
Advances in Applied Mathematics 65 (2015) 38–64
Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Random unfriendly seating arrangement in a dining 

table

Hua-Huai Chern a, Hsien-Kuei Hwang b,∗,1, Tsung-Hsi Tsai c

a Department of Computer Science, National Taiwan Ocean University, Keelung 
202, Taiwan
b Institute of Statistical Science, Institute of Information Science, Academia 
Sinica, Taipei 115, Taiwan
c Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 June 2014
Received in revised form 15 
November 2014
Accepted 20 January 2015
Available online xxxx

MSC:
primary 60C05
secondary 60D05, 60F05, 60E15

Keywords:
Riccati equation
Jamming density
Quasi-power theorem
Central and local limit theorem
Stochastic dominance

A detailed study is made of the number of occupied seats 
in an unfriendly seating scheme with two rows of seats. An 
unusual identity is derived for the probability generating 
function, which is itself an asymptotic expansion. The identity 
implies particularly a local limit theorem with optimal 
convergence rate. Our approach relies on the resolution of 
Riccati equations. We also clarify some simple yet delicate 
stochastic dominance relations.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail address: hkhwang@stat.sinica.edu.tw (H.-K. Hwang).

1 Partially supported by a research grant from Ministry of Science and Technology under the Grant MOST 
103-2118-M-001-004-MY3, Taiwan.
http://dx.doi.org/10.1016/j.aam.2015.01.002
0196-8858/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aam.2015.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yaama
mailto:hkhwang@stat.sinica.edu.tw
http://dx.doi.org/10.1016/j.aam.2015.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aam.2015.01.002&domain=pdf


H.-H. Chern et al. / Advances in Applied Mathematics 65 (2015) 38–64 39
1. Introduction

Freedman and Shepp formulated the “unfriendly seating arrangement problem” in 
1962 [16, Problem 62–3]:

There are n seats in a row at a luncheonette and people sit down one at a time at 
random. They are unfriendly and so never sit next to one another (no moving over). 
What is the expected number of persons to sit down?

Let Zn denote the number of persons sitting down when no further customers can 
sit properly without breaking the restriction of unfriendliness. Solutions with different 
degree of precision or generality were later proposed by many. In particular, Friedman 
and Rothman [17] proved that

E(Zn) =
∑

0�k<n

(n− k) (−2)k

(k + 1)!

= 1
2
(
1 − e−2) (n + 3) − 1 + O

(
2n

(n + 2)!

)
,

for large n. The factorial error term here seems characteristic of sequential models of 
a similar nature; see, for example, (1), (14) and (16) below and [6]. We will provide 
a general framework for characterizing such small errors; see Proposition 1 below. In 
addition, Friedman and Rothman [17] extended the “degree of unfriendliness” to any 
integer b � 1, where any two people have to sit with at least b unoccupied seats between 
them. This extension was mentioned to be related to Rényi’s Parking Problem and to 
a discrete parking problem studied by MacKenzie (see [22]) in which cars of the same 
length � � 2 are parked uniformly at random along the curb with n unit parking spaces. 
Indeed, the latter problem with � = 2 found its origin in Flory’s 1939 pioneering paper 
[15] in polymer chemistry, and was later expanded into generic stochastic models under 
the name “random sequential adsorption”; see [7] for a comprehensive survey and [2,8,
25,26] a more recent account.

Due to the simplicity and the usefulness of the model, the same discrete parking 
problem was also studied independently under different guises in applied probability 
and related areas. Page [23] studied a random pairing model in which n isolated points 
are paired randomly by adjacency until only singletons remain. This model is identical 
to Flory’s monomer-dimer model [15] (or the discrete parking problem [22] where each 
car requires 2-unit parking space). The same model was also encountered in a few diverse 
modeling contexts. Let ζn denote the resulting number of pairs when no more adjacent 
pair can be formed. Then it is easy to see that

Zn ≡ 1ζn+1 (n � 0).
2
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In addition to deriving a closed-form expression for the first three moments of ζn, 
Page [23] also computed the variance, which, when transferring to our Zn, satisfies

V(Zn) =
(
n + 1

2

)
− μ2

n −
∑

0�k�n−2

(−2)k

(k + 2)!

(
n− k

2

)(
2k(k − 2) + k2 + 4k + 6

)
;

asymptotically,

V(Zn) = e−4(n + 3) + O

(
4n

(n + 2)!

)
. (1)

Another interesting result in [23] is the closed-form expression for the bivariate generating 
function of E(tζn), obtained by solving a Riccati equation; see also [28]. In terms of Zn, 
this closed-form translates into

∑
n�0

E
(
tZn

)
zn =

√
t
((

1 +
√
t
)
e2

√
tz + 1 −

√
t
)

(
1 +

√
t
) (

1 −
√
tz
)
e2

√
tz −

(
1 −

√
t
) (

1 +
√
tz
) . (2)

Page predicted that the ζn’s were asymptotically normally distributed, which was later 
proved by Runnenburg [28] by the method of moments; see [21] for an extension. See 
also [4,5,11] for other properties studied. The asymptotic normality is contained as a 
special case of Penrose and Sudbury’s very general central limit theorem in [27], where 
they also derived a convergence rate by Stein’s method.

The exact solvability of such a model is however very rare in the literature, and the 
next possibly solvable cases are the unfriendly variants for two rows of seats with the 
same rule of nearest neighbors exclusion, which we may refer to as the unfriendly seating 
arrangement in a dining table. Such a model and the like were studied by physicists in the 
1990’s and the “jamming density” (the large-n limit of the ratio between the expected 
number of persons sitting down and the total number of seats) was given explicitly by

1
4
(
2 − e−1) ≈ 0.408030 . . . (3)

using different heuristic arguments; see [1,9]. This constant is to be compared with that 
in the one-row case

1
2
(
1 − e−2) ≈ 0.432332 . . . ;

see also Finch’s book [10, §5.3.1] for more information.
The same problem was recently reformulated as the unfriendly theater seating arrange-

ment problem by Georgiou et al. [18], where they indeed addressed the configuration of m
rows of seats (mentioned to be connected to maximal independent sets of planar lattice) 
and proved the existence of the expected proportion of occupied seats. In particular, 
they also derived the jamming limit (3). Unfortunately, the crucial stochastic dominance 
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relations used in their paper [18] are incorrect, and thus their proofs remain incomplete 
(the asymptotic linearity being well expected though). More precisely, they claimed that 
if H is an induced subgraph of G, then the first-order stochastic dominance relation 
XH � XG holds in the sense that

P (XH > k) � P (XG > k) , (4)

for all k, where XH , XG are the random variables counting the number of occupied seats 
(or the cardinality of an independent set) when starting with the seat configurations 
H and G, respectively, and following the same random unfriendly seating procedure 
until the procedure terminates. It is known that this implies the second-order stochastic 
dominance

E(XH) � E(XG). (5)

Unfortunately, none of the two relations (4) and (5) is correct. Here is a counterex-
ample to (4). If the two initial seat configurations are given as follows

H1 = ©
© © © and G1 = © ©

© © © ,

then {
P(XH1 = 1) = 1

4
P(XH1 = 3) = 3

4 ,
and

{
P(XG1 = 2) = 7

15
P(XG1 = 3) = 8

15 .

implying that

P(XH1 � 3) > P(XG1 � 3),

contrary to (4). For a counterexample to (5), consider the following two seat configura-
tions

H2 = ©
© , G2 = ©

© © .

Then the expected numbers of occupied seats satisfy E[XH2 ] = 2 > E[XG2 ] = 5/3.
Due to the subtlety of the problem, we focus our attention in this paper on the dining 

table model and we show that this model is also explicitly solvable by solving a system of 
nonlinear differential equations. This new result leads to interesting structural properties, 
and many strong limit theorems will then follow. In particular, our analysis provides the 
first rigorous, complete proof for the very simple jamming limit (3) with an optimal error 
terms. Some related stochastic dominance relations will be clarified in Section 6.
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2. Recurrences and solutions

We consider a dining table with 2n seats arranged in two rows

Xn :=

n︷ ︸︸ ︷
© © © © © · · · © © ©
© © © © © · · · © © ©

(6)

Diners arrive one after another and each selects a seat uniformly at random. If the seat 
is empty, then it becomes occupied, and two of its neighboring seats together with the 
opposite one (in the other row) are no more available. If the seat selected is occupied or 
forbidden and there are still empty seats available, then the (uniform) random selection is 
repeated until a seat is found. The process stops as long as all seats are either occupied 
or forbidden. An example with n = 10 is given as follows (where “�” stands for a 
forbidden seat and “•” an occupied seat)

� • � � �• � �• �• � �• � � • � � • .

Let Xn count the total number of persons sitting down when such a sequential process 
terminates. Then it is easy to see that

�n/2� + 1 � Xn � n (n � 1).

By splitting the 2n-problem at the first occupied seat into two subproblems, we are then 
led to the recurrence relation for the probability generating function Xn(t) := E(tXn)

Xn(t) = t

n

∑
0�k�n−1

Yk(t)Yn−1−k(t) (n � 1), (7)

with X0(t) = 1. Here Yn counts the number of occupied seats under the same unfriendly 
seating procedure but with the slightly different initial configuration of the seats

Yn :=

n−1︷ ︸︸ ︷
© © © © © · · · © ©
© © © © © · · · © © ©

(8)

where the total number of seats is 2n − 1. The following two diagrams show the obvious 
decompositions after the first seat is occupied.

��
�

Y• Y• �
��

Y• Y•
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Applying the same conditioning argument to Yn, we need to introduce two additional 
sequences of random variables based on the following seat configurations: for n � 1

A−1 = A0 = ∅,

An :=

n︷ ︸︸ ︷
© © © © © · · · © © ©

© © © © © · · · © © ©

and

B−1 = ∅, B0 = ©,

Bn :=

n−1︷ ︸︸ ︷
© © © © · · · © © ©

© © © © © · · · © © © ©

Let An, and Bn denote the number of sitting persons under the same unfriendly seating 
procedure when started from the configurations An and Bn, respectively. The initial 
conditions are defined to be A−1 = A0 = 0 and B−1 = 0, B0 = 1. Then we have the 
following systems of recurrences.

Lemma 1. The probability generating functions An(t), Bn(t) and Yn(t) satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
An(t) = t

n

∑
1�k�n

Ak−2(t)Bn−k(t),

Bn(t) = t

2n

⎛⎝ ∑
1�k�n−1

Bk−1(t)Bn−1−k(t) +
∑

1�k�n+1

Ak−2(t)An−k(t)

⎞⎠ ,

(9)

and

Yn(t) = t

2n− 1

⎛⎝ ∑
0�k�n−2

Yk(t)Bn−2−k(t) +
∑

0�k�n−1

Yk(t)An−2−k(t)

⎞⎠ ,

for n � 1 with the initial conditions An(t) = Bn(t) = Yn(t) = 1 if n < 0 and A0(t) =
Y0(t) = 1 and B0(t) = t.

Proof. After the first diner sits down, the random variable Yn is decomposed in either 
the following two ways.

�
��

Y• B• ��
�

Y• A•
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Similarly, the random variable An is decomposed as follows

�
��

A• B• ��
�

B• A•

And, finally, we have the two possible decompositions for Bn

�
��

B• B• ��
�

A• A•

The lemma follows by computing the corresponding probabilities. �
Consider now GA(z, t) :=

∑
n�0 E 

(
tAn

)
zn, the bivariate generating function of An. 

The notations GB(z, t) and GY (z, t) are defined similarly. Then Lemma 1 implies the 
following system of Riccati equations.

Lemma 2. The bivariate generating functions GA, GB satisfy{
G′

A = tGB + tzGAGB ,

G′
B = tGA + tz

2
(
G2

A + G2
B

)
,

with GA(0, t) = 1 and GB(0, t) = t, and

2zG′
Y =

(
1 + tz + tz2(GA + GB)

)
GY − 1,

with GY (0, t) = 1. Here for simplicity G• = G•(z, t) and G′
• := (∂/∂z)G•(z, t).

These equations admit explicit solutions as follows. Define

U(z, t) = 2t(1 + t)
(1 + t)(1 − tz) − (1 − t)e−tz

. (10)

Lemma 3. We have

GA(z, t) = U(z, t) + U(z,−t)
2 , GB(z, t) = U(z, t) − U(z,−t)

2 , (11)

and

GY (z, t) = Q(z, t)
P (z, t) , (12)

where
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P (z, t) = (1 + t)(1 − tz) − (1 − t)e−tz,

Q(z, t) = 1 + t− (1 − t)e−tz − 1 − t

2 tz

∫ 1

0
e−tz(1+v)/2v−1/2 dv.

Note that Q can be expressed in terms of the error function or the standard normal 
distribution function Φ. For example,

Q(z, t) = 1 + t− (1 − t)e−tz/2
(
e−tz/2 −

√
π

2 tz +
√

2πtz Φ(
√
tz )

)
.

Proof. For convenience, define V (z, t) := U(z, −t). Then U = GA+GB and V = GA−GB

satisfy the simpler equations ⎧⎪⎨⎪⎩
U ′ = tU + tz

2 U2,

V ′ = −tV − tz

2 V 2,

with U(0, t) = 1 + t and V (0, t) = 1 − t. Since this is a system of Bernoulli equations, we 
consider the transformation u = −U−1, which satisfies the equation

u′ + tu = tz

2 ,

with u(0, t) = −1/(1 + t). Solving this equation gives (10), and (11) follows.
For GY , we then have the first-order differential equation

2zG′
Y =

(
1 + tz + tz2U

)
GY − 1.

To solve this equation, we consider G̃Y := GY − 1 and introduce the integration factor

I(z) = I(z, t) := z−1/2etz/2P (z, t).

Then

(I · G̃Y )′ = tI

2 (1 + zU),

with G̃Y (0, t) = 0, which has the solution

G̃Y (z, t) = t

2I(z)

∫ z

0
I(s)(1 + sU(s, t)) ds.

Note that

I(z, t)(1 + zU(z, t)) = z−1/2
(
(1 + t)(1 + zt)etz/2 − (1 − t)e−tz/2

)
.
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Then ∫ z

0
I(s, t) (1 + sU(s, t)) ds

= 2
√
z(1 + t)etz/2 − (1 − t)

∫ z

0
s−1/2e−ts/2 ds

= 2
√
z(1 + t)etz/2 − (1 − t)

√
z

∫ 1

0
v−1/2e−tzv/2 dv.

Thus

G̃Y (z, t) = Q(z, t)
P (z, t) = 1 + t

2I(z, t)

∫ z

0
I(s, t) (1 + sU(s, t)) ds

= 1
P (z, t)

(
1 + t− (1 − t)e−tz − t(1 − t)

2 z

∫ 1

0
e−tz(1+v)/2v−1/2 dv

)
,

which proves (12). �
Returning to Xn, by (7), we have

GX(z, t) :=
∑
n�0

E
(
tAn

)
zn = 1 + t

∫ z

0
GY (u, t)2 du. (13)

Since the uniform splitting procedure also arises naturally in diverse algorithmic and 
combinatorial contexts, Riccati equations were often encountered in related literature; 
see, for example, [12,24].

3. Mean and variance

With the explicit expressions derived above, we have two different approaches to 
compute the mean and the variance: one based on a direct use of (13) and a suitable 
manipulation of the error terms (see [14, Ch. VII]) and the other depending on Quasi-
Power type argument (see [14, §IX.5], [19]). While both approaches provide readily the 
two dominant asymptotic terms, the characterization of the extremely small error re-
quires a more careful analysis. For methodological interest, we discuss the first approach 
here by providing a general means for error analysis, which will also be useful for prob-
lems of a similar nature. The second approach will be briefly indicated later.

Theorem 1. The mean of Xn satisfies

E(Xn) = μn + c1 + O

(
1

(n + 3)!

)
, (14)

where μ := 1 − e−1/2 and (φ := 2Φ(1) − 1)
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c1 := e−1

2

(√
2πeφ− 1

)
≈ 0.33502 27062 94844 . . . , (15)

and the variance satisfies

V(Xn) = σ2n + c2 + O

(
2n

(n + 4)!

)
, (16)

where σ :=
√

3
4 e

−1 and

c2 := e−2

4

(
−πeφ2 − 2

√
2πeφ + 5

)
≈ −0.15640 75038 00915 . . . (17)

From (14), we see that the jamming density is given by

lim
n→∞

E(Xn)
2n = 1

4
(
2 − e−1) .

Also the O-terms in (14) and (16) are smaller than the corresponding ones in the one-row 
version.

Proof. From (12), we have

MY (z) :=
∑
n�0

E(Yn)zn = ∂

∂t
GY (z, t)

∣∣∣
t=1

= z

(1 − z)2

(
1 − e−z

2

)
+ z

4(1 − z)

∫ 1

0
v−1/2e−(1+v)z/2 dv.

Then we deduce that

MX(z) :=
∑
n�0

E(Xn)zn = 2
∫ z

0

MY (u)
1 − u

du +
∫ z

0

1
(1 − u)2 du

= μ

(1 − z)2 + c0
1 − z

+ O(1), (18)

as z ∼ 1, where

c0 := −1 +
√
π√
2e

(2Φ(1) − 1) = −1 +
√
π√
2e

φ.

Consequently, by standard singularity analysis [14, Ch. VII],

E(Xn) = μn + c1 + O
(
n−K

)
, (19)

for any K > 0.
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Fig. 1. Goodness of the approximations (19) and (16) by computing the exact values of E(Xn) − μn (left) 
and V(Xn) − σ2n (right) for n = 1, . . . , 50.

Fig. 2. The factorial errors of (14) and (16): (E(Xn) −μn − c1)(n + 3)!/2 (left) and (V(Xn) − σ2n − c2)(n +
4)!/2n+5 (right) for n = 1, . . . , 100.

The leading terms in (16) for the variance are computed similarly.
Numerically, the approximation (19) without the O-term is extremely good even for 

small values of n; see Fig. 1. For example, the error term is already less than 10−7 when 
n � 8; see also Fig. 2.

To clarify the rapid convergence of the mean and variance towards their limit (see 
Fig. 1), we refine the asymptotic approximation (19) by the following simple error anal-
ysis. Note first that we are dealing with asymptotics of the form ([zn]f(z) denoting the 
coefficient of zn in the Taylor expansion of f)

[zn] f(z)
(1 − z)m , [zn]

∫ z

0

f(u)
(1 − u)m du,

where m = 1, 2, . . . and f is an entire function with quickly decreasing coefficients.
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Proposition 1. If f is an entire function whose coefficients satisfy

[zn]f(z) = O (εn) ,

where εn is a positive sequence satisfying εn = O(K−n) for some K > 1, then, for 
m = 1, 2, . . . ,

[zn] f(z)
(1 − z)m =

∑
0�j<m

(−1)j

j! f (j)(1)
(
n + m− 1 − j

m− 1 − j

)
+ O(|εn+m|), (20)

and

[zn]
∫ z

0

f(u)
(1 − u)m du = 1

n

∑
0�j<m

(−1)j

j! f (j)(1)
(
n + m− 2 − j

m− 1 − j

)
+ O

(
|εn+m−1|

n

)
.

(21)

Proof. Let fn := [zn]f(z). Then

[zn] f(z)
(1 − z)m =

∑
0�k�n

(
n + m− k − 1

m− 1

)
fk =

∑
k�0

(
n + m− k − 1

m− 1

)
fk − δn,

where

δn :=
∑

k�n+m

(
n + m− k − 1

m− 1

)
fk = O (|εn+m|)) .

On the other hand, by expanding f(z) at z = 1 and computing the coefficients term by 
term, we have the identity (fk = f (k)(0)/k!)

∑
k�0

f (k)(0)
k!

(
n + m− k − 1

m− 1

)
=

∑
0�j<m

(−1)j f
(j)(1)
j!

(
n + m− 1 − j

m− 1 − j

)
.

This proves (20). For (21), we have

[zn]
∫ z

0

f(u)
(1 − u)m du = 1

n

∑
0�k<n

(
n + m− k − 2

m− 1

)
fk.

Then (21) follows by the same analysis by replacing n by n − 1. �
Our analysis indeed applies to a wider class of f but we do not need this in this paper.
We now apply this lemma to MX(z), which has the form

MX(z) =
∫ z f1(u)

3 du,

0 (1 − u)
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where

f1(z) = 1 + z − z2

2

∫ 1

0
v−1/2(1 − v)e−(1+v)z/2 dv.

Thus for n � 2

[zn]f1(z) = (−1)n−1

(n− 2)!
∑

0�j�n−2

(
n− 2
j

)
(−1)j (j + 1)!

√
π

Γ(j + 5/2)2j+1 .

By the standard integral representation for finite differences (or Rice’s formula; see [13]), 
we deduce that

[zn]f1(z) = 2(−1)n−1

n!

(
1 + 2

n + 1 + O
(
n−2)) . (22)

Indeed, one obtains the (divergent) full asymptotic expansion

[zn]f1(z) ∼ 2(−1)n−1

n!

⎛⎝1 +
∑
k�3

(k − 1)(2k − 4)!
2k−2(k − 2)! · 1

(n + 1) · · · (n + k − 2)

⎞⎠ .

On the other hand, we also have

f1(1) = 2 − e−1, and f ′
1(1) = c0;

see (18). Applying now (21) gives not only the leading terms μn + c1 for E(Xn) but also 
the precise error term in (14).

In a similar way, we have

SY (z) :=
∑
n�0

E(Y 2
n )zn = ∂2

∂t2
GY (z, t)

∣∣∣∣∣
t=1

+ ∂

∂t
GY (z, t)

∣∣∣∣∣
t=1

= z(2(1 + z) − (1 + z)2e−z + e−2z)
2(1 − z)3 +

√
2πz

4(1 − z)2 e−z/2(1 + z2 − e−z).

It follows that

SX(z) :=
∑
n�0

E(X2
n)zn =

∫ z

0

f2(u)
(1 − u)4 du,

where

f2(z) = 1
2f1(z)2 − e−zf1(z) + (z2 − z + 2)f1(z)

+ (1 − z)(1 + 2z)e−z − 1 (1 − z)2(3 + 2z).
2
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Consider now [zn]f2(z). By (22), we see that the first two terms on the right-hand side 
dominate and contribute an order bounded above by

[zn]
(1

2f1(z)2 − e−zf1(z)
)
� 4

∑
2�k�n−2

1
k!(n− k)! = O

(
2n

n!

)
,

the remaining terms being of order O(1/n!). Thus

[zn]f2(z) = O

(
2n

n!

)
.

By another application of (21), we derive an asymptotic approximation to the second 
moment with an error term of the form O(2n/(n +4)!), which, together with (14), proves 
(16). �
4. An identity for Xn(t)

Since solutions to Riccati equations have only simple poles, we expect, from the closed-
form expression (12), that

GY (z, t) = Q(z, t)
P (z, t) ≈

∑
k∈Z

Rk(t)
ρk(t) − z

, (23)

where ρk(t) ranges over all zeros of P (z, t) (as a function of z) and

Rk(t) := − Q(ρk(t), t)
P ′(ρk(t), t)

.

Here and throughout this section P ′(z0, t) = (∂/∂z)P (z, t)|z=z0 . The expansion (23) is 
roughly true up to correction terms in the series to guarantee convergence; see (31). 
From this series, we in turn expect that

Yn(t) = E
(
tYn

) ?=
∑
k∈Z

Rk(t)ρk(t)−n−1,

which is indeed true for n � 1; see (32). What is less expected is that their convolution (7), 
which yields Xn(t), also admits a closed-form expression.

Before stating the identity for Xn(t), we start with a brief discussion for the zeros of 
P (z, t), namely,

(1 − tz)etz = 1 − t

1 + t
,

which are easily seen to be expressible in terms of Lambert’s W-functions [3]. They are 
the solutions to the equation
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Fig. 3. Approximate zeros of the denominator P (z, eiθ) of GY inside the rectangular region [−4 − 4i, 4 + 4i]
(left), and the fives curves {ρj(1 +0.2eiθ)}2

j=−2 for −π � θ � π (left), where ρ0 is the small red circle near 
unity. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

W (z)eW (z) = z. (24)

This equation has an infinity number of solutions Wk(z), k ∈ Z, and among them only 
one, denoted by W (z) = W0(z), is analytic at the origin. This function has the Taylor 
series expansion

W (z) = −
∑
k�1

kk−1

k! (−z)k, (25)

and has the branch cut (−∞, −e−1). All other solutions have the branch cut (−∞, 0].
With these solutions, we have P (ρk(t), t) = 0 when

ρk(t) = 1
t

(
1 + Wk

(
−e−1 1 − t

1 + t

))
,

where ρ0(t) has the branch cut [−1, 0] and the other branches the cut [−1, 1]. As t → 1, 
all solutions blow up to infinity except for ρ0 which equals 1 at t = 1; see Fig. 3.

A useful expansion that will be needed is the following convergent series (see [3])

Wk(z) = log z + 2kπi − log(log z + 2kπi) +
∑
j�0

Πj(log(log z + 2kπi))
(log z + 2kπi)j ,

valid for all z, where Πj(x) is a polynomial in x of degree j. In particular, this gives for 
finite z and k 
= 0

|Wk(z)| = O(k + | log z|). (26)
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Theorem 2. For n � 1, we have the identity

Xn(t) = t
∑
k∈Z

Rk(t)2ρk(t)−n−1, (27)

for n � 1 and t ∈ C \ {−1}, where

Rk(t) := 1
t

(
1 − 1 − t

2(1 + t)

∫ 1

0
v−1/2e−tρk(t)(1+v)/2 dv

)
.

When t = −1, we have the identity

Xn(−1) = − (−2)n−1

n

∑
0�k<n

k!(n− 1 − k)!
(2k)!(2n− 2 − 2k)! , (28)

and the asymptotic approximation

Xn(−1) = 2 n!(−4)n

(2n)!
√
πn

(
1 + 9

8n + O
(
n−2)) . (29)

The expression (27) is not only an identity but also an asymptotic expansion for large n
(finite t). The left-hand side is by definition a polynomial of degree n, while the right-hand 
side is an infinite series of exponentially decreasing terms. It implies particularly that 
Xn(t) is roughly of the exponential order |ρ0(t)−n| except when t = −1 at which Xn(t)
is factorially small. Although Rk can be further expressed in terms of known functions, 
the expression we give here is more transparent and valid for all t ∈ C \ {−1}.

Proof. We start from the local expansion

GY (z, t) ∼ R(ρ(t), t)
ρ(t) − z

,

as z ∼ ρ(t), where P (ρ(t), t) = 0 and

R(z, t) := − Q(z, t)
P ′(z, t) = 1

t

(
1 − 1 − t

2(1 + t)

∫ 1

0
v−1/2e−tz(1+v)/2 dv

)
.

A more precise expansion is given as follows

GY (z, t) = R(ρ(t), t)
ρ(t) − z

+ Q′(ρ(t), t)
P ′(ρ(t), t) − Q(ρ(t), t)P ′′(ρ(t), t)

2P ′(ρ(t), t)2 + O(|z − ρ(t)|)

= R(ρ(t), t)
ρ(t) − z

+ O(|z − ρ(t)|),

where the constant term turns out to be identically zero because
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2P ′(z, t)Q′(z, t) −Q(z, t)P ′′(z, t) = t2(1 − t)
2 P (z, t)

∫ 1

0
v−1/2e−tz(1+v)/2 dv. (30)

This is crucial in proving (27).
Since all zeros of the P (z, t) are simple, we have the partial fraction expansion

GY (z, t) = 1 +
∑
j∈Z

Rj(t)
(

1
ρj(t) − z

− 1
ρj(t)

)
, (31)

by the classical procedure for meromorphic functions (see [29, §3.2]), where we used the 
estimate (26) for Wk (see [3]) and the asymptotic approximation

2Φ(
√
x ) − 1 ∼ 1 −

√
2
π
x−1/2e−x/2 (x → ∞).

This implies the identity

Yn(t) =
∑
j∈Z

Rj(t)ρj(t)−n−1 (n � 1). (32)

To prove (27), we start with the convolution (7)

Xn(t) = 2t
n

Yn−1(t) + t

n

∑
1�k�n−2

Yk(t)Yn−1−k(t)

= 2t
n

∑
j∈Z

Rjρ
−n
j + t

n

∑
j,�∈Z

RjR�

∑
1�k�n−2

ρ−k−1
j ρ−n+k

� ,

where for convention we drop the dependence on t. By the relation

∑
1�k�n−2

x−k−1y−n+k =

⎧⎨⎩
(n− 2)x−n−1, if x = y,
x−1y−n+1 − y−1x−n+1

x− y
, if x 
= y,

we then have

t

n

∑
j,�∈Z

RjR�

∑
1�k�n−2

ρ−k−1
j ρ−n+k

�

= t

n
(n− 2)

∑
j∈Z

R2
jρ

−n−1
j + t

n

∑
j∈Z

∑
��=j

RjR�

ρ−1
j ρ−n+1

� − ρ−1
� ρ−n+1

j

ρj − ρ�

= t

n
(n− 2)

∑
j∈Z

R2
jρ

−n−1
j + 2t

n

∑
j∈Z

Rjρ
−n+1
j

∑
��=j

R�

ρ�(ρ� − ρj)
.

Then we have
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Xn(t) = t
∑
j∈Z

R2
jρ

−n−1
j

+ 2t
n

{∑
j∈Z

(
ρjRj −R2

j

)
ρ−n−1
j +

∑
j∈Z

Rjρ
−n+1
j

∑
��=j

R�

ρ�(ρ� − ρj)

}
.

The last double-sum can be further simplified. For, by (31),

lim
z→ρj

(
GY (z, t) − Rj

ρj − z

)
= 1 − Rj

ρj
+

∑
��=j

ρjR�

ρ�(ρ� − ρj)
,

on the one hand, and, by (30),

lim
z→ρj

(
GY (z, t) − Rj

ρj − z

)
= 0,

on the other hand. It follows that∑
��=j

R�

ρ�(ρ� − ρj)
= − 1

ρj
+ Rj

ρ2
j

.

Thus ∑
j∈Z

(
ρjRj −R2

j

)
ρ−n−1
j +

∑
j∈Z

Rjρ
−n+1
j

∑
��=j

R�

ρ�(ρ� − ρj)
= 0,

and we conclude the identity (27).
Consider now t = −1 at which Xn(t) satisfies

Xn(−1) =
∑

n/4�k�n/2

(P(Xn = 2k) − P(Xn = 2k − 1)) .

By (12), we have

GY (z,−1) = 1 − z

2

∫ 1

0
v−1/2e−(1−v)z/2 dv,

which, by a direct expansion of the exponential factor and term-by-term integration, 
implies that

Yn(−1) = n!(−2)n

(2n)! (n � 0).

From this we derive (28). Express now the convolution sum (28) as an integral as follows

Xn(−1) = (n− 1)!(−2)n−2 ∫ 1 (
(1 + 2

√
v(1 − v) )n−1 + (1 − 2

√
v(1 − v) )n−1

)
dv,
(2n− 2)! 0
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where we used the relation

∑
0�k�n

(
2n
2k

)
zk = 1

2
(
(1 + z + 2

√
z )n + (1 + z − 2

√
z )n

)
.

Then the asymptotic expression (29) follows from a simple application of the saddle-point 
method. This completes the proof of the theorem. �
5. Approximation theorems

The identity (27), when viewing as an asymptotic expansion, is very useful in de-
riving limit and approximation theorems with optimal convergence rates, following the 
Quasi-Power Framework; see [14, §IX.5], [19]. Other properties such as moderate and 
large deviations can also be derived by standard arguments.

We start from the “Quasi-Power approximation” (see [19])

E
(
eXns

)
= esR2

0(es)ρ(es)−n−1 (1 + O (εn)) ,

for some ε > 0, uniformly for |s| � δ in a small neighborhood of origin. The exact 
values of ε and δ can be made explicit by numerical calculations and standard Rouché’s 
theorem. For example, if we take δ = 0.2, then ε = 1/2 suffices; see [12] for a similar 
context. From this approximation and by a direct Taylor expansion of −(n +1) log ρ(es) +
s + 2 log(R0(es)) (and justified by the Quasi-Power Framework; see [12]), we obtain the 
two dominant terms in (14) and (16) (with weaker error terms). Moreover, the same 
argument applies for higher central cumulants (or moments). In particular, the third 
and fourth cumulants are asymptotic to

e−3

8
(
2e2 − 17

)
n + c3, and e−4

8
(
−12e3 + 71

)
n + c4,

respectively, where (φ := 2Φ(1) − 1)

c3 = e−3

16

(
(2πe)3/2φ3 + 12πeφ2 −

√
2πe

(
4e2 − 15

)
φ− 64 + 4e2

)
≈ −0.01646 99733 69929 . . .

c4 = e−4

16

(
−3(eπ)2φ4 − 6(2πe)3/2φ3 + 2πe(4e2 − 21)φ2

+ 4
√

2πe
(
4e2 − 11

)
φ + 280 − 40e2

)
≈ 0.09122 16766 24710 . . .

These expressions show the strength of the Quasi-Power approach. Although the direct 
approach used in Section 3 to compute the first two moments provides more precise 
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Fig. 4. The curve ρ(t) when |t| = 1 (left), where the unit circle is also shown, and a conformal plot of ρ(ew)
(right).

error terms (factorial instead of exponential), the approach used here is computationally 
simpler, notably for the expressions of the constant terms of high-order central cumulants.

For limit and approximation theorems, we are particularly interested in the behavior 
of the dominant term ρ(t) := ρ0(t) in the asymptotic expansion (27) when |t| = 1. Note 
that ρ(1) = 1 and all other ρk(−e−1(1 − t)/(1 + t))’s tend to infinity when t → 1. Also

ρk(eiθ) = e−iθ
(

1 + Wk

(
e−1 sin θ

1 + cos θ i
))

.

From (27), we have, when |t| = 1

Xn(t) = tR(t)2ρ(t)−n−1 + O
(
4−n

)
. (33)

(See Fig. 4.)

Theorem 3 (Central and local limit theorems). Let μ := 1 − e−2/2 and σ =
√

3
4 e

−1. We 
have

sup
x∈R

∣∣∣∣P(
Xn − μn

σ
√
n

� x

)
− Φ(x)

∣∣∣∣ = O
(
n−1/2

)
, (34)

and, uniformly for x = o(n1/6),

P
(
Xn =

⌊
μn + xσ

√
n
⌋ )

= e−x2/2
√

2πnσ

(
1 + O

(
(1 + |x|3)n−1/2

))
. (35)

Proof. (Sketch) The convergence rate (34) follows from (33) and the classical Berry–
Esseen inequality, and is part of the Quasi-Power Theorem (see [12]). The local limit 
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Fig. 5. Exact distributions of Xn for n = 6, . . . , 60: the distributions are plotted against 1/2n.

theorem is also straightforward by the corresponding Fourier integral representation 
once we have the uniform bound (33); see Fig. 5. Details are omitted. �

Note that the Berry–Esseen bound (34) with a rate of the form n−1/2+ε was estab-
lished in [27]; their formulation is more general but with slightly less precise approxima-
tions.

6. Stochastic dominance

We clarify the following stochastic dominance relations in this section.

Theorem 4. For n � 1

An+1, Bn+1 � Xn � An−1 − 2, Bn−1 − 2, (36)

where we write X � Y (in distribution) if for all x

P(X � x) � P(Y � x).

So the asymptotic normality of Xn can be reduced to that of An and Bn, which is 
easier because of the simpler recurrences or the closed-form expressions (11).

The sandwich approximation (36) seems intuitively clear but a rigorous proof is far 
from being obvious. Our proof given below is simple but messy. On the other hand, the 
“−2” factors in (36) are not optimal and might be replaced by “−1”; but our proof is 
somewhat too weak to justify this.

To prove (36), we establish the following dependence graph of stochastic dominance 
relations.
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(i)

(0a) 1 + Bn � An, (0b) 1 + An � Bn,

(ii)

(1a) An � An−1, (1b) Bn � Bn−1, (1c) Yn � Yn−1,

(2a) An � Yn, (2b) Bn � Yn, (2c) Yn � Xn−1,

(iii)

(3a) 1 + Bn−1 � An, (3b) 1 + An−1 � Bn, (3c) 1 + Yn−1 � Yn,

(4a) 1 + An−1 � Yn, (4b) 1 + Bn−1 � Yn, (4c) 1 + Yn � Xn,

(iv)

(5a) 1 + Yn � An−1, (5b) 1 + Yn � Bn−1, (5c) 1 + Xn � Yn.

Combining (2a), (2b) and (2c), we obtain the left-hand side of (36)

An, Bn � Xn−1;

on the other hand, combining (5a), (5b) and (5c) leads to

2 + Xn � An−1, Bn−1,

which is the right-hand side of (36).
The following directed graph indicates the implications of the diverse stochastic dom-

inance relations. The symbol “A → B” means that the proof of B uses the induction 
hypothesis of A.

0a,0b

2a,2b

2c

4a,4b

4c

1a,1b

1c

3a,3b

3c

5a,5b

5c
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Our proof is based on the following properties of conditional probability, which remain 
true when replacing all “�” by “�”.

Lemma 4. Assume that Ei are disjoint events of X with 
∑

i P(Ei) = 1. If (X|Ei) � Y for 
all i, then X � Y .

Lemma 5. Assume that Ei, E ′
i are disjoint events of X, Y with P(Ei) = P(E ′

i ) and ∑
i P(Ei) = 1. If (X|Ei) � (Y |E ′

i ) for all i, then X � Y .

We apply induction for all proofs. The initial conditions in all cases can be readily 
checked. We assume that all the stochastic dominance relations from (0a) to (5c) hold 
for all indices up to n −1. We will then prove that they also hold when the indices are n.

Proof of (0a), (0b). 1 + Bn � An, 1 + An � Bn.
We order each seat with a number from 1 to 2n for An and Bn as follows.

An

2n 2n− 1 2n− 2 2n− 3 n + 4 n + 3 n + 2 n + 1

n n− 1 n− 2 n− 3 4 3 2 1

and

Bn

2n

2n− 1 2n− 2 2n− 3 n + 4 n + 3 n + 2 n + 1

n n− 1 n− 2 n− 3 4 3 2 1

Let Ei, E ′
i be the events of An, Bn in which the first diner occupies seat number i. 

Then

(An|Ei)
d= Bn−i + 1 + Ai−2, (Bn|E ′

i )
d= An−i + 1 + Ai−2,

for 1 � i � n,

(An|Ei)
d= An−j−1 + 1 + Bj−1, (Bn|E ′

i )
d= Bn−j−1 + 1 + Bj−1,

for i = n + j, 1 � j � n − 1, and

(An|E2n) d= 1 + Bn−1, (Bn|E ′
2n) d= 1 + An−1.

By the induction hypothesis of (0a) and (0b),

(1 + Bn|E ′
i ) � (An|Ei) and (1 + An|Ei) � (Bn|E ′

i )
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for 1 � i � 2n. By Lemma 5, we then prove the two relations 1 + Bn � An and 
1 + An � Bn.

Note that the proof uses only relations between A· and B·; all other proofs will require 
the induction hypothesis from other dominance relations. �
Proof of (1a), (1b). An � An−1, Bn � Bn−1.

We first show that An � An−1. Let E1, E2 be the events of An in which the first 
customer selects seat number 1 and 2, respectively. Let Ec be the event of An in which 
the first customer selects seat other than numbers 1, 2.

1 © © © © © © . . . © © ©
2 © © © © © © · · · © © ©

To apply Lemma 4, we need (An|E1), (An|E2), (An|Ec) � An−1. We have

(An|E1)
d= 1 + Bn−1 � An−1,

by the induction hypothesis of (0a), and

(An|E2)
d= B0 + 1 + An−2 = 2 + An−2 � 1 + Bn−1 � An−1,

by the induction hypothesis of (3b) and (0a). Thus (An|E1), (An|E2) � An−1.
To show that (An|Ec) � An−1, we consider (An|Ec) and An−1 (defined on the same 

probability space) and apply Lemma 5. Let E ′
j be an event of An−1 in which the first 

customer sits on some seat. Similar to the proof of (0a) and (0b), we see that

((An|Ec)|E ′
j )

d= Bn−k + 1 + Ak−2 and (An−1|E ′
j )

d= Bn−k−1 + 1 + Ak−2,

for some 1 � k � n − 1, or

((An|Ec)|E ′
j )

d= An−k−1 + 1 + Bk−1 and (An−1|E ′
j )

d= An−k−2 + 1 + Bk−1,

for some 1 � k � n − 1. By induction hypothesis of (1a) and(1b),

((An|Ec)|E ′
j ) � (An−1|E ′

j ) for all j.

By Lemma 5, we obtain (An|Ec) � An−1. This proves that An � An−1. The proof for 
Bn � Bn−1 is similar.

The proofs for the other cases follow, mutatis mutandis, the same line of inductive 
arguments; details are straightforward and omitted here. �
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7. A combinatorial model

Instead of the sequential stochastic model considered in this paper, more static com-
binatorial models (sometimes referred to as hard-core mode) were also considered in the 
literature, where all possible unfriendly seating arrangements are equally likely. Such 
models turn out to be much simpler to analyze. Let Nn denote the total number of dis-
tinct unfriendly seating arrangements under the initial configuration Yn (see (8)). Then 
Nn is given by the Fibonacci number

Nn = Nn−1 + Nn−2 (n � 2),

with N0 = 1 and N1 = 1. If we still denote by Xn and Yn the number of occupied seats 
when starting with the initial configurations (6) and (8), respectively, as we studied 
above, then we have the simple recurrences for their probability generating functions

Xn(t) = tYn−1(t), and Yn(t) = tNn−1

Nn
Yn−1(t) + tNn−2

Nn
Yn−2(t),

with Y0(t) = 1 and Y1(t) = t. This is easily solved and we have

Xn(t) = t

Nn−1

∑
�n/2	�j�n−1

(
j

n− 1 − j

)
tj (n � 0),

which is the essentially sequences A102426 and A098925 in Sloane’s Encyclopedia of 
Integer Sequences (see also A092865). This is also connected to the number of parts in 
random compositions in which only 1 and 2 are used. A local limit theorem with optimal 
convergence rate can be derived by a direct use of the saddle-point method (see [14, 
IX.9]). The expected value is asymptotic to 2

5−
√

5 n and the variance to 3(3−
√

5 )√
5(5−

√
5 )2 n. 

Numerically, the jamming density is

1
5 −

√
5
≈ 0.36180 . . . ,

which is smaller than that in the sequential model; the variance constant is much smaller

3(3 −
√

5 )√
5(5 −

√
5 )2

≈ 0.08944 . . . .

We conclude that the space utilization is better in the sequential model than in the com-
binatorial model. Such a property has already been observed in the statistical physics 
literature; see for example [1] (where the combinatorial model is referred to as the Hamil-
tonian system). Note that for the corresponding 1-row seat configuration, one has the 
jamming density (α := 3

√
100 + 12

√
69 )

(α− 2)(α + 2)2(α3 − 192) ≈ 0.41149 . . . ,
4416
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and the variance constant

6
529 · 3α4 + 17α3 − 184α2 + 68α + 48

(α2 − 2α + 4)2 ≈ 0.008539 . . . .

See [7,20] for more information.
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