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Abstract

Forcing numbers and anti-forcing numbers were introduced in connection with chemical
compound structures. The forcing number of a perfect matching M on a graph G is the smallest
cardinality of a subset of M contained in a unique perfect matching on G, and the anti-forcing
number of a perfect matching M on G is the smallest number of edges of G whose deletion
results in a subgraph with a unique perfect matching M . We study in this paper the distribution
of such numbers in random perfect matchings on hexagonal chains and hexagonal crowns.
Recurrence relations and precise normal approximations are derived for their distributions.

Keywords: Hexagonal system; perfect matching; forcing number; anti-forcing number; hexag-
onal chain; hexagonal crown, central limit theorem, innate degree of freedom.

MSC(2010): 05A15; 05C30.

1 Introduction
Given a set of objects in a combinatorial structure, what is the minimum set of substructures to
identify an object in this set? Here typical objects include critical sets of Latin squares, block
designs, graph colorings, graph orientations, and dominating sets of graphs; see the survey paper
[5]. In this paper, we are concerned with the minimum number of edges to identify a perfect
matching.

All graphs in this paper are connected and simple. Given a perfect matching M of a graph G,
a forcing set of M is a subset of M contained in no other perfect matchings on G. The forcing
number of the perfect matching M , is the cardinality of a forcing set of M with the smallest size.
�Corresponding author.
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The forcing number of the graph G is the minimum forcing numbers among all perfect matchings
on G.

The concept of forcing number of a perfect matching was first introduced by Harary et al. [8].
The same idea appeared in an earlier chemical paper [11, 15] as innate degree of freedom of a
Kekulé structure (equivalent to perfect matching), which plays an important role in the resonance
theory in chemistry. Over the past twenty years, the study on forcing sets and forcing numbers has
attracted much attention in the mathematical chemistry literature. For more details, we refer the
reader to the recent survey paper [3].

Recently, Vukiěević and Trinajstić [18] introduced the anti-forcing number, which is opposite
to the forcing number. The anti-forcing number of a graph G is the cardinality of a subset S of the
edge set with the smallest size such that G �S has only one perfect matching. An explicit formula
for anti-forcing number of unbranched cata-condensed benzenoids was then derived in [19]. Deng
[4] gave an algorithm to compute the anti-forcing number of hexagonal chains, and determined
the anti-forcing number of double hexagonal chains, as well as characterizing the extremal graphs.
Zhang et al. [20] defined the concept of forcing polynomial and gave the recurrence relations for
forcing polynomials of hexagonal chains.

Similar to the forcing number of a perfect matching, the anti-forcing number of a perfect match-
ing can be naturally defined (see [12]): the anti-forcing number of a perfect matching M of G is
the smallest number of edges of G whose deletion results in a subgraph with the unique perfect
matching M .

Hexagonal chains and hexagonal crowns are significant in organic chemistry; for example, they
appear in the molecular graphs of some benzenoid hydrocarbons. In this paper, we examine the
distribution of forcing numbers and anti-forcing numbers of random perfect matchings on hexago-
nal chains and hexagonal crowns, where all possible perfect matchings are assumed to be equally
likely. In particular, these numbers behave for large n (the number of hexagons) very close to a nor-
mal distribution with linear mean and linear variance. More precisely, random perfect matchings
have on average
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While the minimum (maximum) of the forcing and anti-forcing numbers may be as small (large)
as two (n) in the case of hexagonal crowns, the average values � 0:447n and � 0:553n provide
a better description of the typical behavior of these numbers in a random perfect matching. Finer
properties such as the variance and convergence rate to the limit law will also be established; see
Sections 3 and 4.

This paper is structured as follows. We characterize in the next section the anti-forcing polyno-
mials of hexagonal chains by a general recurrence relation; the corresponding relation for forcing
polynomials was already derived in [20]. Then in Section 3 we study the asymptotic distribution of
both forcing and anti-forcing numbers of random perfect matchings on zig-zag hexagonal chains.
The same study was carried out in Section 4 for hexagonal crowns. Some detailed enumerations
related to hexagonal crowns are collected in Appendix.

2 Anti-forcing polynomials of hexagonal chains
We derive in this section a recurrence relation for computing the anti-forcing polynomials of hexag-
onal chains.

2.1 Preliminaries
Some definitions and useful lemmas are collected here for convenience of reference.

Definition 2.1. Let G be a graph with a perfect matching, a forcing set S of a perfect matching M

is a subset of M contained in no other perfect matchings on G. The forcing number of the perfect
matching M , denoted by f .G;M /, is the smallest cardinality among all forcing sets of M .

Let P .G/ denote the set of all perfect matchings on graph G. Given M 2 P .G/, a cycle C of
G is called an M -alternating cycle if the edges of C appear alternately in M and E.G/ nM . The
following lemma provides a useful criterion for forcing set.

Lemma 2.2 ([1, 16]). Let M be a perfect matching on a graph G. Then a subset E � M is a
forcing set of M if and only if each M -alternating cycle of G contains at least one edge of E.

Definition 2.3. Let G be a graph with a perfect matching. A set S of edges of G is called an
anti-forcing set of a perfect matching M if G �S has a unique perfect matching, which is M . The
anti-forcing number of the perfect matching M , denoted by g.G;M /, is the smallest cardinality of
anti-forcing sets of M .

A collection of M -alternating cycles A of G is called a compatible M -alternating set if any
two members of A either are disjoint or intersect only at edges in M .

Lemma 2.4 ([12]). A set S � E.G/ nM is an anti-forcing set of G if and only if S contains at
least one edge of every M -alternating cycle of G.

An immediate consequence of Lemma 2.4 is the following, which will be frequently used below.

Corollary 2.5. Let c0.M / denote the maximum cardinality of compatible M -alternating sets of G.
Then g.G;M / > c0.M /.
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Figure 1: A hexagonal chain G with S.G/ D .2; 0; 0; 1; 1; 2/.

Moreover, in the special case of planar bipartite graphs, the inequality becomes an identity.

Corollary 2.6 ([12]). Let G be a planar bipartite graph with a perfect matching M . Then g.G;M / D

c0.M /.

We define the forcing polynomial and anti-forcing polynomial of G respectively as

f .G; t/ WD
X

M2P.G/

tf .G;M /; g.G; t/ WD
X

M2P.G/

tg.G;M /:

2.2 Two types of perfect matchings
A hexagonal system (also called benzenoid system) is a finite 2-connected plane graph in which
each interior face is a unit hexagon. A hexagonal system is called cata-condensed if it has no inte-
rior vertices. A hexagonal chain then is a cata-condensed hexagonal system in which no hexagon
has more than two neighboring hexagons, i.e. its inner dual is a path.

Let G be a hexagons chain of length n. Then for n > 2, G has exactly 2 terminal hexagons
and n � 2 hexagons each with two neighboring hexagons, and each non-terminal hexagon H has
exactly two vertices not shared with any other hexagon.

With each hexagonal chain G with n .n > 2/ hexagons, we can associate a f0; 1; 2g-sequence
S.G/ WD .a1; a2; : : : ; an�2/ as follows. For i D 1; 2; : : : ; n � 2, let ai be the number of vertices
on the .i C 1/st hexagon with degree 2 that lie on the left-hand side when going from the .i C 1/st
hexagon to the .i C 2/nd hexagon; see Figure 1 for an illustration. If S.G/ is an empty sequence,
then G has exactly 2 hexagons.

A hexagonal chain is called linear if the corresponding sequence is S.G/ D .1; 1; : : : ; 1/.
On the other hand, if S.G/ is an alternating sequence of f0; 2g, then the hexagonal chain is
called zig-zag. For example, the molecular graph of anthracene is a linear hexagonal chain with
three hexagons (see Figure 2), while that of phenanthrene is a zig-zag hexagonal chain with three
hexagons (see Figure 2).

We distinguish between two types of perfect matchings on a hexagonal chain G: if the two
edges on the rightmost hexagon that are adjacent to the common edge of the last two hexagons
are both in M , then M is called Type A perfect matching, otherwise, M is called Type B perfect
matching; see Figure 2 for three examples. Let PA.G/ and PB.G/ denote the sets of Type A and
Type B perfect matchings on G, respectively. We have P .G/ D PA.G/ [ PB.G/.
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Figure 2: Perfect matchings drawn with bold lines are of Type A, Type B and Type B, respectively.

2.3 Bijections
Let G1 denote the single hexagon, and G2 denote the hexagon chain of length two. For 3 6 i 6 n,
let Gi be the sub-chain of G with S.Gi/ D .a1; a2; : : : ; ai�2/.

The number of perfect matchings on G is given by the following recurrence relation due to
Gordon and Davison [7]

jP .Gk/j D

(
2jP .Gk�1/j � jP .Gk�2/j; if ak�2 D 1,
jP .Gk�1/j C jP .Gk�2/j; if ak�2 D 0 or 2;

for k > 3, with the initial conditions

jP .G1/j D 2; and jP .G2/j D 3:

From this it follows that the number of perfect matchings on a linear hexagonal chain with n

hexagons is nC 1, and that the number of perfect matchings on a zig-zag hexagonal chain with n

hexagons is the the .nC 2/nd Fibonacci number.
For k > 2, denote the common edge of the .k � 1/th and kth hexagons of G by ek , and along

the clockwise direction the remaining edges of the kth hexagon are denoted by fk ;gk
;uk ; vk ; wk .

Notice that ekC1 represents the same edge as g
k
, uk or vk according as ak�1 is 0, 1 or 2. See the

first graph of Figure 2 for an example of these notations.
The following three lemmas are immediate from the fact that a perfect matching M 2 P .Gk/

is of Type A if and only if ffk ;uk ; wkg �M , and is of Type B if and only if fg
k
; vkg �M .

Lemma 2.7. For each k 2 f1; 2; : : : ; n � 1g, there is a bijection �k W P .Gk/ ! PB.GkC1/ given
by

�k.M / DM [ fgkC1; vkC1g:

Lemma 2.8. For each k 2 f2; 3; : : : ; n� 1g, if ak�1 D 1, then there is a bijection !k W PA.Gk/!

PA.GkC1/ given by
!k.M / D .M � fekC1g/ [ ffkC1;ukC1; wkC1g:

Lemma 2.9. For each k 2 f2; 3; : : : ; n � 1g, if ak�1 D 0 or 2, then there is a bijection �k W

PB.Gk/! PA.GkC1/ given by

�k.M / D .M � fekC1g/ [ ffkC1;ukC1; wkC1g:

See Figure 3 for examples of these bijections.
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Figure 3: Examples for the bijections �3; !5 and �4.

2.4 Anti-forcing polynomials
The following two lemmas show how these bijections change the anti-forcing number of perfect
matchings.

Lemma 2.10. If ak�1 D 1, then the anti-forcing numbers can be computed as follows.

1. Given M 2 PA.Gk/, g.GkC1; �k.M // D g.Gk ;M /C 1;

2. given M 2 PB.Gk/, g.GkC1; �k.M // D g.Gk ;M //;

3. given M 2 PA.Gk/, g.GkC1; !k.M // D g.Gk ;M /.

Proof. The proof is elementary but tedious, so we only prove the last part, the proof for the other
two parts being similar.

Let A be a maximum compatible M -alternating set of Gk . By Corollary 2.6, jAj D g.Gk ;M /.
Let ckC1 denote the .k C 1/st hexagon of GkC1, i.e. the hexagon with the edge set

fekC1; fkC1;gkC1;ukC1; vkC1; wkC1g:

There exists exactly one cycle in A, denoted by c, containing the path fkg
k
: : : wk . We see that

.A � fcg/ [ fckC1g is a compatible !k.M /-alternating set of GkC1, so that by Corollary 2.5

g.GkC1; !k.M // > jAj D j.A � fcg/ [ fckC1gj D g.Gk ;M /:

On the other hand, the edges ffkC1;gkC1
;ukC1; vkC1; wkC1g must appear in exactly one cycle

of any maximum compatible !k.M /-alternating set B of GkC1, denoted by c0. There are two cases.
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� If c0 D ckC1, then the edge uk .D ekC1/ is not contained in any other cycle of B; for
otherwise, uk is a common edge of two cycles but uk … !k.M /, and this will cause a contra-
diction. Thus none of the ffk ;gk

; vk ; wkg is contained in the cycle of B. As a consequence,
ek is contained in no cycle of B since that the two edges in ck�1 adjacent to ek are not in M .
Then .B � fc0g/ [ fckg is a compatible M -alternating set of Gk , and

g.GkC1; !k.M // D jBj D j.B � fckC1g/ [ fckgj 6 g.Gk ;M /:

� If c0 ¤ ckC1, then ekC1 … E.c0/. Accordingly,

.B � fc0g/ [ f.c0 � ffkC1;gkC1;ukC1; vkC1; wkC1g/ [ fekC1gg

is a compatible M -alternating set of Gk , and g.GkC1; !k.M // 6 g.Gk ;M /.

It follows that g.GkC1; !k.M // D g.Gk ;M /, which proved part 3 of the lemma. �

In a similar manner, we have the following lemma.

Lemma 2.11. If ak�1 D 0 or 2, then the anti-forcing numbers can be computed as follows.

1. Given M 2 PA.Gk/, g.GkC1; �k.M // D g.Gk ;M /;

2. given M 2 PB.Gk/, g.GkC1; �k.M // D g.Gk ;M /C 1;

3. given M 2 PB.Gk/, g.GkC1; �k.M // D g.Gk�1; �
�1
k�2
.M //C 1.

We will compute anti-forcing polynomials according to the types of perfect matchings

g.G; t/ D gA.G; t/C gB.G; t/;

where
gA.G; t/ WD

X
M2PA.G/

tg.G;M / and gB.G; t/ WD
X

M2PB.G/

tg.G;M /:

Lemma 2.12. If ak�1 D 1, then(
gA.GkC1; t/ D gA.Gk ; t/;

gB.GkC1; t/ D tgA.Gk ; t/C gB.Gk ; t/:

If ak�1 D 0 or 2, then (
gA.GkC1; t/ D tg.Gk�1; t/;

gB.GkC1; t/ D gA.Gk ; t/C tgB.Gk ; t/:

Proof. If ak�1 D 1, by Lemmas 2.7–2.10, we have

gA.GkC1; t/ D
X

M2PA.GkC1/

tg.Gk ;!
�1
k
.M //
D gA.Gk ; t/;
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and

gB.GkC1; t/ D
X

M2PB.GkC1/

��1
k
.M /2PA.Gk/

tg.GkC1;M /
C

X
M2PB.GkC1/

��1
k
.M /2PB.Gk/

tg.GkC1;M /

D tgA.Gk ; t/C gB.Gk ; t/:

The case when ak�1 D 0 or 2 is similar by using Lemmas 2.7–2.9 and 2.11. �

Given two hexagonal chains G and G 0, if the two sequences S.G/ and S.G 0/ have identical
positions in their occurrences of 1’s, then g.G; t/ D g.G 0; t/ by Lemma 2.12. We may thus
assume that S.G/ is a f1; 2g-sequence in the rest of this section.

Given a f1; 2g-sequence S.G/ of length n, let k be the number of 2’s, r1 be the number of
1’s before the first occurrence of 2 (r1 D n if k D 0), rkC1 be the number of 1’s after the last
occurrence of 2, and rj be the number of 1’s between the .j � 1/st and the j th occurrence of 2 for
2 6 j 6 k.

S.G/ D .

r1‚ …„ ƒ
1; � � � ; 1; 2;

r2‚ …„ ƒ
1; � � � ; 1; 2; � � � ; 2;

rk‚ …„ ƒ
1; � � � ; 1; 2;

rkC1‚ …„ ƒ
1; � � � ; 1/ .r1; : : : ; rkC1 > 0/:

Then we have rj > 0 and
P

16j6k rj D n � k, i.e. .r1; : : : ; rk/ is a weak .k C 1/-composition
of n � k1. It is easy to recover S.G/ from .r1; : : : ; rkC1/. Actually, this gives a classical bijection
between f1; 2g-sequences and weak compositions; see [17]. For convenience, define

f .r1; r2; : : : ; rkC1/ WD f .G; t/; and g.r1; r2; : : : ; rkC1/ WD g.G; t/:

The two polynomials gA.r1; : : : ; rkC1/ and gB.r1; : : : ; rkC1/ are defined similarly. Now we derive
a recurrence relation to compute the anti-forcing polynomials of hexagonal chains.

Theorem 2.13. Let g.r1; : : : ; rk ;�1/ D g.r1; : : : ; rk/ for k > 1, and g.�1/ D g.G1; t/. Then for
k > 2

g.r1; : : : ; rkC1/ D tg.r1; : : : ; rk/C .t C rkC1t2/g.r1; : : : ; rk � 1/

C .t � t2/g.r1; : : : ; rk�1 � 1/;
(1)

with the initial conditions g.r1/ D 2t C .r1C 1/t2, and g.r1; r2/ D t C 3t2C .2r1C 2r2C 1/t3C

r1r2t4.

The corresponding recurrence relation for forcing polynomials was derived in [20].

Theorem 2.14 ([20]). Let f .r1; : : : ; rk ;�1/ D f .r1; : : : ; rk/ for k > 1. The forcing polynomial of
a hexagonal chain G satisfies the following recurrence relation

f .r1; r2; : : : ; rkC1/ D .rkC1 C 2/tf .r1; r2; : : : ; rk � 1/C tf .r1; r2; : : : ; rk�1 � 1/;

with the initial conditions f .r1/ D .r1 C 3/t and f .r1; r2/ D t C .r1 C 2/.r2 C 2/t2.

1A weak (integer) composition of n is an ordered sequence .j1; : : : ; jk/ with ji > 0 such that j1 C � � � C jk D n.
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Figure 4: The perfect matchings are drawn with bond lines; the edges marked by “�” form their
smallest anti-forcing sets such that (from top to bottom) g.�1/ D 2t , g.0/ D 2t C t2, g.1/ D

2t C 2t2 and g.0; 0/ D t C 3t2 C t3.
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When t D 1, the values of f and g must coincide. This can be checked by induction although
the two recurrences are different.

Proof. (of Theorem 2.13) The proof for small values of r1 and r2 is straightforward; see Figure 4.
If k D 0 and r1 > 1, then, by Lemma 2.12,

gA.r1/ D gA.r1 � 1/ D � � � D gA.0/ D t;

and
gB.r1/ D tgA.r1 � 1/C gB.r1 � 1/ D t2

C gB.r1 � 1/ D � � � D t C .r1 C 1/t2:

Thus
g.r1/ D gA.r1/C gB.r1/ D 2t C .r1 C 1/t2:

When k > 1, we have

gA.r1; : : : ; rkC1/ D gA.r1; : : : ; rkC1 � 1/ D � � � D gA.r1; : : : ; rk ; 0/

D tg.r1; : : : ; rk � 1/ D

(
2t2 C r1t3; if k D 1,
tg.r1; : : : ; rk � 1/; if k > 1,

(2)

and

gB.r1; : : : ; rk ; 0/ D gA.r1; : : : ; rk/C tgB.r1; : : : ; rk/

D .1 � t/gA.r1; : : : ; rk/C tg.r1; : : : ; rk/

D

(
t C t2 C .r1 C 1/t3; if k D 1;

.t � t2/g.r1; : : : ; rk�1 � 1/C tg.r1; : : : ; rk/; if k > 1:

If rkC1 > 1

gB.r1; : : : ; rkC1/ D tgA.r1; : : : ; rkC1 � 1/C gB.r1; : : : ; rkC1 � 1/

D t2g.r1; : : : ; rk � 1/C gB.r1; : : : ; rkC1 � 1/

D � � � D rkC1t2g.r1; : : : ; rk � 1/C gB.r1; : : : ; rk ; 0/: (3)

It is easily checked that these relations also hold when rkC1 D 0. If k D 1, then

g.r1; r2/ D gA.r1; r2/C gB.r1; r2/

D 2t2
C r1t3

C r2t2g.r1 � 1/C gB.r1; 0/

D t C 3t2
C .2r1 C 2r2 C 1/t3

C r1r2t4:

If k > 2, the recurrence relation (1) follows from (2) and (3). �

Example 2.15. Let G be a hexagonal chain with 6 hexagons and S.G/ D .2; 1; 0; 1/. Since
g.G; t/ D g.G 0; t/, where S.G 0/ D .2; 1; 2; 1/, we can apply Theorem 2.13 with k D 2, r1 D 0,
r2 D 1, and r3 D 1, and obtain

g.G; t/ D g.0; 1; 1/ D tg.0; 1/C .t C t2/g.0; 0/C .t � t2/g.�1/

D 4t2
C 5t3

C 7t4
C t5:

Example 2.16. For a linear hexagonal chain Gn, we have, by Theorems 2.13 and 2.14,(
f .Gn; t/ D .nC 1/t;

g.Gn; t/ D 2t C .n � 1/t2:

10



3 Forcing and anti-forcing polynomials of zig-zag hexagonal
chains

Forcing and anti-forcing polynomials are useful in describing deeper properties of the perfect
matchings such as the innate degree of freedom of a Kekulé structure; see [11]. We study in
this section the distribution of forcing and anti-forcing numbers of random perfect matchings on
zig-zag hexagonal chains of length n, which, for simplicity, is denoted by Zn.

The forcing polynomial of a zig-zag chain Zn satisfies (see [20])

f .Zn; t/ D

8̂̂̂<̂
ˆ̂:

2t; if n D 1;

3t; if n D 2;

t C 4t2; if n D 3;

2tf .Zn�2; t/C tf .Zn�3; t/; if n > 4;

For convenience, we may assume that f .Z0; t/ D 1. Let f .z; t/ WD
P

n>0 f .Zn; t/z
n. Then the

above recurrence leads to the rational form

f .z; t/ D
1C 2tz C tz2

1 � 2tz2 � tz3
: (4)

The total number of perfect matchings on zig-zag hexagonal chains of length n is given by the
(shifted) Fibonacci number2

Fn WD Œz
n�f .z; 1/ D Œzn�

1C z

1 � z � z2
D

�
1
2
C

3
10

p
5
�
'n
C

�
1
2
�

3
10

p
5
�
.�'/�n;

where ' WD 1C
p

5
2
� 1:618 is the golden ratio.

The corresponding anti-forcing polynomial can be computed by substituting r1 D r2 D � � � D

rnC1 D 0 in Theorem 2.13. Let g.Z0; t/ D 1. The anti-forcing polynomial of a zig-zag chain Zn

satisfies

g.Zn; t/ D

8̂<̂
:

2t if n D 1,
2t C t2 if n D 2,
tg.Zn�1; t/C tg.Zn�2; t/C .t � t2/g.Zn�3; t/ if n > 3:

(5)

Let g.z; t/ WD
P

n>0 g.Zn; t/z
n. From the recurrence relation (5), it follows that

g.z; t/ D
1C tz C .t � t2/z2

1 � tz � tz2 � .t � t2/z3
: (6)

Note that f .z; 1/ D g.z; 1/.
Assume now that all Fn perfect matchings on zig-zag hexagonal chains of length n are equally

likely. Let Xn and Yn denote the forcing number and anti-forcing numbers, respectively, of a
random perfect matching. Then the probability generating function of Xn and that of Yn satisfy

E.tXn/ D
Œzn�f .z; t/

Œzn�f .z; 1/
; and E.tYn/ D

Œzn�g.z; t/

Œzn�g.z; 1/
.n > 0/:

2The symbol Œzn�f .z/ represents the coefficient of zn in the Taylor expansion of f .

11



These are polynomials of t of degree
˙

n
2

�
and n, respectively. More precisely, by expanding the

two rational forms (4) and (6), we obtain the following closed-form expressions for the coefficients
of the polynomials.

Theorem 3.1. For n > 3, the number �n;k of perfect matchings on zig-zag hexagonal chains of
length n with forcing number k is given by

�n;k D Œz
ntk �f .z; t/ D

k!23k�1�n.nC 2 � k/

.3k � n/!.nC 1 � 2k/!
;

for
˙

n
3

�
6 k 6

˙
n
2

�
, and the number �n;k of perfect matchings on zig-zag hexagonal chains of

length n with anti-forcing number k is given by

�n;k D Œz
ntk �g.z; t/ D 1n odd � 1kDnC1

2
C

X
dn�k

2 e6j6minfk;n�kg

�
j C 1

nC 1 � k � j

��
n � 2j

n � k � j

�
;

for
˙

n
3

�
6 k 6 n.

Here we use the symbol 1A to denote the indicator function of the event A .
It was proved in [20] that

E.Xn/ �
1
p

5
n:

We will derive finer distributional results below. Let ˆ.x/ WD 1
p

2�

R x

�1
e�u2=2du denote the stan-

dard normal distribution function.

Theorem 3.2. The distributions of the forcing and anti-forcing numbers of random perfect match-
ings on zig-zag hexagonal chains are asymptotically normal: W 2 fX;Y g

sup
x2R

ˇ̌̌̌
P
�

Wn � �W n

�W

p
n
6 x

�
�ˆ.x/

ˇ̌̌̌
D O

�
n�1=2

�
;

with linear mean and linear variance

E.Wn/ D �W nC �W CO .n'�n/ ;

V.Wn/ D �
2
W nC &W CO .n'�n/ ;

(7)

the error terms being exponentially small. All the constants are given in the following table.

�X �X �Y �Y
1
p

5
� 0:447 9

p
5�17
10

� 0:313 1 � 1
p

5
� 0:553 6�2

p
5

5
� 0:306

�X &X �Y &Yq
1 � 11

25

p
5 � 0:127 207�92

p
5

25
� 0:051

q
24
p

5
25
� 2 � 0:383 23

p
5�53

25
� �0:063

Proof. Since both f .z; t/ and g.z; t/ are of rational form, the proof follows from standard Quasi-
Power arguments; see [2, 10] or [6, ~IX.6]. The idea is as follows. Let t ¤ 0 and �j .t/ denote the
three zeros of the denominator 1�2tz2� tz3 of f .z; t/, j D 1; 2; 3. Explicit expressions for �j .t/

12



Figure 5: Distribution of the three zeros of the denominator of f .z; t/ (left) and g.z; t/ (right):
plotted are the curves �j .rei#/ for �� 6 # 6 � and r D 0:5; 0:7; 0:9; 1; 1:1 (left) and r D

0:4; 0:6; 0:8; 1; 1:5 (right). The red curves correspond to r D 1.

are available by classical means but they are messy. We are mainly interested in the behaviors of
�j .t/ when t lies in a neighborhood of unity. In particular, when t D 1, the three zeros are '�1;�'

and �1. Assume �1.1/ D '�1. When t varies in a neighborhood of unity, the zero �j .t/, as a
function of t , varies smoothly near �j .1/; see Figure 5.

We then deduce, by direct partial fraction decomposition, the identity

Œzn�f .z; t/ D FnE.tXn/ D
X

16j63

Rj .t/�j .t/
�n; (8)

where

Rj .t/ WD �
1C 2t�j .t/C t�j .t/

2

3 � 10t�j .t/
2

:

This is an identity for all t ¤ 0 and n > 1. In particular, we have the Quasi-Power Approximation

E
�
eXns

�
D exp

�
˛.s/nC ˇ.s/

�
.1CO ..' � "/�n// ;

where " > 0 and

˛.s/ WD � log
�1.e

s/

�1.1/
; and ˇ.s/ WD log

R1.e
s/

R1.1/
:

The central limit theorem with convergence rate then results from applying the Quasi-Power The-
orem; see [6] or [10]. The first two terms of the approximations (7) are obtained by the Taylor
expansions

˛.s/ D �X s C
�2

X

2
s2
CO.jsj3/;

ˇ.s/ D �X s C
&2

X

2
s2
CO.jsj3/;

as s � 0, the justification being also part of the Quasi-Power Theorem. The exponential error terms
in (7) are worked out by a direct approach: taking derivatives with respective to t , substituting t D 1

and then computing the asymptotics of the coefficient of zn; details are straightforward and omitted
here.

The calculations for Yn are similar, but with one significant difference: the three zeros of the
denominator of g.z; t/ approach '�1;�' and1 as t ! 1; see Figure 5. However, this does not
change the asymptotic behaviors we are looking for. �

13



Figure 6: The histograms of Xn and Yn (normalized in the unit interval):ˇ̌̌̌
ˇP.Xn � k/ � e

�
.k�E.Xn//2

2V.Xn/
p

2�V.Xn/

ˇ̌̌̌
ˇ (left; see (15)) and P.Yn D k/ for n D 10; : : : ; 100.

Note that there is a simplification for the leading term in the asymptotic approximation of
E.Xn/C E.Yn/

E.Xn/C E.Yn/ D
nFn C Fn�1 � .�1/n

Fn

D nC ' � 1CO .'�n/ :

In addition to the simple zig-zag chain with r1 D � � � D rk D 0, we can also extend the same
study to more general hexagonal chains with r1 D � � � D rk D r (r > 1) and 0 6 rkC1 6 r . We are
then led to a system of algebraic equations, and the same set of tools for asymptotic analysis and
limit distributions can be extended.

4 Forcing and anti-forcing polynomials of hexagonal crowns
In this section, we consider hexagonal crowns Cn (n > 3), which are circular versions of spiral
hexagonal chains. More precisely, a hexagonal crown is a planar graph obtained by gluing the first
and the last hexagons of a spiral hexagonal chain G of length n with S.G/ D .2; 2; : : : ; 2/ such
that the exterior face is bounded by a 3n-cycle. Two typical examples are shown in Figure 7: the
molecular graphs of corannulene and coronene, which are C5 and C6, respectively.

By similar arguments to those used for hexagonal chains, we can prove that the forcing polyno-
mials f .Cn; t/ of hexagonal crowns satisfy the following relations. For n > 3,

f .Cn; t/ D �n.t/C

(
td

n
2e; if n is odd;

2t2 � td
n
2e; if n is even;

where

�n.t/ D

8̂̂̂<̂
ˆ̂:

3; if n D 0;

0; if n D 1;

4t; if n D 2;

2t�n�2.t/C t�n�3.t/; if n > 3:

14



Corannulene Coronene

Figure 7: Two hexagonal crowns: C5 and C6.

(The initial values are defined for n < 3 solely for technical convenience.) Similarly, the anti-
forcing polynomials g.Cn; t/ satisfy

g.Cn; t/ D  n.t/C

(
0; if n is odd;
2t2 C 2t

n
2
�1.t � 1/; if n is even;

for n > 3, where

 n.t/ D

8̂̂̂<̂
ˆ̂:

3; if n D 0;

t; if n D 1;

2t C t2; if n D 2;

t n�1.t/C t n�2.t/C .t � t2/ n�3.t/; if n > 3:

(9)

The corresponding bivariate generating function f Œc�.z; t/ WD
P

n>3 f .Cn; t/z
n now has the form

f Œc�.z; t/ D
3 � 2tz2

1 � 2tz2 � tz3
�

1 � tz

1 � tz2
C

2t2

1 � z2
� 2 � 2t2

� tz � .3t C 2t2/z2
I (10)

and, similarly, gŒc�.z; t/ WD
P

n>3 g.Cn; t/z
n satisfies

gŒc�.z; t/ D
3 � 2tz � tz2

1 � tz � tz2 � t.1 � t/z3
C

2t2

1 � z2
C

2.t � 1/

1 � tz2
� .1C 2t C 2t2/ � tz � 5t2z2:

(11)

Alternatively, these two rational forms for f Œc�.z; t/ and gŒc�.z; t/ can be proved along a dif-
ferent line by enumerating directly the number of perfect matchings with a given forcing and anti-
forcing numbers.

Theorem 4.1. For n > 3

f .Cn; t/ D n
X

16k6bn
2c

�
k

3k � n

�
23k�n

k
tk
� .�1/ntd

n
2e C 2t2

� 1n even; (12)
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and

g.Cn; t/ D n
X

06k6n

tk
X
r>1

�
r

n � k � r

��
n � 1 � 2r

k � r

�
1

r
C tn

C

�
2t2
C 2tb

n
2cC1

�
� 1n even (13)

The first few terms of f and g are given as follows.

n f .Cn; t/ g.Cn; t/

3 3t C t2 3t C t3

4 9t2 6t2 C 2t3 C t4

5 10t2 C t3 5t2 C 5t3 C t5

6 5t2 C 15t3 5t2 C 6t3 C 8t4 C t6

7 28t3 C t4 14t3 C 7t4 C 7t5 C t7

8 2t2 C 16t3 C 31t4 2t2 C 8t3 C 20t4 C 10t5 C 8t6 C t8

The proofs are somewhat tedious and will be given in Appendix. Of course, Theorem 4.1 can
also be proved by expanding (10) and (11).

The total number of perfect matchings is given by

Ln WD Œz
n�f Œc�.z; 1/ D Œzn�gŒc�.z; 1/

D
2 � z

1 � z � z2
C

2

1 � z2
� 4 � z � 5z2

D 'n
C .�'/�n

C 1C .�1/n .n > 3/;

which are related to the Lucas numbers (A068397 in Sloane’s OEIS) and equal FnCFn�2C2�1n even.
These numbers also enumerate perfect matchings in the graph Cn � P2 (Cn being the cycle graph
on n vertices and P2 being the path graph on two vertices); see OEIS’s A102081.

Assume that all Ln perfect matchings on hexagonal crowns of length n are equally likely. Let
X
Œc�
n (Y Œc�

n ) denote the forcing number (anti-forcing number) of a random perfect matching.

Theorem 4.2. The distributions of the forcing and anti-forcing numbers of random perfect match-
ings on hexagonal crowns are asymptotically normal: W Œc� 2 fX Œc�;Y Œc�g

sup
x2R

ˇ̌̌̌
ˇP
 

W
Œc�

n � �W n

�W

p
n

6 x

!
�ˆ.x/

ˇ̌̌̌
ˇ D O

�
n�1=2

�
;

with linear mean and linear variance

E.W Œc�
n / D �W nCO .n'�n/ ;

V.W Œc�
n / D �2

W nCO .n'�n/ ;
(14)

the constant terms being both zero. The constants �W and �W are the same as in Theorem 3.2.

Note specially that

Œzn�f Œc�.z; t/ D
X

16j63

�j .t/
�n
� .�1/ntd

n
2e C 2t2

� 1n even .n > 3/;
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Figure 8: The histograms of X
Œc�
n and Y

Œc�
n (normalized in the unit interval) for n D

20; 40; 60; � � � ; 600; the histograms in the right figure are normalized by a factor of
p

n.

where the �j .t/’s represent the three zeros of 1� 2t2� tz3; cf. (8). The coefficient functions Rj .t/

in (8) are all identically 1 here. The same relation holds for the decomposition of gŒc�.z; t/. These
imply that the constant terms in (14) are both zero (cf. (7)), reflecting a better “balancing” property
for the forcing and anti-forcing numbers on hexagonal crowns. Numerically, the single term in
each of the equation on the right-hand side of (14) provides a very good approximation for small
and moderate values of n; see the following table for some instances.

n jE.X Œc�
n / � �X nj < jE.Y Œc�

n / � �Y nj < jV.X Œc�
n / � �2

X nj < jV.Y Œc�
n / � �2

Y nj <

20 0:00026 0:0011 0:0117 0:0104

30 4:3 � 10�6 1:5 � 10�5 2:6 � 10�4 2:3 � 10�4

50 5:6 � 10�10 1:8 � 10�9 5:3 � 10�8 4:6 � 10�8

100 4:5 � 10�20 1:4 � 10�19 8:2 � 10�18 7:2 � 10�18

Also

E.X Œc�
n C Y Œc�

n / D n �
n
�
1C .�1/n

2

�
�

21
4
�

19
4
.�1/n

Ln

;

the second-order term on the right-hand side being exponentially small.
The central limit theorems we derived in this paper for forcing and anti-forcing numbers can be

enhanced by the corresponding local limit theorems of the form

sup
x2R

ˇ̌̌̌
ˇP �Wn D

�
�W nC x�W

p
n
˘�
�

e�x2=2

p
2�n �W

ˇ̌̌̌
ˇ D O

�
n�1

�
; (15)

where W 2 fX;Y;X Œc�;Y Œc�g. This can be proved in at least two ways: one via the standard Fourier
arguments using the Quasi-power approximations (see [6, ~IX.9]), and the other relies directly on
the exact forms (12) and (13) using elementary asymptotic approximations.
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Appendix. Forcing and anti-forcing polynomials of hexagonal
crowns: a direct enumerative proof
We prove Theorem 4.1 in this Appendix. The method of proof we use here relies on a direct
combinatorial enumeration of the number of perfect matchings with a given forcing number or
anti-forcing number. While the arguments may be less general than the recursive decompositions
we used above, the analysis provides a deeper understanding of the structure of perfect matchings.

4.1 A characterization of perfect matchings
Denote the vertices of Cn by fAi;Bi;Ci;Di j i 2 Zng and the edges by fai; bi; ci; di; ei j i 2 Zng;
see Figure 9.
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Recall that Ln denote the total number of perfect matchings of a hexagonal crown of length
n, which starts with L1 D 1, L2 D 5, and satisfies the Fibonacci type recurrence Ln D Ln�1 C

Ln�2 � 2 � 1n odd for n > 3. On the other hand, the Lucas numbers `n are related to Ln by
`n D Ln � 1 � .�1/n and satisfies the recurrence `n D `n�1 C `n�2 for n > 3 with `1 D 1 and
`2 D 3.

It is known that (see [9]) the number of perfect matchings on the cyclic ladder graph Cn � P2

equals Ln. Let V .Cn � P2/ D fA
0
i;B

0
i j i 2 Zng denote the vertex set and E.Cn � P2/ D

fA0iB
0
i;A
0
iA
0
iC1;B

0
iB
0
iC1 j i 2 Zng denote the edge set.

Lemma 4.3. For n > 3, jP .Cn/j D Ln.

Proof. Define the mapping � W P .Cn � P2/! P .Cn/ as follows. Given M 2 P .Cn � P2/, let

�.M / Dfai j A
0
iA
0
iC1 2M for i 2 Zng [ fbi j A

0
iB
0
i 2M for i 2 Zng

[ fci; ei j B
0
iB
0
iC1 2M for i 2 Zng [ fdi j B

0
iB
0
iC1 …M for i 2 Zng:

It is easy to check that �.M / is a perfect matching on Cn, and � is injective. For any given perfect
matching M 0 2 P .Cn/, we see that M 0 contains either both of ci and ei or only di for each i 2 Zn.
Replacing each pair of edges fci; eig in M 0 by B 0iB

0
iC1, each ai by A0iA

0
iC1, each bi by A0iB

0
i , and

deleting all dj ’s, we get a perfect matching M 2 P .Cn � P2/ such that �.M / D M 0. Thus � is a
bijection. This completes the proof. �

Let M0 denote the perfect matching fbi; di j i 2 Zng of Cn and Hi denote the hexagon with
edge set fai; bi; ci; di; ei; biC1g. It is well-known that if C is an M -alternating cycle of a graph G,
then the symmetric difference M ˚E.C / is another perfect matching on G. Consider a sequence
S W 0 6 i0 < i1 < � � � < is�1 6 n � 1 such that ij 2 Zn and ijC1 � ij ¤ 1 for j 2 Zs (the order
“6” is induced by their natural ordering as integers, is D i0 D i0 C n and i0 � is�1 ¤ 1). Then

MS WDM0 ˚Hi0
˚Hi1

˚ � � � ˚His�1

is a perfect matching on Cn. Note that if S is empty then MS D M0, and if S ¤ S 0, then
MS ¤ MS 0 . For such a sequence S , if each ij corresponds to an edge ij .ij C 1/ in the cycle
.0; 1; : : : ; n � 1/, then S corresponds to a matching on the cycle and this is a bijection. Since the
number of matchings in n-cycle is the Lucas number `n, we haveˇ̌

fS j S W 0 6 i0 < i1 < � � � < is�1 6 n � 1; ijC1 � ij ¤ 1 for j 2 Zsg
ˇ̌
D `n:

Moreover, we can determine all the perfect matchings of Cn; see Figure 10 for an illustration.

Lemma 4.4. If n is odd, then

P .Cn/ D fMS j S W 0 6 i0 < i1 < � � � < is�1 6 n � 1; ijC1 � ij ¤ 1 for j 2 Zsg:

If n is even, then

P .Cn/ D fMS j S W 0 6 i0 < i1 < � � � < is�1 6 n � 1; ijC1 � ij ¤ 1 for j 2 Zsg [ fM1;M2g;

where M1 D fa2i; d2i; c2iC1; e2iC1 j i D 0; 1; : : : ; n
2
� 1g; M2 D fa2iC1; d2iC1; c2i; e2i j i D

0; 1; : : : ; n
2
� 1g.
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M0 M1 M2

S D .0/ S D .1/ S D .2/

S D .3/ S D .0; 2/ S D .1; 3/

Figure 10: C4: The perfect matchings are drawn with bold lines.

Proof. From the above discussions, we see thatˇ̌
fMS j S W 0 6 i0 < i1 < � � � < is�1 6 n � 1; ijC1 � ij ¤ 1 for j 2 Zsg

ˇ̌
D
ˇ̌
fS j S W 0 6 i0 < i1 < � � � < is�1 6 n � 1 j ijC1 � ij ¤ 1 for j 2 Zsg

ˇ̌
D `n:

Since jfai; dig \MS j D 1 for i 2 Zn, M1 and M2 are both different from MS for any S , and the
proof follows from Lemma 4.3. �

4.2 Forcing polynomials
We prove (12) in this subsection by computing the quantity fk , which equals the number of perfect
matchings on Cn with forcing number k.

By Lemma 2.2 f .G;M /, the forcing number of M is at least the maximum number of disjoint
M -alternating cycles of G, and if G is a planar bipartite graph, then f .G;M / equals the maximum
number of disjoint M -alternating cycles of G; see [14].

When n is even, for the perfect matchings M1 and M2 on Cn (defined in Lemma 4.4), it is
straightforward to verify that fa0; d0g and fa1; d1g are forcing set of M1 and M2, respectively.
Since .a0; a1; : : : ; an�1/ and .c0; d0; e0; c1; d1; : : : ; en�1/ are disjoint and M1- and M2-alternating
cycles, by Lemma 2.2, we have

f .Cn;M1/ D f .Cn;M2/ D 2:
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To compute fk , we count the quantities fk;s, which represent the number of perfect matchings
MS on Cn such that the sequence S has s entries and f .Cn;MS/ D k. With these quantities, we
then sum over all s and obtain fk

fk D

8̂̂<̂
:̂

P
06s6bn

2c

fk;s; if k ¤ 2;P
06s6bn

2c

fk;s C .�1/n C 1; if k D 2:
(16)

For the empty sequence S , MS DM0. Since H0;H2; : : : ;H2bn
2c�2 are disjoint M0-alternating

cycles of Cn, by Lemma 2.2, we have f .Cn;M0/ >
�

n
2

˘
. If n is even, it is straightforward to verify

that fb0; b2; : : : ; bn�2g is a forcing set of M0. In this case, f .Cn;M0/ D
n
2
. If n is odd, then

fb0; b2; : : : ; bn�1g is a forcing set of M0. Suppose there exists a forcing set I of M0 with less
than nC1

2
edges, then there exists an integer v 2 Zn, such that Hv \ I D ;, a contradiction to

Lemma 2.2. Thus f .Cn;M0/ D
nC1

2
, and it follows that, for an arbitrary n > 3,

f .Cn;M0/ D
˙

n
2

�
:

Let now S be a nonempty sequence. Since Hi0
;Hi1

; : : : ;His�1
are disjoint MS -alternating cycles,

by Lemma 2.2, we have
f .Cn;MS/ > s:

Let �S D fij j ij 2 S; ijC1 � ij � 1 .mod 2/g.

Lemma 4.5. For s > 0, let S be a sequence 0 6 i0 < i1 < � � � < is�1 6 n � 1 such that
ijC1 � ij ¤ 1 for j 2 Zs. Then f .Cn;MS/ D

1
2
.n � j�S j/:

Proof. Assume that n is even and S D .0; 2; : : : ; n � 2/. Let I WD fa0; e2; e4; : : : ; en�2g. We see
that I is a forcing set of MS . Thus f .Cn;MS/ 6

n
2
. Moreover, the hexagons H0;H2; : : : ;Hn�2

are disjoint and MS -alternating by Lemma 2.2, and the forcing number of MS is at least n
2
. Ac-

cordingly, f .Cn;MS/ D
n
2
. The proof for the other case when n is even and S D .1; 3; : : : ; n� 1/

is similar.
For the remaining cases, let

I D
[

ijC1�ijD2

feij g

[
ijC1�ij¤2

ijC1�ij�0 .mod 2/

feij ; dijC2; bijC4; bijC6; : : : ; bijC1�2g

[
ijC1�ij�1 .mod 2/

feij ; bijC3; bijC5; : : : ; bijC1�2g:

We have jI j D 1
2
.n� j�S j/, and we prove that I is a forcing set of MS . As shown in Figure 11,

for each pair of edges .xi;yj / 2 f.xi;yj / j x;y 2 fb; d; eg;xi 2 I ;yj 2 I ; j � i � 2 or 3
.mod n/g, any edge of Hi;HiC1; : : : ;Hj is forced to be in or not in MS by xi and yj except for
the edges ai; aiC1; : : : ; aj (the case marked (1) in Figure 11). Since there exists at least one pair of
edges .xk ;yl/ in I that is not of case (1) (otherwise, MS D M1 or M2), we can determine first
ak ; akC1; : : : ; al , and then ai; aiC1; : : : ; aj of case (1) step by step. Therefore, I is a forcing set of
MS , and

f .Cn;MS/ 6
1
2
.n � j�S j/:
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eij eijC1

Aij AijC1

Bij Cij Dij
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Bij Cij Dij
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dijC2
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AijC2 AijC3 AijC4

BijC2

CijC2
DijC2

dijC2 eijC1

AijC2 AijC3 AijC1

BijC1�2

CijC1�2

DijC1�2

bijC1�2

eijC1

AijC1�2 AijC1�1 AijC1

BijC2k
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.2/

.3/

.4/

.6/

.8/

.5/

.7/

Figure 11: The edges drawn by bold lines are forced in MS by the edges labeled in the graphs.
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Moreover, the hexagons fHi j jfai; bi; ci; di; eig \I j D 1g are disjoint MS -alternating cycles.
Thus, by Lemma 2.2,

f .Cn;MS/ > jfHi j jfai; bi; ci; di; eig \I j D 1gj D 1
2
.n � j�S j/:

See Figure 12 for an illustration. This completes the proof. �

d0

e0

B0
C0

D0

B1

c2

c3

c4 c5

e7

d7

A0

A1 A8

b3

b5

d0

d2

e2

B0

C0

D0

B1

A0

A1

a1

a0

d0

e0

B0
C0

D0

B1

d2

c2

c3

c4

e6

d6

A0

A1 A7

b4

.2/
.1/

.3/

Figure 12: (1). S D .0; 2/, I D fa0; e2g, f .C4;MS/ D 2; I 0 D fa1; d0; d2g, g.C4;MS/ D 3.
(2). S D .0; 6/, I D fe0; d2; b4; e6g, f .C8;MS/ D 4; I 0 D fd0; c2; c3; c4; d6g, g.C8;MS/ D 5.
(3). S D .0; 7/, I D fe0; b3; b5; e7g, f .C9;MS/ D 4; I 0 D fd0; c2; c3; c4; c5; d7g, g.C9;MS/ D

6.

From the above discussions, we see that 1 6 f .Cn;MS/ 6
˙

n
2

�
for any perfect matching M

on Cn. Hence, the forcing polynomial can be decomposed as

f .Cn; t/ D
X

16k6dn
2e

fk tk :
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Recall that fk is the number of perfect matchings on Cn with forcing number k and fk;s is the
number of perfect matchings MS of Cn such that the sequence S has s entries and f .Cn;MS/ D k.
Then k D f .Cn;MS/ > s. Moreover, by Lemma 4.5, s > j�S j D n � 2k for s ¤ 0. Then we
obtain the decomposition (16). We now compute fk;s.

Lemma 4.6. If s ¤ 0, then fk;s D
n
k

�
k

n�2k;sC2k�n;k�s

�
; if s D 0, then fk;0 D 1kDdn

2e
.

Proof. The method of proof is similar to that used by Moser and Abramson in [13]. For each S :
0 6 i0 < i1 < � � � < is�1 6 n � 1 with ijC1 � ij ¤ 1 for j 2 ZS such that k D 1

2
.n � j�S j/,

MS corresponds to an arrangement of s 1’s and n � s 0’s in a circle with one of the n entries
marked by an asterisk, which we denote by "0, and which is followed by "1; "2; : : : ; "n�1 (reading
off clockwise), where

"i D

(
1; if i D i0; i1; : : : ; is�1;

0; otherwise.

The s 1’s determine s cells.
Now we count such arrangements. Let u D 1

2
.n � 2s � j�S j/. We construct the arrangements

by the following steps.

� Place s 1’s in a circle, forming s cells. Color one cell so that the cells are distinguishable;

� Distribute u groups of two 0’s each into the s cells in
�

uCs�1

s�1

�
ways;

� Choose j�S j cells, and put one 0 into each in
�

s

j�S j

�
ways;

� Put one 0 into each cell;

� Mark one term, there are n choices.

There are in total n
�

uCs�1

s�1

��
s

j�S j

�
circular-asterisked-colored arrangements. If we remove the

color, then these arrangements fall into sets of s each that are identical by rotation. Then

fk;s D
n

s

�
uC s � 1

s � 1

��
s

j�S j

�
D

n

k

�
k

n � 2k; s C 2k � n; k � s

�
:

If s D 0, then k D f .Cn;M0/ D
˙

n
2

�
. �

Proof of Theorem 4.1, forcing polynomials (12). Assume that n is odd. Then fnC1
2
;s D 0 for

s ¤ 0. Also, by Lemma 4.6,

f .Cn; t/ D
X

16k6nC1
2

fk tk
D

X
16k6nC1

2

tk
X

n�2k6s6k

fk;s

D t
nC1

2 C n
X

16k6n�1
2

k!

k.n � 2k/!
tk

X
n�2k6s6k

1

.s C 2k � n/!.k � s/!
;

which leads to (12). The proof for the case when n is even is similar. �
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From the closed-form (12), it is easy to derive the rational form (10) for the bivariate generating
function f Œc�.z; t/ by using the following relations. First,

f0.z; t/ WD
X
n>0

zn
X
k>1

�
k

3k � n

�
23k�n

k
tk
D log

1

1 � tz2.2C z/
:

Then X
n>0

nzn
X
k>1

�
k

3k � n

�
23k�n

k
tk
D z

@

@z
f0.z; t/ D

3 � 2tz2

1 � 2tz2 � tz3
� 3;

and (10) follows from subtracting the first few terms.

4.3 Anti-forcing polynomials
We prove the exact form (13) for anti-forcing polynomials by an argument similar to that used for
proving (12).

Define �0S D fij j ij 2 S; ijC1 � ij … f1; 2gg.

Lemma 4.7. If s D 0, then g.Cn;M0/ D n; if s D 1, then g.Cn;MS/ D n � 2; if n D 2s, then
g.Cn;MS/ D

n
2
C 1; for other values of n,

g.Cn;MS/ D n � s �
ˇ̌
�0S

ˇ̌
: (17)

Proof. If s D 0, then fc0; c1; : : : ; cn�1g is an anti-forcing set of M0. Also fH0;H1; : : : ;Hn�1g is a
compatible M0-alternating set of Cn. Thus, by Corollary 2.5, g.Cn;M0/ D n.

If s D 1, say S D .i/, i 2 Zn, then fdi; ciC2; ciC3 : : : ; ciCn�2g is an anti-forcing set of MS , and
fHi;HiC2;HiC3; : : : ;HiCn�2g is a compatible MS -alternating set of Cn. Again, by Corollary 2.5,
g.Cn;MS/ D n � 2.

Assume now s > 1. Consider first the case when n is even and S D .0; 2; 4; : : : ; n � 2/.
Let I 0 D fa1; d0; d2; : : : ; dn�2g. Then I 0 is an anti-forcing set of S and jI 0j D n

2
C 1.

Since f.a0; a1; : : : ; an�1/; H0; H2; : : : ; Hn�2g is a compatible MS -alternating set of Cn (whose
cardinality is n

2
C1), we have g.Cn;MS/ D

n
2
C1 by Corollary 2.5. The case S D .1; 3; : : : ; n�1/

is similar.
For other cases, let

I 0 D
[

ijC1�ijD2

fdij g

[
ijC1�ij¤2

fdij ; cijC2; cijC3; : : : ; cijC1�2g:

Then jI 0j D n� s�
ˇ̌
�0S

ˇ̌
. Analogous to the proof of Lemma 4.5, we see that I 0 is an anti-forcing

set of MS . On the other hand, the set of hexagons fHi j ci or di 2 I 0g is a compatible MS -
alternating set. Thus (17) follows from Corollary 2.5. See Figure 12 for illustrative examples. �

Similarly, for the perfect matchings M1 and M2, it is straightforward to verify that fa1; d1g and
fa0; d0g are anti-forcing sets of M1 and M2, respectively. Since the cycles .a0; a1; : : : ; an�1/ and
.c0; d0; e0; c1; d1; : : : ; en�1/ form a compatible M1- and M2-alternating set, we have g.Cn;M1/ D

g.Cn;M2/ D 2 from Corollary 2.5.
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Let now
g.Cn; t/ D

X
16k6n

gk tk ;

where the coefficient g
k

represents the number of perfect matchings on Cn with anti-forcing number
k. Let g

k;s
be the number of perfect matchings MS of Cn such that the sequence S has s entries

and g.Cn;MS/ D k. Then

gk D

8̂̂<̂
:̂

P
06s6bn

2c

g
k;s
; if k ¤ 2;P

06s6bn
2c

g
k;s
C .�1/n C 1; if k D 2:

Lemma 4.8. The quantities g
k;s

satisfy g
k;0
D 1kDn, g

k;1
D n � 1kDn�2,

gk;s D
n

s

�
s

n � s � k

��
n � 2s � 1

n � s � k � 1

�
;

�
2 6 s < n

2

�
;

and g
k;s
D 2 � 1kDn

2
C1 when n D 2s.

Sketch of proof. The proofs for the cases s D 0, s D 1 and n D 2s are immediate from Lemma 4.7.
The method of proof for the remaining cases follows from the same idea used in Lemma 4.6, details
being omitted here. �

Proof of Theorem 4.1, anti-forcing polynomials (13). By Lemma 4.8, if n is even, then

g.Cn; t/ D
X

16k6n

gk tk
D 2t2

C

X
16k6n

tk
X

06s6n
2

gk;s

D 2t2
C 2t

n
2
C1
C tn

C n
X

16k6n

tk
X

16s6n
2
�1

1

s

�
s

n � s � k

��
n � 2s � 1

k � s

�
I

The proof for the odd case is similar. This proves (13). �
Unlike f Œc�.z; t/, the passage from the closed-form expression (13) to (11) is less straightfor-

ward, so we sketch the major steps as follows. Consider first the sum

n
X
k>0

tk
X
s>1

1

s

�
s

n � s � k

��
n � 2s � 1

k � s

�
D n

X
s>1

�
t s

s
Œzn�2s �.1C z/s.1C tz/n�2s�1

� 1nD2s

�
D nŒzn�.1C tz/n�1 log

1

1 � tz2.1Cz/

.1Ctz/2

� 2t
n
21n is even

Let ƒ.z/ WD log 1

1� tz2.1Cz/

.1Ctz/2

. Then

nŒzn�.1C tz/n�1ƒ.z/ D Œzn�1�.1C tz/nƒ0.z/:

By Lagrange inversion formula (see [6]), if ‡.z/ D z‰.‡.z//, then

nŒzn�ƒ.‡.z// D Œzn�1�‰n.z/ƒ0.z/:
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So we let ‰.z/ D 1C tz, then ‡.z/ D z
1�tz

, and

Œzn�1�.1C tz/nƒ0.z/ D nŒzn�ƒ .‡.z// D Œzn�z
@

@z
ƒ.‡.z//

D Œzn�

�
3 � 2tz � tz2

1 � tz � tz2 � t.1 � t/z3
� 2 �

1

1 � tz

�
;

from which we deduce (11).
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