algorithm
FYKY is recommended when n is not very large, say n 6 107, and Algorithm RS per-
forms better for larger n or when a multicore system is available.

Finally, our analysis and simulations also suggest that the “Simple Discard Algo-
rithm” recommended in NITS’s [Barker and Kelsey 2007] “Recommendation for ran-
dom number generation” is better replaced by the procedure Knuth-Yao in Algorithm 5
whose expected optimality (in bit-complexity) was established in [Horibe 1981].

3. THE BIT-COMPLEXITY OF ALGORITHM RS
We consider the total number Xn of times the random variable rand-bit is used in Al-
gorithm RS for generating a random permutation of n elements. We will derive precise
asymptotic approximations to the mean, the variance and the distribution by apply-
ing the approaches developed in our previous papers [Fuchs et al. 2014; Hwang 2003;
Hwang et al. 2010].

Recurrences and generating functions. By construction, Xn satisfies the distribu-
tional recurrence

Xn
d
D XIn„ƒ‚…

1-group

CX �n�In„ƒ‚…
0-group

Cn; .n > 3/;

with the initial conditions X0 D X1 D 0 and X2 D 1, where In denotes the binomial
distribution with parameters n and 1

2
. Here the .X �n /’s are independent copies of the

.Xn/’s and are independent of In. This random variable is, up to initial conditions,
closely related to the external path length of random tries constructed from n random
binary strings. It may also be interpreted in many different ways; see [Fuchs et al.
2014; Knuth 1998b] and the references therein.

The moment generating function Pn.t/ WD E.eXnt / satisfies the recurrence

Pn.t/ D ent
X

06k6n

2�n

�
n

k

�
Pk.t/Pn�k.t/ .n > 3/; (2)

with P0.t/ D P1.t/ D 1 and P2.t/ D et . From this relation, we see that the bivariate
Poisson generating function QP .z; t/ WD e�z

P
n>0

Pn.t/
n!

zn satisfies the functional equa-
tion

QP .z; t/ D e.e
t�1/z QP

�
1
2

et z; t
�2
C
�
1 � et

�
ze�z

�
1C 1

4
et z.2C et /

�
: (3)

Let now Qfm.z/ WD m!Œtm� QP .z; t/ D e�z
P

n>0
E.X m

n /

n!
zn denote the Poisson generating

function of the mth moment of Xn. From (3), we obtain(
Qf1.z/ D 2 Qf1

�
z
2

�
C Qg1.z/;

Qf2.z/ D 2 Qf2

�
z
2

�
C Qg2.z/;

(4)
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with Qg1.0/ D Qg2.0/ D 0, where(
Qg1.z/ D z � ze�z

�
1C 3

4
z
�
;

Qg2.z/ D 2 Qf1

�
z
2

�2
C 4z Qf1

�
z
2

�
C 2z Qf 0

1

�
z
2

�
C z C z2 � ze�z

�
1C 11

4
z
�
:

(5)

Mean value. From the recurrence (2), we see that the mean �n WD E.Xn/ can be
computed recursively by

�n D nC
X

06k6n

21�n

�
n

k

�
�k .n > 3/;

with �0 D �1 D 0 and �2 D 1. Let Hn WD
P

16j6n j�1 denote the harmonic numbers
and  denote Euler’s constant.

THEOREM 1. The expected number �n of random bits used by Algorithm RS for
generating a random permutation of n elements satisfies the identity

�n

n
D

Hn�1

log 2
C

1

2
�

3

4 log 2
�

1

log 2

X
k2Znf0g

�.�k/�.n/

�.nC �k/

�
1C

3

4
�k

�
; (6)

for n > 3, where � is the Gamma function and �k WD
2k�i
log 2

. Asymptotically, �n satisfies

�n D n log2 nC nFRS.log2 n/CO.1/; (7)

where FRS.t/ is a periodic function of period 1 whose Fourier series expansion is given
by

FRS.t/ D


log 2
C

1

2
�

3

4 log 2
�

1

log 2

X
k2Znf0g

�.�k/
�
1C

3

4
�k

�
e�2k�it ;

the Fourier series being absolutely convergent.

PROOF. To derive a more effective asymptotic approximation to �n, we begin with
the expansion

Qg1.z/ D �
X
j>2

.�1/j

.j � 1/!
�

3j � 7

4
zj :

We then see that the sequence Q�n WD n!Œzn� Qf1.z/, where Œzn�f .z/ denotes the coefficient
of zn in the Taylor expansion of f , satisfies

Q�n D
Œzn� Qg1.z/

1 � 21�n
.n > 2/:

It follows, by Cauchy convolution, that the coefficient �n WD n!Œzn�ez Qf1.z/ has the closed-
form expression

�n D �

X
26k6n

�
n

k

�
.�1/k

k

1 � 21�k
�

3k � 7

4
.n > 1/;

which, by standard integral representation for finite differences (see [Flajolet and
Sedgewick 1995]), can be expressed as

�n

n
D �

1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.n/�.s/

�.nC s/.1 � 2s/

�
1C

3

4
s
�

ds .n > 3/;
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where the integral path is the vertical line<.s/ D �1
2
. By moving the line of integration

to the right and by collecting all residues at the poles �k D
2k�i
log 2

.k 2 Z/, we obtain

�n

n
D

Hn�1

log 2
C

1

2
�

3

4 log 2
�

1

log 2

X
k2Znf0g

�.�k/�.n/

�.nC �k/

�
1C

3

4
�k

�
CRn;

where

Rn WD �
1

2� i

Z 1
2
Ci1

1
2
�i1

�.n/�.s/

�.nC s/.1 � 2s/

�
1C

3

4
s
�

ds:

Since there is no other singularity lying to the right of the imaginary axis, we deform
first the integration path into a large half-circle to the right, and then prove that the
integral tends to zero as the radius of the circle tends to infinity. In this way, we deduce
that Rn � 0 for n > 3, proving the identity (6). The asymptotic approximation (7) then
follows from the asymptotic expansion for the ratio of Gamma functions (see [Erdélyi
et al. 1953, ~1.18])

�.n/

�.nC �k/
D n��k

�
1 �

�k.�k � 1/

2n
CO

�
j�k j

4

n2

��
;

when k D o.
p

n/, and the uniform estimate (see [Erdélyi et al. 1953, ~1.18])

j�.c C i t/j D O
�
jt jc�

1
2 e�

�
2
jt j
�
; (8)

for large jt j and bounded c. Indeed, the O.1/-term in (7) can be further refined by this
expansion, and be replaced by

1

2 log 2

X
k2Z

�.1C �k/.�k � 1/
�
1C

3

4
�k

�
n��k CO

�
n�1

�
;

the series on the right-hand side defining another bounded periodic function. Finally,
by (8), the Fourier series is not only absolutely convergent but also infinitely differen-
tiable for <.t/ > 0.

Periodic fluctuations of �n. Due to the small amplitude of variation of FRS.t/, the
periodic oscillations are invisible if one plots naively �n

n
� log2 n for increasing values

of n as approximations of FRS.t/ (see Figure 2). Also note that the mean value of FRS
equals numerically



log 2
C

1

2
�

3

4 log 2
� 0:25072 48966 10144 : : : ; (9)

which is larger than the corresponding linear term in the information-theoretic lower
bound � 1

log 2
� �1:44.

Variance. We prove that the variance is small and asymptotically linear with peri-
odic oscillations. The expressions involved are very complicated, showing the complex-
ity of the underlying asymptotic problem.

THEOREM 2. The variance of Xn satisfies
V.Xn/ D nGRS.log2 n/CO.1/;

where GRS.t/ is a periodic function of period 1 whose Fourier series is given by

GRS.t/ D
1

log 2

X
k2Z

Qg�
�
�1C

2k� i

log 2

�
e2k�it :
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Fig. 2. Periodic fluctuations of �n for n D 16 to 1024 in log-scale: �n

n
� log2 n (first from left), �n

n
� log2 nC

1
2n log 2

(second), �n

n
�

Hn�1�

log 2
(third), and FRS.t/ for t 2 Œ0;1� (fourth).

The Fourier series is absolutely convergent (and infinitely differentiable). An explicit
expression for the function Qg�.s/ is given as follows.

Qg�.s/

�.s C 1/
D .3s C 5/

X
k>1

�
1 �

�
1C 2�k

��s
�
C

s C 5

4

C Qh�.s/ �
.s C 2/.9s3 C 66s2 C 163s C 362/

2sC9
.<.s/ > �2/;

(10)

where

Qh�.s/ WD
X
k>1

2�k�3�
1C 2�k

�sC5
�

0BB@
�3s3 � 34s2 � 41s C 6

�
�
9s4 C 87s3 C 317s2 C 333s C 30

�
2�k

C
�
3s3 C 22s2 C 141s C 170

�
2�2k�1

C
�
3s2 C 37s C 50

�
2�3k�2 C .3s C 5/2�4k�3

1CCA :
PROOF. For the variance, we consider, as in [Fuchs et al. 2014], the corrected Pois-

sonized variance
QV .z/ WD Qf2.z/ � Qf1.z/

2
� z Qf 01.z/

2;

see (4). Then, by (5),

QV .z/ D 2 QV
�

z
2

�
C Qg.z/;

where

Qg.z/ D e�z
n
z.3z C 4/ Qf1

�
z
2

�
�

1
2

z
�
3z2
� 2z � 4

�
Qf 01
�

z
2

�
C z C 1

4
z2
�

1
16

z.z C 1/.9z3
� 12z2

C 16z C 16/ e�z
o
;

(11)

which is exponentially small for large <.z/. Indeed,

Qg.z/ D O
�
e�<.z/jzj3 log jzj

�
.jzj ! 1I<.z/ > 0/: (12)

We follow the same method of proof developed in [Fuchs et al. 2014] and need to com-
pute the Mellin transform of Qg.z/, which exists in the half-plane <.s/ > �2 because
Qg.z/ D O.jzj2/ as jzj ! 0. Now

Qf1.z/ D
X
k>0

2k
Qg1

�
z

2k

�
:

Thus

Qg�.s/ WD

Z 1
0

Qg.z/zs�1 dz D 1.s/C 2.s/C 3.s/;
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where

1.s/ WD

Z 1
0

zse�z.3z C 4/ Qf1

�
z
2

�
dz

2.s/ WD �
1
2

Z 1
0

zse�z
�
3z2
� 2z � 4

�
Qf 01
�

z
2

�
dz

3.s/ WD

Z 1
0

zse�z
�
1C 1

4
z � 1

16
.z C 1/.9z3

� 12z2
C 16z C 16/ e�z

�
dz:

First, for <.s/ > �2,

3.s/ D �.s C 1/
�

1
4
.s C 5/ � 2�s�9.s C 2/.9s3

C 66s2
C 163s C 362/

�
:

Note that 3.s/ has no singularity at s D �1; indeed, 3.�1/ D �125
128
C log 2. On the

other hand, by an integration by parts,

1.s/C 2.s/ D

Z 1
0

zs�1e�z Qf1

�
z
2

��
�3z3

C .3s C 11/z2
� 2.s � 3/z � 4s

�
dz

D

X
k>1

2k�1

Z 1
0

zs�1e�z
Qg1

�
z

2k

��
�3z3

C .3s C 11/z2
� 2.s � 3/z � 4s

�
dz

D �.s C 1/

�
.3s C 5/

X
k>1

�
1 �

�
1C 2�k

��s
�
C Qh�.s/

�
;

which can be analytically continued into the half-plane <.s/ > �2 and leads then to
(10). Also, by (8), j Qg�.c C i t/j D O

�
jt jcC

7
2 e�

�
2
jt j
�

for large jt j and c > �2. Thus, the
Fourier series expansion for GRS.t/ is absolutely convergent. By the same Poisson-
Charlier approach used in [Fuchs et al. 2014], we see that

V.Xn/ D QV .n/„ƒ‚…
DO.n/

�
1
2
n QV 00.n/ � 1

2
n2 Qf 001 .n/

2„ ƒ‚ …
DO.1/

CO
�
n�1

�
;

where the O-terms can be made more precise by Mellin transform techniques (see
[Flajolet et al. 1995]) as follows. First, by moving the line of integration to the right
and collecting all residues encountered, we deduce that (�k WD

2k�i
log 2

)

QV .n/ D
1

2� i

Z � 3
2
Ci1

� 3
2
�i1

n�s Qg
�.s/

1 � 2sC1
ds

D
n

log 2

X
k2Z

Qg�.�1 � �k/n
�k C

1

2� i

Z � 1
2
Ci1

� 1
2
�i1

n�s Qg
�.s/

1 � 2sC1
ds

D nGRS.log2 n/ �
X
k>1

2�k
Qg.2kn/;

which is not only an asymptotic expansion but also an identity for n > 1. Here GRS.t/
is a 1-periodic function with small amplitude, and the series over k represents expo-
nentially small terms; see (12). Similarly,

n QV 00.n/ D
1

log 2

X
k2Z

�k.�k C 1/ Qg�.�1 � �k/n
�k �

X
k>1

2k
Qg00.2kn/;

the first series being bounded while the second exponentially small for large n.
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In particular, the mean value of the periodic function GRS is given by

Qg�.�1/

log 2
D 1 �

125

128 log 2
C 2

X
k>1

log2

�
1C 2�k

�
�

1

4 log 2

X
k>1

3 � 8k C 10 � 4k � 34 � 2k � 14

.2k C 1/4

� 1:82994 9955089 43482 69596 20844 : : : ; (13)

in accordance with the numerical calculations; see Figure 3.

Fig. 3. A plot (right) of V.Xn/�c0

n
for n from 12 to 256 in logarithmic scale, where c0 D �

1

2.log 2/2
is the mean

value of the second-order term (another periodic function). Without this correction term c0, the fluctuations
are invisible (left).

Asymptotic normality. By applying either the contraction method (see [Neininger
and Rüschendorf 2004]) or the refined method of moments (see [Hwang 2003]), we
can establish the convergence in distribution of the centered and normalized random
variables .Xn � �n/=�n to the standard normal distribution, where �n WD E.Xn/ and
�2

n WD V.Xn/. The latter is also useful in providing stronger results such as the follow-
ing.

THEOREM 3. The sequence of random variables fXng satisfies a local limit theorem
of the form

P .Xn D b�n C x�nc/ D
e�

x2

2

p
2� �n

�
1CO

�
1C jxj3
p

n

��
(14)

uniformly for x D o
�
n

1
6

�
.

PROOF. (Sketch) The refined method of moments proposed in [Hwang 2003] begins
with introducing the normalized function

'n.y/ WD e�
1
2
�2

n y2E
�
e.Xn��n/y

�
D e��ny� 1

2
�2

n y2

Pn.y/:

Then '0.y/ D '1.y/ D '2.y/ D 1 and

'n.y/ D
X

06k6n

2�n

�
n

k

�
'k.y/'n�k.y/e

�n;k yCın;k y2

.n > 3/;

where �n;k WD nC�k C�n�k ��n and ın;k WD
1
2

�
�2

k
C �2

n�k
� �2

n

�
. From this, we see that

all Taylor coefficients '.m/n .0/ satisfy the same recurrence of the form (1) with different
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non-homogeneous part. Then a good estimate for j'n.y/j for y small is obtained by
establishing the uniform boundsˇ̌

'.m/n .0/
ˇ̌
6 m!C mn

m
3 .m > 3/;

for a sufficiently large number C > 0. Such bounds are proved by induction using
Gaussian tails of the binomial distribution and the estimates

�
n; n

2
Cx
p

n

2

; ı
n; n

2
Cx
p

n

2

D O
�
1C x2

�
;

uniformly for x D o.
p

n/ (the remaining range completed by using the smallness of the
binomial distribution). Then it follows thatˇ̌̌̌

'n

� iy

�n

�
� 1

ˇ̌̌̌
6
X
m>3

ˇ̌
'
.m/
n .0/

ˇ̌
m!�m

n

jyjm D O
�
n�

1
2 jyj3

�
;

uniformly for jyj D o.n
1
6 /, or, equivalently,

E
�
e

Xn��n
�n

iy�
D e�

1
2

y2

CO
�
n�

1
2 jyj3e�

1
2

y2�
; (15)

for y in the same range. Then another inductive argument leads to the uniform esti-
mate (see [Hwang 2003] for a similar setting)ˇ̌

E
�
eXniy

�ˇ̌
6 e�".nC1/y2

.jyj 6 � I n > 4/; (16)

where " > 0 is a sufficiently small constant. (We use " > 0 as a generic symbol repre-
senting a sufficiently small number whose occurrence may change from one occurrence
to another.) These two uniform bounds are sufficient to prove the local limit theorem
by standard Fourier analysis (see [Petrov 1975]) starting from the inversion formula

P.Xn D k/ D
1

2�

Z �

��

e�ikyE
�
eXniy

�
dy;

and then splitting the integration range into two parts:

P.Xn D k/ D
1

2�

�Z
jyj6"n

� 1
3

C

Z
"n
� 1

3<jyj6�

�
e�ikyE

�
eXniy

�
dy:

By (16), the second integral is asymptotically negligible
1

2�

ˇ̌̌̌Z
"n
� 1

3<jyj6�
e�ikyE

�
eXniy

�
dy

ˇ̌̌̌
D O

�Z 1
"n
� 1

3

e�"ny2

dy

�
D O

�
n�

2
3 e�"n

1
3
�
:

The integral over the central range jyj 6 "n�
1
3 is then evaluated by (15) using

k D b�n C x�nc DW �n C x�n C �n; �n D O.1/;

giving
1

2�

Z
jyj6"n

� 1
3

e�ikyE
�
eXniy

�
dy D

1

2��n

Z
jyj6"n

1
6

e�ixyE
�
e

Xn��n
�n

iy
� �

1CO
�
n�

1
2

��
dy

D
1

2��n

Z 1
�1

e�ixy� y2

2

�
1CO

�
n�

1
2 j
�
1C yj3

���
dy

D
e�

x2

2

p
2� �n

�
1CO

�
1C jxj3
p

n

��
;

which completes the proof of (14).
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Fig. 4. Normalized (multiplied by standard deviation) histograms of the random variables Xn for n D
15; : : : ;50; the tendency to normality becomes apparent for larger n.

Note that our estimates for the characteristic function of Xn also lead to an optimal
Berry-Esseen bound

sup
x2R

ˇ̌̌̌
P
�

Xn � �n

�n

6 x

�
�

1
p

2�

Z x

�1

e�
t2

2 dt

ˇ̌̌̌
D O

�
n�

1
2

�
:

A simple improved version. The first few terms of �n and those of the expected bit-
complexity of Algorithm FYKY are given in the following table.

Algorithm 2 3 4 5 6 7 8 9 10
E.RS/.D �n/ 1 5 8:29 12:1 16:3 20:7 25:3 30:1 35
E.FYKY/ 1 3:67 5:67 9:27 12:9 16:4 19:4 24 28:6

and we see that for small n Algorithm RS may be better replaced by Algorithm FYKY
if the bit-complexity is dominant. The analysis of of these mixed algorithms (using
FYKY for small n and RS for larger n) can be done by the same methods used above
but the calculations become more involved.

4. THE BIT-COMPLEXITY OF ALGORITHM FYVN
In this section, we analyze the bit-complexity of Algorithm FYvN (D Sandelius’s ORP
in [Sandelius 1962]), which is described in Introduction. Briefly, for each 2 6 k 6 n,
select � D dlog2 ke random bits (independently and uniformly at random), which gives
rise to a number 0 6 u < 2�. If u < k, use u as the required random number, otherwise
repeat the same procedure until success.

Let Yn represent the total number of random digits used for generating a random
permutation of n element. Plackett showed (see [Plackett 1968]), in the special case
when n D 2�, that

E.Yn/ � 2n .log n � log 2/ ;

and

V.Yn/ � 2 .1 � log 2/ n
�
log2

2 n � 2 log2 nC 3
2

�
; (17)

where the factor 3
2

should be corrected to 3; see (21).
In the section, we complete the analysis of Plackett of the mean and the variance for

all n, and establish a stronger local limit theorem for the bit-complexity.
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LEMMA 1. Let �k WD dlog2 ke and Geok be a geometric random variable with proba-
bility of success k=2�k (with support on the positive integers). Then

Yn
d
D

X
16k6n

�kGeok .n > 1/: (18)

PROOF. Observe that the number of random bits used for selecting each ck is a
geometric random variable Geok .

Expected value. By (18), the mean of Yn satisfies

E.Yn/ D
X

16k6n

�k

k
2�k :

By splitting the range Œ1; n� into blocks of the form .2j ; 2jC1�, we obtain the following
asymptotic approximation to E.Yn/.

THEOREM 4. The expected number of random digits used by Algorithm FYvN to
generate a random permutation of n elements satisfies

E.Yn/ D F
Œ1�
vN.log2 n/n log2 nC nF

Œ2�
vN.log2 n/CO..log n/2/; (19)

where F
Œ1�
vN.t/ and F

Œ2�
vN.t/ are continuous, 1-periodic functions defined by

F
Œ1�
vN.t/ WD .log 2/21�ftg.1C ftg/

F
Œ2�
vN.t/ WD �.log 2/21�ftg

�
1C ftg2

�
:

PROOF. We start with the decomposition

E.Yn/ D
X

06`6�n�2

.`C 1/2`C1
X

2`<j62`C1

1

j
C �n2�n

X
2�n�1<j6n

1

j
:

By using the estimatesX
2`<j62`C1

1

j
D log 2 �

1

2`C2
CO

�
4�`

�
X

2�n�1<j6n

1

j
D log

n

2�n�1
�

n � 2�n�1

n2�n
CO

�
n�2

�
;

We deduce that

E.Yn/ D
�
log 2C log

n

2�n�1

�
2�n�n � 2�nC1 log 2CO

�
.log n/2

�
:

When n ¤ 2�n , write n D 2�n�1C�n , where �n WD flog2 ng. Then

E.Yn/ D 21��n .1C �n/ n log n � 21��n.log 2/
�
1C �2

n

�
nCO

�
.log n/2

�
;

which is also valid when n D 2�n . This completes the proof of (19) and Theorem 4.

Note that the periodic function in the dominant term satisfies 2 log 2 6 F
Œ1�
vN.t/ 6 4e�1.

Numerically, 1:386 6 F
Œ1�
vN.t/ 6 1:472; see Figure 5. This means that Algorithm FYvN

requires more random bits than Algorithm RS for large n; see (9).
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Fig. 5. The periodic functions (from left to right) F
Œ1�
vN ;F

Œ2�
vN ;G

Œ1�
vN ;G

Œ2�
vN ;G

Œ3�
vN in the unit interval.

Variance. Analogously, by (18), the variance of Yn is given by

V.Yn/ D
X

16k6n

2�k � k

k2
�2

k2�k :

From this expression and a similar analysis as above, we can derive the following
asymptotic approximation to the variance whose proof is omitted here.

THEOREM 5. The variance of Yn satisfies

V.Yn/ D G
Œ1�
vN.log2 n/n.log n/2 CG

Œ2�
vN.log2 n/n log nC nG

Œ3�
vN.log2 n/CO

�
.log n/3

�
; (20)

where G
Œ1�
vN.t/;G

Œ2�
vN.t/ and G

Œ3�
vN.t/ are continuous, 1-periodic functions defined by (see Fig-

ure 5)

G
Œ1�
vN.t/ WD

21�ftg

.log 2/2

�
3 � .log 2/.1C ftg/ � 21�ftg

�
G
Œ2�
vN.t/ WD 2.log 2/.1 � ftg/G

Œ1�
vN.t/ �

1 � log 2

log 2
23�ftg

G
Œ3�
vN.t/ WD .log 2/2.1 � ftg/2G

Œ1�
vN.t/C .1 � log 2/.1C 2ftg/22�ftg:

In particular, if n D 2�n , then

V.Yn/ D 2 .1 � log 2/ n
�
.log2 n/2 � 2 log2 nC 3

�
CO

�
.log n/3

�
: (21)

Asymptotic normality. Since Yn is the sum of independent geometric random vari-
ables, we can derive very precise limit theorems by following the classical approach;
see [Petrov 1975].

THEOREM 6. The bit-complexity of Algorithm FYvN satisfies the local limit theorem

P
�
Yn D

�
E.Yn/C x

p
V.Yn/

˘�
D

e�
x2

2p
2�V.Yn/

�
1CO

�
1C jxj3
p

n

��
uniformly for x D o

�
n

1
6

�
.

PROOF. By (18), the moment generating function of Yn satisfies (pk D k=2�k )

E
�
eYnt

�
D

Y
16k6n

pke�k t

1 � .1 � pk/e�k t
: (22)

By induction, we see that the cumulant of order m satisfiesX
16k6n

�m
k p�m

k polynomialm.pk/ D O .n.log n/m/ .m D 1; 2; : : : /:

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: November 2016.



1:18 A. BACHER et al.

From this we deduce that

E exp
�

Yni tp
V.Yn/

�
D exp

�
�ni tp
V.Yn/

�
t2

2
CO

�
jt j3
p

n

��
; (23)

uniformly for jt j 6 "
p

n. This estimate, coupling with the usual Berry-Esseen inequal-
ity, is sufficient to prove an optimal convergence rate to normality. For the stronger
local limit theorem, it suffices to prove the boundˇ̌

E
�
eYnit

�ˇ̌
6 e�"1nt2

; (24)
uniformly for jt j 6 � , where "1 > 0 is a sufficiently small constant. Then the local limit
theorem follows from the same argument used in the proof of (14). To prove (24), a
direct calculation from (22) yieldsˇ̌

E
�
eYnit

�ˇ̌
D

Y
16k6n

1q
1C 2.1 � pk/p

�2
k
.1 � cos�k t/

6
Y

16k62�n�1

1p
1C 2.1 � pk/.1 � cos�k t/

D

Y
16`<�n

Y
16k<2`�1

1q
1C 2 k

2`
.1 � cos `t/

:

For 0 6 x 6 4, we have the elementary inequality 1p
1Cx

6 e�
x
5 , so thatˇ̌

E
�
eYnit

�ˇ̌
6 exp

�
�

2

5

X
16`<�n

X
16k<2`�1

k

2`
.1 � cos `t/

�

6 exp
�
�

1

20

X
16`<�n

.2` � 2/.1 � cos `t/
�
:

By the inequality 2` � 2 > 2`�1 for ` > 2, we then obtainˇ̌
E
�
eYnit

�ˇ̌
6 exp

�
�

1

40

X
26`<�n

2`.1 � cos `t/
�
6 e�

1
40

2�n�n.t/;

where

�n.t/ WD
5 � 4 cos t C cos�nt � 2 cos.�n � 1/t

2.5 � 4 cos t/
:

By monotonicity and induction, we deduce that �n.t/ >
1
6
.1 � cos t/ for n > 2; conse-

quently, ˇ̌
E
�
eYnit

�ˇ̌
6 e�

1
240

2�n .1�cos t/ 6 e�
1

480
n.1�cos t/;

uniformly for jt j 6 � . But 1 � cos t > 2
�2 t2 for jt j 6 � , so that (24) follows.

5. THE BIT-COMPLEXITY OF ALGORITHM LLKY
For comparison and for preparing for the analysis of FYKY, we analyze Algorithm
LLKY in this section, which has a very different behavior when compared with the
other three algorithms studied in this paper.

Let Bn denote the total number of random bits flipped in the procedure Knuth-Yao of
Algorithm FYKY for generating UnifŒ0; n�1�. Then the number of random bits used by
LLKY equals Bn!. For simplicity, we consider Bn.
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Distribution of Bn. Obviously, B2k D k. But Bn is not a constant for other values of
n.

LEMMA 2. The probability generating function E
�
tBn

�
of Bn satisfies

E
�
tBn

�
D 1 � .1 � t/

X
k>0

n

2k

�
2k

n

�
tk .n D 2; 3; : : : /: (25)

PROOF. The probability that the algorithm does not stop after k random flips is
given by

P.Bn > k/ D
n

2k

�
2k

n

�
.k D 0; 1; : : : /;

because after the first k random coin-tossings (2k different configurations) there are
exactly 2k mod n D n

˚
2k

n

	
cases that the algorithm does not return a random integer

in the specified interval Œ0; n � 1�.

From now on, write Lx WD blog2 xc for x > 0 and L0 WD 0. Since n

2k

˚
2k

n

	
D 1 for

0 6 k 6 Ln when n ¤ 2Ln , we obtain

E
�
tBn

�
D tLnC1

C .t � 1/
X

k>Ln

n

2k

�
2k

n

�
tk ;

or, with �n D flog2 ng,

E
�
tBn�Ln�1

�
D 1C .t � 1/

X
k>0

f2kC1��ng

2kC1��n
tk .n ¤ 2Ln/:

We see that Bn is close to Ln C 1, plus some geometric-type perturbations. Since n! is
never a power of 2 for n > 3, we then obtain the following exponential tail behavior.

THEOREM 7. Let N WD n!. The distribution of the bit-complexity of LLKY satisfies,
for n > 3,

P.BN �LN � 1 > k/ D
f2kC1�flog2 N gg

2kC1�flog2 N g
.k D 0; 1; : : : /:

Note that LN D blog2 n!c D n log2 n � n
log 2
C

1
2

log2 nCO.1/.
For computational purposes, the infinite series in (25) is less useful and it is prefer-

able to use the following finite representation. Let �.n/ denote Euler’s totient function
(the number of positive integers less than n and relatively prime to n).

COROLLARY 1. For n > 2

E
�
tBn

�
D

8̂<̂
:

t E
�
t
B n

2

�
; if n is evenI

1 �
1 � t

1 �
�

t
2

��.n/ X
06k<�.n/

2k mod n

2k
tk ; if n is odd: (26)

PROOF. This follows from (25) by grouping terms containing the same fractional
parts.
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Expected value of Bn. Consider now the expected bit-complexity E.Bn/ of Knuth-Yao:

an WD E.Bn/ D
X
k>0

�
2k

n

�
n

2k
: (27)

This sequence has been studied in the literature; see [Knuth and Yao 1976; Pokhodzeı̆
1985; Lumbroso 2013; Gravel 2015]. From (26), a.n/ can be computed by the following
finite expression.

LEMMA 3. For n > 1

an D

8̂<̂
:

a n
2
C 1; if n is even;

2�.n/

2�.n/ � 1

X
06j<�.n/

2j mod n

2j
; if n is odd:

The complexity of this expression depends on the magnitude of �.n0/, where n D

2v2.n/n0, v2.n/ being the dyadic valuation of n (namely, the highest power of 2 divid-
ing n) and n0 odd. Since �.n/ may be as large as n, these expressions become more
costly in such cases. See [Gravel 2015, p. 26] for an alternative expression.

Obviously, when n ¤ 2Ln ,

an D Ln C 1C
X

k>Ln

�
2k

n

�
n

2k
; (28)

so we obtain the easy bounds (noting that a2Ln D Ln)

Ln 6 an 6 Ln C 1C
n

2Ln
.n > 1/;

and thus an D log2 nCO.1/. Indeed, the O.1/ term is itself a periodic function.

LEMMA 4. For n > 1

an D log2 nC F0.log2 n/ .n > 1/; (29)
where F0.t/ is a 1-periodic function oscillating between 0 and 2 defined by

F0.t/ D �ftg C
X
k>0

2�kCftg
f2k�ftg

g .t 2 R/I (30)

see Figure 6.

PROOF. Again with �n D flog2 ng, we can rewrite the remainder in (28) asX
k>Ln

�
2k

n

�
n

2k
D

X
k>1

2�kC�nf2k��ng .n ¤ 2Ln/;

which implies that

F0.t/ D 1 � ftg C
X
k>1

2�kCftg
f2k�ftg

g;

when t 62 Z. This implies (30) for all t . Clearly, F0.0/ D 0. On the other hand,

a2kC1 � k D 2 �
k

2k C 1
! 2;

implying that limt!0C F.t/ D 2. By (30), this is also an upper bound for all possible
values assumed by F0.t/.
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Furthermore, we can show that F0 is left-continuous and discontinuous at dyadic
rationals. A Fourier series expansion for F0.t/ was derived in [Lumbroso 2013] by a
formal Mellin approach (the resulting series is not absolutely convergent), which can
nevertheless be rigorously justified by the expression (30) and elementary calculations.
This series is however less interesting because of the discontinuous nature of F0.t/.
Another feature of F0.t/ is that it is not of bounded variation.

Fig. 6. Periodic fluctuations of an � log2 n in log-scale (left) and normalized in the unit interval (right).
The largest value achieved by the periodic function in the interval n 2 Œ2k ;2kC1� is at n D 2k C 1, which
approaches 2 for large k.

Variance of Bn. For the variance of the bit-complexity of Knuth-Yao, we start with
the second moment bn WD E.B2

n/ D B00n.1/C B0n.1/.

LEMMA 5. For n > 1

bn D

8̂<̂
:

b n
2
C 2a n

2
C 1; if n is evenIX

06k<�.n/

2k mod n

2k

�
2k C 1

1 � 2��.n/
C

21��.n/�.n/

.1 � 2��.n//2

�
; if n is odd:

PROOF. By (25) and (26).

Note that the variance vn WD bn � a2
n of Bn satisfies the recurrence

v2n D vn .n > 1/:

Fig. 7. Periodic fluctuations of the variance of Bn (D bn � a2
n) in log-scale for n D 2; : : : ;210 (left) and for

n D 29; : : : ;210 (right). The fluctuating range lies in Œ0;2:96/.

A more precise expression for vn is as follows.
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LEMMA 6. The variance vn of Bn satisfies vn D F1.log2 n/, where F1 is a 1-periodic
function given by

F1.t/ WD
X
k>0

.2k C 1/
f2kC1�ftgg

2kC1�ftg
�

 X
k>0

f2kC1�ftgg

2kC1�ftg

!2

I (31)

see Figure 7.

PROOF. By (25), we have

bn D

X
k>0

.2k C 1/
n

2k

�
2k

n

�
; (32)

which, together with (28), implies that when n ¤ 2Ln

vn D bn � a2
n

D

X
06k6Ln

.2k C 1/C
X

k>Ln

.2k C 1/

�
2k

n

�
n

2k
�

 
Ln C 1C

X
k>Ln

�
2k

n

�
n

2k

!2

;

from which we deduce (31).

We summarize the mean and the variance of the bit-complexity of LLKY as follows.

THEOREM 8. Let N WD n!. Then the expected bit-complexity of LLKY for generating
a random permutation of n elements satisfies

E.BN / D log2 N C F0.log2 N /;

and the variance satisfies

V.BN / D F1.log2 N /;

for n > 1, where F0 and F1 are bounded periodic functions given in (30) and (31),
respectively.

6. THE BIT-COMPLEXITY OF ALGORITHM FYKY
We are now ready to analyze the total number of bits used by Algorithm FYKY for
generating a random permutation of n elements.

Let Zn D B1 C � � � C Bn represent the total number of bits required by Algorithm
FYKY for generating a random permutation of n elements, where Bn satisfies (25).

6.1. Expected value of Zn

Let

�n WD E.Zn/ D
X

16m6n

am;

where an is given in (27).
We prove the following estimate for �n.

THEOREM 9. The expected number �n of random bits required by Algorithm FYKY
satisfies

�n D n log2 nC nFKY.log2 n/CO
�
.log n/2

�
; (33)

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: November 2016.



Algorithms for Generating Random Permutations 1:23

Fig. 8. Periodic fluctuations of
�nC

1
2

log2 n� 1
3

n
� log2 n in log-scale (left) and FKY in the unit interval (right);

numerically, FKY.t/ oscillates between �0:422 (see (42)) and �0:293.

where FKY.t/ is a continuous 1-periodic function whose Fourier expansion is given by
(�k WD

2k� i
log 2

)

FKY.t/ D
1

2
�



log 2„ ƒ‚ …
��0:33274

C
1

log 2

X
k¤0

�.�k C 1/

�2
k
� 1

e�2k�it .t 2 R/; (34)

the series being absolutely convergent. Here �.s/ denotes Riemann’s zeta function.

Note that j�.1 C i t/j D O
�
.log jt j/

2
3

�
for large jt j; see [Titchmarsh 1986]. Also the (ex-

pected) additional number of random-bits used by FYKY when compared with LLKY
(see Theorem 8) is given by

n

 
1

2
C

1 � 

log 2„ ƒ‚ …
�1:1099

C
1

log 2

X
k¤0

�.�k C 1/

�2
k
� 1

n��k

!
CO..log n/2/:

Our method of proof is based on approximating the partial sum �n by an integral

M.x/ WD

Z x

0

a.t/dt; where a.x/ WD
X
k>0

�
2k

x

�
x

2k
.x > 0/;

and estimating their difference. Obviously, an D a.n/ for integer n > 0. The asymptotics
of M.x/ is comparatively simpler and can be derived by standard Mellin transform
techniques; see [Flajolet et al. 1995]. Indeed, we derive an asymptotic expansion that
is itself an identity for x > 1.

PROPOSITION 1. The integral M.x/ satisfies the identity

M.x/ D x log2 x C xFKY.log2 x/C �2

12
; (35)

for x > 1, where FKY is given in (34).

PROOF. We start with the relation

a.x/ D a
�

x
2

�
C

�
1; if x > 1I

x
˚

1
x

	
; if 0 < x 6 1:
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Then for x > 1

M.x/ � 2M
�

x
2

�
D

Z x

0

a.t/dt � 2

Z x
2

0

a.t/dt

D

Z x

0

�
a.t/ � a

�
t
2

��
dt

D x � 1C

Z 1

0

t
˚

1
t

	
dt:

The last integral is equal to

Z 1

0

t
˚

1
t

	
dt D

Z 1
1

ftg

t3
dt D

X
j>1

Z 1

0

t

.j C t/3
dt D 1 � �2

12
:

Thus, M.x/ satisfies the functional equation

M.x/ D 2M
�

x
2

�
C x � �2

12
; .x > 1/; (36)

which implies that NM .x/ WD
M.x/��

2

12

x
� log2 x is a periodic function, namely, NM .2x/ D

NM .x/ for x > 1, or, equivalently (35); it remains to derive finer properties of the periodic
function FKY. For that purpose, we apply Mellin transform.

First, the integral M is decomposed as

M.x/ D
X
k>0

Z x

0

t

2k

�
2k

t

�
dt D

X
k>0

2k

Z 1
2k

x

ftg

t3
dt: (37)

Then the Mellin transform of M.x/ can be derived as follows (assuming �2 < <.s/ <
�1):

X
k>0

2k

Z 1
0

xs�1

Z 1
2k

x

ftg

t3
dt dx D

X
k>0

2k.sC1/

Z 1
0

x�s�1

Z 1
x

ftg

t3
dt dx

D

X
k>0

2k.sC1/

Z 1
0

ftg

t3

Z t

0

x�s�1 dx dt

D �
1

s

X
k>0

2k.sC1/

Z 1
0

ftg

t sC3
dt

D
�.s C 2/

s.s C 2/.1 � 2sC1/
;

where we used the integral representation for �.s C 1/ (see [Titchmarsh 1986, p. 14])

�.s C 1/ D �.s C 1/

Z 1
0

ftg

t sC2
dt .�1 < <.s/ < 0/:
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All steps here are justified by absolute convergence if �2 < <.s/ < �1. We then have
the inverse Mellin integral representation

M.x/ D
1

2� i

Z � 3
2
Ci1

� 3
2
�i1

�.s C 2/

s.s C 2/.1 � 2sC1/
x�s ds

D
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.s C 1/

.s2 � 1/.1 � 2s/
x1�s ds .x > 0/:

Move now the line of integration to the right using known asymptotic estimates for
j�.s/j (see [Titchmarsh 1986, Ch. V])

j�.c C i t/j D

(
O
�
jt j

1
2
.1�c/C"

�
; if 0 6 c 6 1I

O
�
.log jt j/

2
3

�
; if c D 1;

(38)

as jt j ! 1. A direct calculation of the residues at the poles (a double pole at s D 0 and
simple poles at s D �k , s D 1) then gives

1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.s C 1/

.s2 � 1/.1 � 2s/
x1�s ds D x log2 x C xFKY.log2 x/C �2

12
C�.x/;

for x > 0, where FKY is given in (34) and �.x/ is give by

�.x/ WD
1

2� i

Z 3
2
Ci1

3
2
�i1

�.s C 1/

.s2 � 1/.1 � 2s/
x1�s ds: (39)

To evaluate this integral, we use the relations

1

2� i

Z cCi1

c�i1

x�s

1 � s2
ds D

�
0; if x > 1I
x
2
�

1
2x
; if 0 < x 6 1;

.c > 1/;

by standard residue calculus (integrating along a large half-circle to the right of the
line <.s/ D c if x > 1, and to the left otherwise). With this relation, we then have

�.x/ D

8̂̂<̂
:̂

0; if x > 1I
1

2

X
2k`x61
k;`>1

�
2k�1x2

�
1

2k`2

�
; if 0 < x 6 1:

by expanding the zeta function and 1
1�2s D �

2�s

1�2�s in Dirichlet series and then inte-
grating term by term. Note that the double sum expression for �.x/ can be simplified
but we do not need it. Also �.x/ D 0 for 1

2
< x 6 1.

Observe that the Fourier series expansion (34) converges only polynomially. We de-
rive a different expansion for FKY, with an exponential convergence rate.

LEMMA 7. The periodic function FKY has the series expansion

FKY.t/ D 1 � ftg �
�2

6
2�ftg C

X
k>1

�
1 �
b2k�ftgc

2kC1�ftg
� 2k�1�ftg 0

��
2k�ftg

˘
C 1

��
; (40)

for t 2 R, where  denotes the digamma function (derivative of log�) and  0.k C 1/ DP
j>k

1
j2 .
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For large k, we have

1 �
b2k�ftgc

2kC1�ftg
� 2k�1�ftg 0

��
2k�ftg

˘
C 1

�
D

1

2kC2�ftg
�

6�2
k
� 6�k C 1

3 � 22.kC1�ftg/
CO

�
2�3k

�
;

since  0.k C 1/ D 1
k
�

1
2k2 C

1
6k3 CO

�
1

k4

�
, where �k WD

˚
2k�ftg

	
.

PROOF. By (37), we have, for x > 0,

M.x/ D
X
k>0

2k

0@Z � 2k

x

˘
C1

2k

x

C

Z 1�
2k

x

˘
C1

1A ftg
t3

dt

D

X
k>0

2k

0B@Z 1n
2k

x

o t��
2k

x

˘
C t

�3
dt C

X
j>
�

2k

x

˘
C1

Z 1

0

t

.j C t/3
dt

1CA
D

X
k>0

 
x �

x2

2kC1

�
2k

x

�
� 2k�1 0

 �
2k

x

�
C 1

!!
:

Now if x ¤ 2m, then (Lx WD blog2 xc)

M.x/ D
X

06k6Lx

�
x � �2

12
2k
�
C

X
k>LxC1

�
x �

x2

2kC1

�
2k

x

�
� 2k�1 0

��
2k

x

�
C 1

��
D xLx C x � �2

6
2Lx C

�2

12

C x
X
k>1

�
1 �

x

2kCLxC1

�
2kCLx

x

�
�

2kCLx�1

x
 0
��

2kCLx

x

�
C 1

��
;

which also holds for x D 2m, and in that case we have

M.2m/ D m2m
C
�
$
2
C 1 � �2

6

�
2m
C

�2

12
;

by using  0.2/ D �1C �2

6
, where (see Section 6.3)

$ WD
X
k>1

�
1 � 2k 0.2k

C 1/
�
� 0:44637 64113 48039 93349 : : : : (41)

This proves (40) by writing Lx D log2 x � flog2 xg.

Note that the above value of $ implies that

FKY.0/ D 1 � �2

6
C

1
2
$ � �0:42174 58608 48226 43647 : : : I (42)

see Figure 8. Also if we use the expression (40) for FKY.t/, then the identity (35) holds
for x > 0.

We turn now to estimating the difference between �n and M.n/.

PROPOSITION 2. The difference �n �M.n/ satisfies

�n �M.n/ D O
�
.log n/2

�
: (43)

PROOF. We have (defining a.0/ D 0)

�n �M.n/ D
X

06m6n

Z 1

0

.a.m/ � a.mC t// dt CO.log n/:
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Now

a.m/ � a.mC t/ D
X

k>Lm

��
2k

m

�
m

2k
�

�
2k

mC t

�
mC t

2k

�

D

X
Lm6k<2Lm

m

2k

��
2k

m

�
�

�
2k

mC t

��
CO

� X
k>Lm

1

2k
C

X
k>2Lm

m

2k

�

D

X
Lm6k<2Lm

m

2k

��
2k

m

�
�

�
2k

mC t

��
CO

�
1

m

�
:

Thus

�n �M.n/ D
X

26m6n

X
Lm6k<2Lm

m

2k

Z 1

0

��
2k

m

�
�

�
2k

mC t

��
dt CO.log n/:

By writing fxg D x � bxc, we then obtain

m

2k

Z 1

0

��
2k

m

�
�

�
2k

mC t

��
dt D

Z 1

0

t

mC t
dt �

m

2k

Z 1

0

��
2k

m

�
�

�
2k

mC t

��
dt:

The first integral on the right-hand side contributes at mostX
26m6n

X
Lm6k<2Lm

Z 1

0

t

mC t
dt D O

� X
26m6n

log m

m

�
D O

�
.log n/2

�
:

It remains to estimate the double-sum

M1 WD

X
26m6n

X
Lm<k<2Lm

m

2k

Z 1

0

��
2k

m

�
�

�
2k

mC t

��
dt

6
X

26m6n

X
Lm<k<2Lm

m

2k

��
2k

m

�
�

�
2k

mC 1

��

D

X
36k<2Ln

X
2b

k
2 cC16m6minf2k�1;ng

m

2k

��
2k

m

�
�

�
2k

mC 1

��
:

For a fixed k, the difference
�

2k

m

˘
�
�

2k

mC1

˘
assumes the value 1 if there exists an integer

q lying in the interval

2k

mC 1
< q 6

2k

m
; (44)

and
�

2k

m

˘
�
�

2k

mC1

˘
assumes the value 0 otherwise. For those m satisfying (44), we have

the inequality m

2k 6 1
q
. It follows thatX

2b
k
2 cC16m6minf2k�1;ng

m

2k

��
2k

m

�
�

�
2k

mC 1

��
6

X
16q62k

1

q
D O.k/;

and, consequently,

M1 D O

� X
36k62Ln

k

�
D O

�
.log n/2

�
:
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This proves the proposition.

6.2. Variance of Zn

We now derive an asymptotic approximation to the variance of Zn

&2
n WD V.Zn/ D

X
26m6n

vm D

X
26m6n

�
bm � a2

m

�
;

where bn is given in (32).

THEOREM 10. The variance of the total number of random bits flipped to generate
a random permutation by Algorithm FYKY satisfies

&2
n D nGKY.log2 n/CO..log n/3/; (45)

where GKY.u/ is a continuous, bounded, periodic function of period 1 defined by

GKY.u/ D v021�fug
C

X
j>1

2j�fug

Z 2fug�j

0

g.t/dt; (46)

the series being absolutely convergent. Here v0 WD
R 1

0
g.t/dt and

g.x/ WD

�
1 � x

�
1

x

���
2a
�x

2

�
C x

�
1

x

��
: (47)

Numerically, v0 � 0:47021 47736 99741 30560 : : : ; see Section 6.3 for different approaches
of numerical evaluation. This theorem will follow from Propositions 3 and 5 given
below.

Similar to the case of �n, a good approximation to &2
n is given by the integral

V .x/ WD

Z x

0

v.t/dt D

Z x

0

�
b.t/ � a.t/2

�
dt;

where v.x/ WD b.x/ � a.x/2 represents a continuous version of vn and (see (32))

b.x/ WD
X
k>0

.2k C 1/
x

2k

�
2k

x

�
:

Now consider

v.x/ D
X
k>0

.2k C 1/
x

2k

�
2k

x

�
�

 X
k>0

x

2k

�
2k

x

�!2

D x

�
1

x

�
C

X
k>0

.2k C 3/

x
2

2k

�
2k

x
2

�
�

 
x

�
1

x

�
C

X
k>0

x
2

2k

�
2k

x
2

�!2

;

From this relation, we derive the following functional equation.

LEMMA 8. For x > 0

V .x/ � 2V
�x

2

�
D

Z minf1;xg

0

g.t/dt: (48)

PROOF. If x > 1, then

v.x/ D v
�x

2

�
I
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if 0 < x 6 1, then

v.x/ D v
�x

2

�
C g.x/;

where g is defined in (47).

We now show that this functional equation leads to an asymptotic approximation
that is itself an identity, as in the case of M.x/.

PROPOSITION 3. The integral V .x/ satisfies

V .x/ D xGKY.log2 x/ � v0; (49)

for x > 1, where GKY is defined in (46).

PROOF. By a direct iteration of (48), we obtain

V .x/ D v0

�
2LxC1

� 1
�
C

X
j>1

2LxCj

Z x

2LxCj

0

g.t/dt;

for x > 1, where the sum is absolutely convergent because (a.x/ D O.x/ and x
˚

1
x

	
D

O.x/) Z x

0

g.t/dt D

Z x

0

�
1 � t

�
1

t

���
2a

�
t

2

�
C t

�
1

t

��
dt D O

�
x2
�
; (50)

as x ! 0. Now writing x D 2LxC�x , where �x WD flog2 xg, we obtain (49). Note that
GKY.0/ D limu!1 GKY.u/, and GKY is continuous and bounded on Œ0; 1�.

PROPOSITION 4. The Fourier coefficients of GKY.u/ D
P

k2Z gke2k�iu can be com-
puted by

gk D
1

.log 2/.�k C 1/

Z 1

0

g.t/t��k�1 dt .k 2 Z/; (51)

the series being absolutely convergent. In particular, the mean value g0 is given by

g0 D
1

24
C

1

2.log 2/2

�
�2

6
�  2

� 21

�
�

2�2

.log 2/3

X
k>1

k�.�k C 1/�.��k C 1/

sinh 2k�2

log 2

� 1:55834 75820 73324 42639 35697 76811 51355 37715 91606 58602 � � �

(52)

where 1 is a Stieltjes constant:

1 WD lim
m!1

 X
26j6m

log j

j
�
.log m/2

2

!
� �0:72815 84548 36767 24860 : : : :

Note that the terms in the series in (52) are convergent extremely fast with the rate

k.log k/
4
3 exp

�
�

2k�2

log 2

�
� k.log k/

4
3

�
2:33 � 1012

��k
; (53)

by (38), and the mean value (52) is smaller than that (13) of Algorithm RS. . Further-
more, by the definition of g0 we obtain the following highly nontrivial identity.
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COROLLARY 2. The identity

1

log 2

Z 1

0

�
1 � t

�
1

t

�� �
1

t

�
C

X
k>1

1

2k

�
2k

t

�!
dt

D
1

24
C

1

2.log 2/2

�
�2

6
�  2

� 21

�
�

2�2

.log 2/3

X
k>1

k�.�k C 1/�.��k C 1/

sinh 2k�2

log 2

holds.

The integral representation on the left-hand side is less useful for numerical purposes.

PROOF OF PROPOSITION 4. By definition,

gk D v0

Z 1

0

e�2k�iu21�u duC
X
j>1

Z 1

0

e�2k�iu2j�u

Z 2u�j

0

g.t/dt du:

The first term equals 1
.log 2/.�kC1/

. The second term g0
k

can be simplified as follows.

g0k D
X
j>1

 Z 2�j

0

Z 1

0

C

Z 21�j

2�j

Z 1

jClog2 t

!
g.t/e�2k� iu2j�u du dt

D
1

.log 2/.�k C 1/

X
j>1

 
2j�1

Z 2�j

0

g.t/dt C

Z 21�j

2�j
g.t/

�
t��k�1

� 2j�1
�

dt

!
:

By summation by parts, we see thatX
j>1

2j�1

Z 2�j

0

g.t/dt D
X
j>0

.2j
� 1/

Z 2�j

2�j�1

g.t/dt

D

X
j>1

2j�1

Z 21�j

2�j
g.t/dt �

Z 1

0

g.t/dt:

Thus, we obtain (51). The proof of (52), together with different numerical procedures,
will be given in the next section.

Fig. 9. Periodic fluctuations of &
2
nC2 log2 nC3

n
in log-scale for n D 27; : : : ;211 (left) and GKY.u/ (right; where

we used the Fourier coefficients (59) to approximate the periodic function).

We now show that &2
n � V .n/ is small.
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PROPOSITION 5. The difference between the variance &2
n and its continuous approx-

imation V .n/ is bounded above by O
�
.log n/3

�
.

PROOF. The proof is similar to that of Proposition 2. By definition,

&2
n � V .n/ D

X
06m6n

Z 1

0

.v.m/ � v.mC t// dt CO.1/

D

X
06m6n

Z 1

0

��
b.m/ � b.mC t/

�
�
�
a.m/2 � a.mC t/2

��
dt CO.1/:

Now divide the sum of terms into three parts:

&2
n � V .n/ D 2W1.n/CW2.n/CW3.n/CO.1/;

where

W1.n/ D
X

06m6n

Z 1

0

X
k>1

 
k

m

2k

�
2k

m

�
� k

mC t

2k

�
2k

mC t

�!
dt

W2.n/ D
X

06m6n

Z 1

0

�
a.m/ � a.mC t/

�
dt

W3.n/ D
X

06m6n

Z 1

0

�
a.m/2 � a.mC t/2

�
dt:

We already proved in Proposition 2 that W2.n/ D O
�
.log n/2

�
. On the other hand,

W3.n/ D
X

06m6n

Z 1

0

�
a.m/ � a.mC t/

��
a.m/C a.mC t/

�
dt

D O

�
.log n/

X
06m6n

Z 1

0

ˇ̌
a.m/ � a.mC t/

ˇ̌
dt

�
D O

�
.log n/3

�
;

by Proposition 2. For W1.n/, we again follow exactly the same argument used in proving
Proposition 2 and deduce that

W1.n/ D
X

06m6n

X
Lm6k<2Lm

k
m

2k

Z 1

0

��
2k

m

�
�

�
2k

mC t

��
dt CO.log n/

D O

 X
06m6n

X
Lm6k<2Lm

k

mC 1
C

X
16k62Ln

X
16q62k

k

q

!
CO.log n/

D O
�
.log n/3

�
:

This proves that &2
n � V .n/ D O

�
.log n/3

�
.

Theorem 10 now follows from Propositions 3, 4 and 5. It remains to prove the more
precise expression (52) for the mean value g0 and other Fourier coefficients gk .
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6.3. Evaluation of gk

We show in this part how the coefficients g0 and gk with k ¤ 0 can be numerically eval-
uated to high precision. For that purpose, we will derive a few different expressions for
them, which are of interest per se. We focus mainly on g0, and most of the approaches
used also apply to other constants or coefficients appeared in this paper.

The mean value of GKY. The mean value of GKY is split, by (47), into two parts

g0 D
1

log 2

Z 1

0

g.t/

t
dt DW

g0
0
C g00

0

log 2
;

where

g00 WD

Z 1

0

�
1 � t

�
1

t

���
1

t

�
dt D

Z 1
1

�
ftg

t2
�
ftg2

t3

�
dt D

�2

12
�

1

2
;

and

g000 WD 2

Z 1

0

1

t

�
1 � t

�
1

t

��
a

�
t

2

�
dt:

LEMMA 9.

g000 D �
X
k>1

2k

Z 1
0

1

e2k t � 1

�
t

et � 1
� 1

�
dt: (54)

PROOF. By definition and direct expansions

g000 D 2
X
k>1

Z 1

0

1

2k

�
2k

t

��
1 � t

�
1

t

��
dt

D 2
X

k;j>1

X
06`<2k

Z 1

0

2kj t�
2kj C `C t

�3 dt:

Then by the integral representation

x�s
D

1

�.s/

Z 1
0

e�xuus�1 du .x;<.s/ > 0/;

we see that

2
X
j>1

X
06`<2k

Z 1

0

j t�
2kj C `C t

�3 dt D

Z 1
0

u2
X
j>1

je�2k ju
X

06`<2k

e�`u

Z 1

0

te�tu dt du

D �

Z 1
0

1

e2k u � 1

� u

eu � 1
� 1

�
du:

This proves (54).

From (54), we derive the following series representation.

LEMMA 10. Define the sequence h` by the recurrence h` D 2h
d `2e
C
˙
`
2

�
� 1 for ` > 2

with h0 D h1 D 0. Then

g000 D 2
X
`>3

h`

`2.` � 1/
: (55)
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The first few terms of h` are
fh2`g`>1 D fh2`�1g`>1 D f0; 1; 4; 5; 12; 13; 16; 17; 32; 33; 36; 37; 44; 45; 48; 49; 80; � � � g ;

which correspond to sequence A080277 in Sloane’s OEIS (Online Encyclopedia of Inte-
ger Sequences), and is connected to partial sums of dyadic valuation.

PROOF. Inverting (54) using Binet’s formula (see [Erdélyi et al. 1953, ~1.9])

1 � z 0.z C 1/ D �z

Z 1
0

�
t

et � 1
� 1

�
e�zt dt; (56)

we get

g000 D
X
k>1

X
j>1

�
1

j
� 2k 0.2kj C 1/

�
:

Since
1

m
�  0.mC 1/ D

X
`>mC1

1

`2.` � 1/
;

by grouping terms with the same number, we get

g000 D 2
X
m>2

�
1

m
�  0.mC 1/

� X
2k jm
k>1

2k ;

which then implies (55).

First approach: k�1 convergence rate. The most naive approach to compute g0 con-
sists of evaluating exactly the first k > 1 terms of the series (55) and adding the er-
ror by an asymptotic estimate of the remainders. More precisely, choose k sufficiently
large and then split the series into two parts depending on ` < k and ` > k. Since
h` D

1
2
` log2 `CO.`/ for large `, we see that the remainder is asymptotic to

2
X
`>k

h`

`2.` � 1/
�

X
`>k

log2 `

`2
�

log2 k

k
;

with an additional error of order k�1. But such an approach is poor in terms of conver-
gence rate.

Second approach: 3�k convergence rate. A better approach to compute g00
0 from (55)

consists in expanding the seriesX
`>3

h`

`2.` � 1/
D

X
k>3

D1.k/; where D1.s/ WD
X
`>3

h`

`s
;

and then evaluate D1 by the recurrence relation of h`, namely,

D1.s/ D
X
`>1

2h` C ` � 1

.2`/s
C

X
`>1

2h` C ` � 1

.2` � 1/s

D
1

1 � 2�.s�2/

�
.1 � 2�s/�.s � 1/ � �.s/C 2

X
j>1

�
s C j � 1

j

�
D1.s C j /

2sCj

�
:

Since D1.k/ D O.3�k/ for large k, the terms in such a series converge at the rate
O.j<.s/�16�j /.
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Third approach: k5�k convergence rate. We can do better by applying the 1
2
-balancing

technique introduced in [Grabner and Hwang 2005], which begins with the relationX
`>3

h`

`2.` � 1/
D

X
k>0

.�1/k
��

k
2

˘
C 1

�
2k

D2.k C 3/; where D2.s/ WD
X
`>3

h`�
` � 1

2

�s :
Here the convergence rate is of order k5�k . So it suffices to compute D2.j / for j > 3.
Now

D2.s/ D
X
`>1

2h` C ` � 1�
2` � 1

2

�s CX
`>1

2h` C ` � 1�
2` � 3

2

�s
D 21�s

X
`>1

h`�
` � 1

2

�s ��1 �
1

4
�
` � 1

2

���s

C

�
1C

1

4
�
` � 1

2

���s�
C 2�sZ.s/;

where

Z.s/ WD �
�
s � 1; 1

4

�
C �

�
s � 1; 3

4

�
�

1
4
�
�
s; 1

4

�
�

3
4
�
�
s; 3

4

�
:

Thus, we obtain the functional equation

D2.s/ D
Z.s/

4.2s�2 � 1/
C

1

2s�2 � 1

X
j>1

�
s C 2j � 1

2j

�
D2.s C 2j /

16j
;

where the convergence rate is now improved to O.j<.s/�1100�j /. In this way, we obtain
the numerical value in (52) since g0 D

g0
0
Cg00

0

log 2
.

Such an approach is generally satisfactory. But for our g0 it turns out that a very
special symmetric property makes the identity (52) possible, which is not the case for
other constants appearing in this paper (e.g., v0 and $ ; see (41)).

Fourth approach: k.log k/
4
3 e
� 2k�2

log 2 convergence rate. Instead of the elementary ap-
proach used above, we now apply Mellin transform to compute the Fourier series of
GKY. We start with defining NV .x/ WD V .x/C v0. Then, by (48),

NV .x/ � 2 NV
�x

2

�
D

(
0; if x > 1I

�
R 1

x
g.t/dt; if 0 < x 6 1:

From this it follows that the Mellin transform V �.s/ of NV .x/ satisfies

V �.s/
�
1 � 2sC1

�
D g�.s/;

where

g�.s/ WD �

Z 1

0

xs�1

Z 1

x

g.t/dt dx D �
1

s

Z 1

0

g.t/t s dt:

By (50), we see that g�.s/ is well-defined in the half-plane <.s/ > �2. Thus, we antici-
pate the same expansion (49) with the Fourier coefficients (51). What is missing here
is the growth order of jg�.c C i t/j for c > �2 as jt j ! 1, which can be obtained by the
integral representation (57) below.

By (47), we first decompose g� into two parts:

g�.s/ D �
1

s

Z 1

0

�
1 � t

�
1

t

���
2a

�
t

2

�
C t

�
1

t

��
t s dx DW �

1

s

�
g�1 .s/C g�2 .s/

�
;
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where

g�1 .s/ D 2

Z 1

0

�
1 � t

�
1

t

��
a

�
t

2

�
t s dt

g�2 .s/ D

Z 1

0

�
1 � t

�
1

t

���
1

t

�
t sC1 dt:

The second integral is easier and we have

g�2 .s/ D

Z 1
1

�
ftg

t sC3
�
ftg2

t sC4

�
dt D

�.s C 3/

s C 3
�
.s C 1/�.s C 2/

.s C 2/.s C 3/
;

for <.s/ > �2 (when s D �1, the last term is taken as the limit 1
2
).

Consider now g�
1
.s/. The following integral representation is crucial in proving (52).

LEMMA 11. For <.s/ > �2,

g�1 .s/ D
2

�.s C 4/
�

1

2� i

Z cCi1

c�i1

�.w C 1/�.w C 1/�.s � w C 2/�.s � w C 2/

1 � 2�w
dw; (57)

where �1 < c < <.s/C 1.

PROOF. By straightforward expansions as above

g�1 .s/ D �
2

�.s C 4/

X
k>1

2k.sC2/

Z 1
0

usC1

e2k u � 1

� u

eu � 1
� 1

�
du: (58)

Since Z 1
0

uw�1
� u

eu � 1
� 1

�
du D �.w C 1/�.w C 1/ .�1 < <.w/ < 0/;

we obtain the Mellin inversion representation

u

eu � 1
� 1 D

1

2� i

Z cCi1

c�i1

�.w C 1/�.w C 1/u�w dw .c 2 .�1; 0//:

Substituting this into (58), we obtain (57).

Proof of (52). Taking s D �1 in (57), we get

g�1 .�1/ D
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.w C 1/�.w C 1/�.�w C 1/�.�w C 1/

1 � 2�w
dw

D R1 C J2;

where R1 sums over all residues of the poles on the imaginary axis and

J2 WD
1

2� i

Z 1
2
Ci1

1
2
�i1

�.w C 1/�.w C 1/�.�w C 1/�.�w C 1/

1 � 2�w
dw

D �
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.w C 1/�.w C 1/�.�w C 1/�.�w C 1/

1 � 2w
dw:

The last integral is almost identical to �g�
1
.�1/ except the denominator for which we

write
1

1 � 2w
D �1C

1

1 � 2�w
:
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Thus J2 D �g�
1
.�1/C J3, where

J3 WD
1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.w C 1/�.w C 1/�.�w C 1/�.�w C 1/dw

D

Z 1
0

1

eu � 1

� u

eu � 1
� 1

�
du

D 1 � �2

6
:

Collecting these relations, we see that

g�1 .�1/ D
R1

2
C

J3

2
;

and

g�.�1/ D g�1 .�1/C g�2 .�1/ D
R1

2
;

because g�2 .�1/ D �2

12
�

1
2
D

J3

2
. It remains to compute the residues of the poles on the

imaginary axis:

g�.�1/ D
R1

2
D �

X
k2Z

Res
�
�.w C 1/�.w C 1/�.�w C 1/�.�w C 1/

1 � 2�w

�
wD�k

D
log 2

24
C

1

2 log 2

�
�2

6
�  2

� 21

�
�

X
k>1

2k�2�.�k C 1/�.��k C 1/

.log 2/2 sinh 2k�2

log 2

;

where 1 is defined in Proposition 4. The terms in the series are convergent at the rate
(53), and is much faster than the previous three approaches:

g0 D
g�.�1/

log 2
� 1:55834 75820 73324 42639 35697 76811 51355 377159 16065 86021

33003 19983 06704 40332 28575 51733 41447 78391 56441 48117 : : :

(using only 18 terms of the series, one gets an error less than 1:8 � 10�108). Also the
dominant term alone, namely,

1

24
C

1

2.log 2/2

�
�2

6
�  2

� 21

�
� 1:55834 75821 66122 : : : ;

gives an approximation to g0 to within an error less than 9:3 � 10�11.

Calculation of gk for k ¤ 0. Consider now g�
1
.�1C�k/ when k ¤ 0. Similarly, by (57)

with s D �1C �k , we have
g�1 .�1C �k/ D R2 C J4;

where R2 denotes the sum of all residues of the poles on the imaginary axis and

J4 WD
2

�.3C �k/
�

1

2� i

Z 1
2
Ci1

1
2
�i1

�.w C 1/�.w C 1/�.1C �k � w/�.1C �k � w/

1 � 2�w
dw:

By the change of variables w 7! �k � w, we get

J4 D �
2

�.3C �k/
�

1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.w C 1/�.w C 1/�.1C �k � w/�.1C �k � w/

1 � 2w
dw

D �g�1 .�1C �k/C J5;
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where

J5 WD
2

�.3C �k/
�

1

2� i

Z � 1
2
Ci1

� 1
2
�i1

�.w C 1/�.w C 1/�.1C �k � w/�.1C �k � w/dw

D
2

�.3C �k/

Z 1
0

u�k

eu � 1

� u

eu � 1
� 1

�
du

D 2

�
�k�.�k C 1/

.�k C 2/.�k C 1/
�
�.�k C 2/

�k C 2

�
;

which equals �2g�
2
.�1C �k/. Then

g�k D
g�.�1C �k/

.log 2/.��k C 1/
D

R2

2.log 2/.��k C 1/

D �
2

.log 2/2
�
�0.�k C 1/C  .�k C 1/�.�k C 1/

.�2
k
� 1/.�k C 2/

C
2

.log 2/2

X
j>1

�.�kCj C 1/�.�kCj C 1/�.��j C 1/�.��j C 1/

.�k � 1/�.�k C 3/

C
1

.log 2/2

X
16j6k�1

�.�j C 1/�.�j C 1/�.�k�j C 1/�.�k�j C 1/

.�k � 1/�.�k C 3/
:

(59)

By the order estimate (8) for Gamma function and (38) for �-function (which implies
that j�0.1C i t/j D O

�
.log jt j

� 5
3 /, we deduce that

gk D O
�
k�2.log k/

5
3

�
; (60)

for large jkj, so that the Fourier series of GKY is absolutely convergent.

6.4. Asymptotic normality of Zn

We prove in this section the asymptotic normality of the bit-complexity Zn of Algorithm
FYKY. Such a result is well anticipated because Zn D B1C� � �CBn and each Bk is close
to Lk C 1 with a geometric perturbation having bounded mean and variance. Indeed,
we can establish a stronger local limit theorem for Zn.

THEOREM 11. The bit-complexity Zn of Algorithm FYKY satisfies a local limit the-
orem of the form

P .Zn D b�n C x&nc/ D
e�

x2

2

p
2� &n

�
1CO

�
1C jxj3
p

n

��
; (61)

uniformly for x D o
�
n

1
6

�
, where �n WD E.Zn/ and &2

n WD V.Zn/; see (33) and (45).

PROOF. Since Zn is the sum of n independent random variables, the r -th cumulant
of Zn, denoted by Kr .n/, satisfies

Kr .n/ D
X

26m6n

�r .m/ .r > 1/;
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where �r .m/ stands for the r -th cumulant of Bm. To show that �r .m/ are bounded for
all m and r > 2, we observe that E

�
tBn

�
can be extended to any x > 0 by defining

B.x; t/ WD 1 � .1 � t/
X
k>0

x

2k

�
2k

x

�
tk .x > 0/;

so that E
�
tBn

�
D B.n; t/. Also B.x; t/ D tB.x

2
; t/ for x > 1 and the cumulants �r .x/ WD

r !Œsr � log B.x; es/ are well-defined. It follows that for x > 1

�r .x/ D r !Œsr �
�
s C log B

�x

2
; es
��
D �r

�x

2

�
for r > 2, which then implies that �r .x/ D �r

�
x

2LxC1

�
for x > 1. It remains to prove that

�r .x/ D O.1/ for x 2 .0; 1/. Note that �r .x/ is a (finite) linear combination of sums of
the following formX

k>0

kj x

2k

�
2k

x

�
D O

�
x
X
k>0

kj 2�k

�
D O.x/ D O.1/;

for each j D 1; 2; : : : . This proves that each �r .x/ is bounded for x > 0, and, accordingly,

Kr .n/ D
X

26m6n

�r .m/ D O.n/ .r D 2; 3; : : : /:

These estimates, together with those in (33) and (45), yield

E
�

exp
�

Zn � �n

&n

iy

��
D exp

�
�

y2

2
CO

�
jyj3
p

n

��
; (62)

uniformly for jyj 6 "
p

n.a
We now derive a uniform bound of the form

jE.eZniy/j 6 e�"ny2

.jyj 6 � I n > 5; n ¤ 2Ln/; (63)

for some " > 0. This bound, together with (62), will then be sufficient to prove the local
limit theorem (61).

For n ¤ 2Ln , let E.eBniy/ D e.LnC1/iy
P

k>0 pn;keiky , where

pn;k WD
n

2LnCk

�
2LnCk

n

�
�

n

2LnCkC1

�
2LnCkC1

n

�
:

When both pn;0 and pn;1 are nonzero, we have

jE.eBniy/j 6 1 � pn;0 � pn;1 C jpn;0 C pn;1eiy
j

D 1 � pn;0 � pn;1 C

q
.pn;0 C pn;1/2 � 2pn;0pn;1.1 � cos y/

6 1 � pn;0 � pn;1 C .pn;0 C pn;1/

�
1 �

pn;0pn;1

.pn;0 C pn;1/2
.1 � cos y/

�
;

by using the inequality
p

1 � x 6 1 � 1
2
x for x 2 Œ0; 1�. Then by the inequalities 1 � x 6

e�x and 1 � cos y > 2
�2 y2 for jyj 6 � , we obtain, for jyj 6 � ,

jE.eBniy/j 6 exp
�
�

pn;0pn;1

pn;0 C pn;1

.1 � cos y/

�
6 exp

�
�

2

�2
�

pn;0pn;1

pn;0 C pn;1

y2

�
;
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which holds for all n > 1 provided we interpret 0
0

as zero. In this way, we see that

jE.eZniy/j 6 e
� 2

�2
ƒny2

6 e�
1
5
ƒny2

;

for jyj 6 � , where

ƒn WD

X
16k6n

pk;0pk;1

pk;0 C pk;1

:

We now prove that ƒn > "n for some " > 0. Observe that pn;0 D
n

2LnC1 when n ¤ Ln,
and

pk;1 D

8<:
k

2LkC2 ; if 2Lk < k <
l

2LkC2

3

m
;

0; if
l

2LkC2

3

m
6 k 6 2LkC1:

It follows that

ƒn >
X

26`<Ln

X
2`<k<

l
2`C2

3

m
k

2`C1 �
k

2`C2

k

2`C1 C
k

2`C2

D
1

6

X
26`<Ln

X
2`<k<

l
2`C2

3

m
k

2`

>
1

6

X
26`<Ln

�
7

18
2` �

7

6

�
> "02Ln > "n;

for a sufficiently small " > 0. This completes the proof of (63) and the local limit theo-
rem (61).

7. IMPLEMENTATION AND TESTING
We discuss in this section the implementation and testing of the two algorithms FYKY
and RS. We implemented the algorithms in the C language, taking as input an array
of 32-bit integers (which is enough to represent permutations of size up to over four
billion). To generate the needed random bits, we used the rdrand instruction, present
on Intel processors since 2012 [Intel 2012] and AMD processors since 2015. This in-
struction provides access to physical randomness, which does not have the biases of a
pseudorandom generator. This choice also makes it easy to compare the performance
of the algorithms without relying on third-party software. Alternatively, one could use
a pseudorandom generator like Mersenne Twister, which is the default choice in most
software, such as R, Python, Matlab and Maple, and runs faster than rdrand when
properly implemented. But such a generator has been known to be cryptographically
insecure because one can predict all the future iterations if a sufficient number (624 in
the case of MT9937) of iterations is available. The hardware driven instruction rdrand,
in contrast, is proved to be cryptographically secure. Our implementation takes care
of not wasting any random bits and provides the option to track the number of random
bits consumed.

The implementation of Algorithm FYKY is rather straightforward, but that of Al-
gorithm RS is more involved. First of all, the recursive calls in RS are handled in the
following fashion, depending on the size of the input:
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— for large inputs, we run the recursive calls in parallel using the Posix thread library
pthread;

— for intermediate inputs, we run the recursive calls sequentially to limit the number
of threads;

— for small inputs, we use the Fisher-Yates algorithm instead to reduce the number of
recursive calls.

The cutoffs between small, intermediate and large inputs were determined experimen-
tally; in our tests, thresholds of 216 and 220 seemed efficient, but this may depend on
machine and other implementation details.

The second optimization for Algorithm RS concerns the splitting routine. Written
naively, this routine contains a loop with an if statement depending on random data.
This is a problem because branches are considerably more efficient if they can be cor-
rectly predicted by the processor during execution. We are able to avoid using branches
altogether by vectorizing the code, i.e., using SIMD (Single Instruction, Multiple Data)
processor instructions. Such instructions take as input 128-bit vector registers capable
of storing four 32-bit integers and operate on all four elements at the same time. The
C language provides extensions capable of accessing such instructions. Specifically, we
used in our implementation two instructions, present in the AVX (Advanced Vector
Extensions) instruction set supported by newer processors. They are vpermilps, which
arbitrarily permutes the four 32-bit elements of a vector; and vmaskmovps, which writes
an arbitrary subset of the four elements of a vector to memory. Both instructions take
as additional input a control vector specifying the permutation or subset, of which only
two bits out of every 32-bit element are read.

We use these instructions to separate four elements of the permutation at a time into
two groups. This can be done in 16 possible ways, which means that we have to supply
each instruction with one of 16 possible control registers. We do this by building a
master register containing all 16 of them in a packed fashion. We then draw randomly
an integer r between 0 and 15 and shift every component of the master register by 2r
bits to select the appropriate control register. This lets us handle four elements at a
time without using branches.

Benchmarks. Below are our benchmarks for Algorithm FYKY, Algorithm RS and one
of its parallel versions. The tests were performed on a machine with 32 processors.

Table I. Left: the execution times to sample permutations of sizes from 105 to 109 (each
averaged over 100 runs for sizes up to 10 million and 10 runs otherwise). Right: the analytic
results we obtained in this paper. Here c˙ " indicates fluctuations around the mean value
c (coming from the periodic functions); see (9), (13), (34) and (52).

n FYKY RS Parallel RS
105 4.84ms 4.59ms 4.18ms
106 51.1ms 51.6ms 18.5ms
107 712ms 623ms 121ms
108 12.5s 7.26s 1.04s
109 145s 81.7s 10.3s

Algorithm Mean
RS n log2 nC .0:25˙ "/n

FYKY n log2 n� .0:33˙ "/n

Algorithm Variance
RS .1:83˙ "/n

FYKY .1:56˙ "/n

As expected, parallelism speeds up the execution by as much as a factor of 8. What
is more surprising is that, even in a sequential form, Algorithm RS is nearly twice
as efficient as Fisher-Yates for the larger sizes, despite making on linearithmic order
of memory accesses instead of linear. The reason for this has to do with the memory
cache, which makes it more efficient to access memory in a sequential fashion instead
of at haphazard places. The Fisher-Yates shuffle accesses memory at a random place
at each iteration of its loop, causing a large number of cache misses. Algorithm RS,
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in comparison, does not have this drawback, which accounts for the observed gap in
performance.
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