LES CAHIERS DE PHILIPPE FLAJOLET

Hsien-Kuei Hwang, Academia Sinica, Taiwan
(with Brigitte Vallée, Julien Clément, ...)
June 19, 2014

Cigarettes

OUTSIDE LOOK: 65 NOTEBOOKS

©

\checkmark Cigarette smoke \checkmark Pen ink

CONTENTS

All academic: evolution of ideas, dvpmt of techniques

- Notes/Summaries for talks, lectures, courses, ...
- Drafts for papers, book chapters, preprints, ...
- Work summary
- Maple calculations (symbolic, numerical, figures, tables, expansions)
- Email/letter correspondences
- Miscellaneous

Three categories

- Finished, well-explored techniques/topics
- Unfinished
- We-don't-know-yet

AGENDA 0 \& CAHIER LXIV

23 Mars 1980
Les nombres de Stirling de seconde espèce: sinis adinonis el ex/mentiedle
$S_{n, k}$ dengre le nombre de partituonis de $[\mathrm{n}]$ en k clases (blow), $k!S_{n, k}$ repesente aimi le nombe de surgectioins de $[n]$ sur $[k]$.
Les deux expresions de sévis genaratrices (indinacie ou exporentielle) des $S_{n, k}$ correspondent à deve presentations defferents des pantitioin d'enombles.

1) $\sum S_{n, k} \frac{z^{n}}{n!}=\frac{\left(e^{z}-1\right)^{k}}{k!}$
2) $\sum S_{n, k} z^{n}=\frac{z^{k}}{(1-z)(1-2 z) \cdots(1-k z)}$

Une purne directe de ces deux séris geurátuces conspond à uno preure combinatoni que 2) en lo tranformún de Laplace-Bencl de 1.
Pour 1), le preve usuelé des manipulations clamirs de sé́s gevrahíces associés à de mots (f Analye J'Alconthms 1980)

SNAPSHOTS

SNAPSHOTS

SNAPSHOTS

$>$ bernoulli(\# Finds the eigenfunction of degree d for G-uniform $t=m p r o c(d)$ option remember; local p,i, a;
$p=x^{\wedge} d+\operatorname{sum}\left(a[1] \times \wedge^{\prime}, i=0 . d-1\right)$
expand $\left(p-2^{\wedge}(d-1){ }^{4}(\right.$ subs $\left.(x=x / 2, p)+\operatorname{subs}(x=(x+1) / 2, p))\right) ;$
$(\operatorname{seq}($ coeff $(x, 1)=0, i=0 \quad d-1))$

subs(",p);
end;
seq(bernouli $(j, x), j=0 ., 10$);
$\operatorname{seq}(f(f) \mathrm{j}=0 . .10)$;

proc (d)

local D, i, a,
options remember ;
P $1=x^{\wedge} d+$ sumfalil ** $\left.x^{\wedge} 1,1=0 \quad . \quad d-1\right)$;
expand $\left(\mathrm{p}-2 \wedge(\mathrm{~d}-1)^{*} \cdot\left(\right.\right.$ subs $(\mathrm{x}=1 / 2 \cdot \mathrm{x}, \mathrm{p})+$ subs $\left.\left(\mathrm{x}=1 / 2^{*} \mathrm{x}+1 / 2, \mathrm{p}\right)\right)$
(seq (coeff(s, $x, i)=0,1=0 \ldots \mathrm{~d}-1)$)
solve (", (seqla[i],i = $0 \ldots(\mathrm{~d}-1)))$)
suba (", p)
end
$\operatorname{seq}(f(\mathrm{f}) \mathrm{j}=0 . .10)$;

$$
\begin{aligned}
& \text { 1, } x-\frac{1}{2}, \frac{1}{6}+x^{2}-x_{2} \frac{1}{2} x+x^{3}-\frac{3}{2} x^{2},-\frac{1}{30}+x^{2}+x^{4}-2 x^{3}-\frac{1}{6} x+\frac{5}{3} x^{3}+x^{5}-\frac{5}{2} x^{4}, \\
& \frac{1}{42}-\frac{1}{2} x^{2}+\frac{5}{2} x^{4}+x^{6}-3 x^{5}, \frac{1}{6} x-\frac{7}{6} x^{3}+\frac{7}{2} x^{5}+x^{3}-\frac{7}{2} x^{5}, \\
& -\frac{1}{30}+\frac{2}{3} x^{2}-\frac{7}{3} x^{4}+\frac{14}{3} x^{6}+x^{4}-4 x^{7},-\frac{3}{10} x+2 x^{3}-\frac{21}{5} x^{5}+6 x^{7}+x^{9}-\frac{9}{2} x^{3}, \\
& \frac{5}{66}-\frac{3}{2} x^{2}+5 x^{4}-7 x^{6}+\frac{15}{2} x^{8}+x^{10}-5 x^{9}
\end{aligned}
$$

$>\operatorname{seq}($ bemoulli $(, x), j=0 . .10)$;
$1, x-\frac{1}{2} \cdot \frac{1}{6}+x^{2}+\frac{1}{2} x+x^{3}-\frac{3}{2} x^{2},-\frac{1}{30}+x^{2}+x^{4}-2 x^{3},-\frac{1}{6} x+\frac{5}{3} x^{3}+x^{5}-\frac{5}{2} x^{4}$.
$\frac{1}{42}-\frac{1}{2} x^{2}+\frac{5}{2} x^{4}+x^{5}-3 x^{5}, \frac{1}{6} x-\frac{7}{6} x^{3}+\frac{7}{2} x^{5}+x^{7}-\frac{7}{2} x^{6}$,
$-\frac{1}{30}+\frac{2}{3} x^{2}-\frac{7}{3} x^{4}+\frac{14}{3} x^{6}+x^{x}-4 x^{7}+\frac{3}{10} x+2 x^{3}-\frac{21}{5} x^{5}+6 x^{7}+x^{0}-\frac{9}{2} x^{x}$
$\frac{5}{66}-\frac{3}{2} x^{2}+5 x^{4}-7 x^{5}+\frac{15}{2} x^{3}+x^{10}-5 x^{9}$
$>$ bemouli $(11, \mathrm{x})$;

Les polypîms de Bernoulli sont
Is fordions propres de Coperater.
$g[f](x)=\frac{1}{2}\left[f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)\right]$.
$>$ bemoulli($\#$ Finds the eigenfunction of degree d for G -uniform
$t=p r o c(d)$ option remember; local p,i, a;
$p:=x^{\wedge} d+\operatorname{sum}\left(a(1) \cdot x^{\wedge}(, 1=0 ., d-1)\right.$:
expand $\left(\mathrm{p}-2^{\wedge}(\mathrm{d}-1)^{*}(\operatorname{subs}(\mathrm{x}=\mathrm{x} / 2, \mathrm{p})+\right.$ subs $\left.(\mathrm{x}=(\mathrm{x}+1) / 2 . \mathrm{p}))\right)$;
$\{\operatorname{seq}(\operatorname{coeff}(;, x, i)=0, i=0, d-1)\}$
solve(",\{seq(a[1],i=0.. d-1) \});
subs(${ }^{(, p) \text {) ; }}$
end;
seq(bernoulli $(j, x), j=0 . .10)$; $\operatorname{seq}(f(\mathrm{f}) \mathrm{J}=0 . .10)$;

proceld
 procid

options semeni
$\mathrm{P}:=x^{\wedge} d+\operatorname{sum}\left(a[i]^{*} x^{*}-1=0 \quad . \quad d-1\right)$
expand $\left(p-2^{\wedge}(d-1) *(\right.$ subs $(x-1 / 2 * x, p)+$ subs $(x=1 / 2 * x+1 / 2, D))$
tseq(coeff(", $x, i)=0,1=0 \ldots(,-1)\}$;
solve (", (recta[i], i = $0 \ldots \mathrm{~d}-1)\}$):
aubs (", p)
end
$\operatorname{seq}(f(1), j=0.10)$;

1. $x-\frac{1}{2} \cdot \frac{1}{6}+x^{2}-x \frac{1}{2} x+x^{2}-\frac{3}{2} x^{2} \cdot \frac{1}{30}+x^{2}+x^{4}-2 x^{3}+\frac{1}{6} x+\frac{5}{3} x^{3}+x^{2}-\frac{5}{2} x^{x}$ $\frac{1}{42}-\frac{1}{2} x^{2}+\frac{5}{2} x^{4}+x^{6}-3 x^{5}, \frac{1}{6} x-\frac{7}{6} x^{3}+\frac{7}{2} x^{5}+x^{7}-\frac{7}{2} x^{6}$. $-\frac{1}{30}+\frac{2}{3} x^{2}-\frac{7}{3} x^{4}+\frac{14}{3} x^{6}+x^{8}-4 x^{7},-\frac{3}{10} x+2 x^{4}-\frac{21}{5} x^{5}+6 x^{7}+x^{9}-\frac{9}{2} x^{8}$. $\frac{5}{66}-\frac{3}{2} x^{2}+5 x^{4}-7 x^{6}+\frac{15}{2} x^{4}+x^{10}-5 x^{9}$
$>\operatorname{seq}($ bernoulli $(j, x), j=0 . .10)$;
2. $x=\frac{1}{2}, \frac{1}{6}+x^{2}-x_{1}, \frac{1}{2} x+x^{4}-\frac{3}{2} x^{2},-\frac{1}{30}+x^{2}+x^{4}-2 x^{3},-\frac{1}{6} x+\frac{5}{3} x^{2}+x^{5}-\frac{5}{2} x^{4}$, $\frac{1}{42}-\frac{1}{2} x^{2}+\frac{5}{2} x^{4}+x^{6}-3 x^{5}, \frac{1}{6} x-\frac{7}{6} x^{7}+\frac{7}{2} x^{5}+x^{7}-\frac{7}{2} x^{6}$. $-\frac{1}{30}+\frac{2}{3} x^{2}-\frac{7}{3} x^{4}+\frac{14}{3} x^{5}+x^{8}-4 x^{7},-\frac{3}{10} x+2 x^{3}-\frac{21}{5} x^{5}+6 x^{7}+x^{9}-\frac{9}{2} x^{8}$, $\frac{5}{66} \cdot \frac{3}{2} x^{2}+5 x^{4}-7 x^{6}+\frac{15}{2} x^{8}+x^{10}-5 x^{9}$
$>$ bemoulli $(11, x)$;

SNAPSHOTS

Fxi oet 22 15:32:41 2993
Frone flajolet Fri oct 22 20:29:04 1193

co: flayol
statual
colle asser bien a' I'analyse, so tale anvizon $1,000,001$

 generateur oleatoltre ast bont".

$N=10$

Previded fox $\Rightarrow 12^{\mu} 50=13^{\text {ham }}$

$24 / 141993$

B. Fwod 12

$$
\begin{aligned}
& \text { - } \operatorname{Tr}\left(g_{2}-z_{n}\right)=\sum_{n} \tilde{n}^{2} \quad \text { An } \quad \tilde{n}=[\operatorname{mon}, \cdots] \\
& \cdot \operatorname{Tr}\left(g_{n}+g_{k}\right)=\sum_{n} \tilde{n}^{n} \\
& \operatorname{Tr}\left(g_{6}+z_{s}\right)=\sum_{n} \tilde{n}^{6} \\
& \operatorname{Tr}\left(g_{2}\right)=\sum_{n} \frac{\tilde{n}^{2}}{1+\tilde{n}^{2}} \quad \operatorname{Tr}\left(g_{n}\right)=\sum_{n} \frac{\tilde{n}^{4}}{1+\pi^{2}}
\end{aligned}
$$

and then

$$
s(z)=\sum_{k=1}^{\infty} s_{k} z^{k-1}=\sum \frac{\lambda_{j}}{1-\lambda_{j}}
$$

$$
=-\Phi^{\prime}(z)
$$

SNAPSHOTS

SNAPSHOTS

Discrete versus Continuous Mathematics: Transgressing the Boundaries

Philippe FLINOLET
Decernber 23, 2003 Receut decadise have secti a surge of intersel in discrete mathematicy and
combinatonics, where what is at intale is the study of properties of finite

 such we the theory of minars or thir lone-rought solation to the peffecs graph
 and such consstructi
invariably suitivesy?
Partly pustaed to the needs of several branches of science fiom computer science to probability lifery to hio informatics to statistical physics--t, the past twenty to thirly , ycars have senn the appearance of a large number of studies deficiled to another (at least) equaly fundamemith question

 is almost always true In this discrete combimitorial world, we want to moasure things
My owa rescarch since the early 1980 , has been precishly a sustamed ef fort meant to address the claracterixation of what is nalmast alwnys true
 between methodological works (e.g, the dovelopment of singularity malysis with Odyzko, the elucidation of the power of the Mellin transform) and reearch dedicated to solving concrete problems arising from applications (eg. the condesence of hasting tabis and the wivecsantig algorthmis) the analysis of sequences in relation to prode Univeraty Prees (at the turn An outcomie sthe pubication by Cannophe Unthored with Sodgewick and tithed Analyptic Combinatorics, which I will ablrevinte as $A C^{1}$
The firld of analytis combinatorics as expounded in the book ACconstitutes the besse hiver on which the present proposal is built. Roughly, the mingor theme is that a dlass of combinatornal structures is reduced to a locially smooth surfaco (the Riemamn surface of a corresponding generatims fuction) whose "cracks" (the dignified name is sing wharites) are scoa to 1 yko in 1982 of quantitative ufformation. For instance, as 1 showed with Odyzo in
and 1994 , the complex-analytic structure of the iteration $w_{a+1}=x+y_{a}^{2}$ nefar

SNAPSHOTS

INSIDE LOOK: AGENDA I

- Stirling \#s of the 2nd kind
- Symbolic method in analysis of tree algorithms
- Remarks on partitions
- Trie statistics
- q-Laguerre polynomials
- Simon-Newcomb problem
- Lexicographic tree height
- Search tree height
- Approximate counting
- Complexity calculus
- Markov chains
- Exp-variate generation
- Talk by Guy Fayolle
- Extension of approximate counting
- Asymptotics/Mellin
- Distribution of path areas
- Pippenger's communication protocols
- Combinatorial sums asymptotics
- DST asymptotics
- Grid file algorithms
- Functional graphs
- Differential equations \& linear systems

1982/6/6: after visit to Bell Labs, initiated random mapping statistics with Odlyzko

RANDOM MAPPING STATISTICS

Philippe Flajolet
INRIA Rocquencourt
F-78150 Le Chesnay (France)

Andrew M. Odlyzko
AT\&T Bell Laboratories
Murray Hill, NJ 07974 (USA)

Abstract

Random mappings from a finite set into itself are either a heuristic or an exact model for a variety of applications in random number generation, computational number theory, cryptography, and the analysis of algorithms at large. This paper introduces a general framework in which the analysis of about twenty characteristic parameters of random mappings is carried out: These parameters are studied systematically through the use of generating functions and singularity analysis. In particular, an open problem of Knuth is solved, namely that of finding the expected diameter of a random mapping. The same approach is applicable to a larger class of discrete combinatorial models and possibilities of automated analysis using symbolic manipulation systems ("computer algebra") are also briefly discussed.

DEEPER LOOK

Flajolet, Knuth \& Pittel (1989)

The first cycles in an evolving graph

Backhouse's constant

Gray code function

FIRST CYCLE IN EVOLVING GRAPHS

FIRST CYCLE IN EVOLVING GRAPHS

An axtended (edge timi-olanyed) infyumion is a reduced confgruation wile edges cabcled us ade $1,2,3, \ldots$, the marted edy hany do lagget lebel.
Claims: (1) Each kermal node of the process tree is dscited by an extended inflguadion
(2) Each extended compruation al depth k hao probaticy

$$
\frac{1}{N(N-1)-(N-k+1)}
$$

(3) To cach Atrondand umpgruation, there conspind exatly $(k-1)$ 'extended inffguration, coch equally cikaly.
thus.
Lemma: If $C_{n, k}$ is the number of shondand comprations as n hods, with k edgaco, then

$$
f_{n, k}=\frac{(k-1)!}{N(N-1) \cdot(N-k+1)} C_{n, k}
$$

storping promeley
Andwe have the shye form:
Lemem: Lel Q be a poputy of standand colfgralins, Pnak (Q) the puble liat the procen stops inct φ salshed, $C_{m, k}(\varphi)$ the \#of shondand cupps oalshyp Q, then:

$$
P_{n, k}[Q]=\frac{(k-1)!}{N(N-1) \cdot(N-k+1)!} C_{n, k}[Q]
$$

and

$$
P_{n}[Q]=\frac{1}{N} \sum_{k}\binom{N-1}{k-1}^{-1} C_{n, k}[G]
$$

Venficalion: $\quad n=3 \quad N=3$

$$
\begin{aligned}
& 3 \text { otandar ants } \quad C_{3,3}=3 \\
& P_{3,3}=\frac{2!}{3 \cdot 2} \cdot 3=1 \\
& n=4 \quad N=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { \#confpp }=\underbrace{\frac{1}{2} 3!}_{\substack{\text { arculai perint } \\
\text { mith mented } \\
\text { villed }}} \times 4=12 \\
& \Rightarrow P_{3,3}=1 \quad P_{4,3}=\frac{2!}{65 \cdot 4} \times 12=\frac{1}{5} \quad P_{4,4}=\frac{3!}{65.43} 48=\frac{4}{5} .
\end{aligned}
$$

Counhing the minter of standand ampopqualian (\exp gen f_{n}) Lel $Y(t)=t e^{Y(t)} \quad Y(t)=\sum n^{n-1} \frac{n^{n}}{n!} \quad$ gee for Soo rootid $y(t)=\sum n^{n-2} \frac{f^{n}}{n!}$ ge- fin for unroted tiaes.
Then

$$
\begin{aligned}
& C(z)=\frac{1}{2} \frac{Y^{3}(z)}{1-Y(z)} e^{y(z)} \quad \text { mice } * 1 / 2 \text { vilh the cy cle mentatios } \\
& \text { * a mavad usle }=\text { an opencyde } \\
& \text { =alit of tree. } \\
& \text { * } e^{y} \text { mance a farst of trees. }
\end{aligned}
$$

Now mouking edgeo dosene llial un ach tree

$$
\text { \# etges = \#nodes - } 1
$$

FIRST CYCLE IN EVOLVING GRAPHS

Thus

$$
\text { Thus } \sum_{n, k c^{k} \frac{z^{n}}{n!}=\frac{1}{2} \frac{Y\left(z^{3}\right)}{1-Y(z u)} e^{\frac{1}{4} y(z a)}}
$$

$$
\text { Bul, as xemarked by J.W noem } y(t)=Y(t)-\frac{1}{2} Y^{2}(t) \text { then }
$$ $C(u, z)=\frac{1}{2} \frac{y^{3}\left(z^{u}\right)}{1-4\left(z^{u}\right)} e^{\frac{1}{4}\left(y(z u)-y^{2}(z u) /(2)\right.} \quad$ wnte Sor (11 Shrout tem Whil reem to starl conectly as

$$
\frac{3^{3}}{3!} 3 u^{3}+\frac{3^{4}}{4!}\left(12 u^{3}+48 u^{4}\right)+O\left(3^{5}\right)!
$$

Conhmuation: fome random ideas
(A) A varail of Lagrig' tormul somed be uxfut

$$
\begin{aligned}
& \frac{1}{2 i n} \int F(Y) \frac{d z}{z^{n+1}}=\frac{1}{2 i n} \int F(Y)(1-Y) e^{-4} \frac{d Y}{y^{n+1} e^{-(n+1) Y}} \\
& \text { st } z=Y e^{-4} d z=(1-y) e^{-y} d y^{n} \\
& {\left[z^{n}\right] F(Y)=\left[Y^{n}\right] F(Y)(1-Y) e^{n y}}
\end{aligned}
$$

(B) How to do the probaliety wighling?

$$
\text { let } A(z, u)=\sum a_{n k} u^{k} z^{n} \text {. We want }
$$

$$
\left.B(z)=\sum_{n} \sum_{k}\binom{N}{k}^{-1} u^{k}\right) z^{n} \quad N \equiv N(x)=\binom{n}{2} \text {. }
$$

hel

$$
\Theta_{n}(z)=\sum(1-n)^{(z)} z^{n} \text {. Then }
$$

$$
\int_{0}^{1} w^{\alpha-1}(1-u)^{1-1} d u=\frac{\Gamma(x)+(\beta)}{\Gamma(\alpha+\beta)}=\frac{(\alpha-1)!(\beta-)!}{(\alpha+\beta-) \mid}
$$

hous praming!! To Ge dare!!

The exad form of the polentley delobouh
$\left[t^{*}\right] \frac{y^{3}(t)}{1-y(t)} e^{\frac{1}{4}\left(y(t)-y^{2}(t) / 2\right)}$

$$
\left[y(t) x^{3}\left(\frac{1}{4}+n\right) y-\frac{4}{4} y^{2} / 2\right.
$$

$$
=\left[y^{n}\right] Y^{3} e^{\left(\frac{1}{4}+n\right) y-\frac{1 y^{2} / 2}{4}}=\left[y^{n-3}\right] e^{\left.\left(\frac{1}{4}+n\right) y-y^{2} /(u)\right)}
$$

$$
=\left[y^{n-3}\right] \sum_{l} \frac{Y^{l}}{e!}\left(\left(\frac{1}{u}+n\right)-\frac{y}{2 u}\right)^{l}
$$

$$
=\left[y^{m-1}\right] \sum_{i_{j},} \frac{y^{2}}{e}\left(\frac{1}{u}+n\right)^{1}\left(-\frac{1}{2 u}\right)^{\ell-1}\binom{e}{j} r^{n^{j}}
$$

$$
\sum_{2 l=j=n-3} \frac{1}{e!}\binom{e}{j}\left(-\frac{1}{2 a}\right)^{l-j}\left(\frac{1}{4}+n\right)^{j}
$$

$$
\left[u^{k}\right]^{\prime \prime}=\left[u^{*}\right]^{\prime \prime}
$$

$$
\{r \leq j \leq l\}
$$

$$
C_{n, n}=\frac{n^{1}}{2} \sum_{l} \frac{(-1)^{n-3-l}}{(l-3-l)!(l+k)!(l+3-k)!} n^{l+k-1}\left(\frac{1}{2}\right)^{n-3-l}
$$

$c_{3,3}=3$

Fudey x al is
$\max (k-3, n-k) \leq l \leq n-3$

FIRST CYCLE IN EVOLVING GRAPHS

Aypoxinkion ko copping proculute
efeas Set $L=x-3-l \quad l=x-3-L$, then

$$
C_{n, k}=\frac{m^{1}}{2} \sum_{L=0} \frac{(-1)^{2}}{L^{1}(k-3-4)^{\prime}}(x-k-L)!^{m k-3-L}\left(\frac{1}{2}\right)^{L}
$$

$$
\text { (1) } \frac{1}{2} \frac{n^{2 k-3}}{(k-3)!} \sum_{L=0} \frac{(-)^{L}}{L!(k-3-L)!}\left(\frac{1}{2}\right)^{L}
$$

$$
\sim \frac{1}{2} \frac{n^{2 k-3} 2^{-k+3}}{(t-3)!} \Rightarrow p^{p+1} \sim \sim \frac{1}{2} \sim \frac{n^{2 k-3} 2-k+3}{(k-3)!} \frac{((t-1)!}{n^{2 k} 2^{-k}}
$$

If frome has a moder range, then
$p_{n, 0} \theta_{n} \approx \frac{4 \theta^{2}}{n}$ wil is conideal!
A mos uffined stimate should dow that $m p_{n, 9 n} \rightarrow f(\theta)$ ent, athice!
 What nerr? What about a douthe saddle ph ayument? (hivai.t)
(1B) $\sum p, k=1$ is an ductu for

$$
\binom{n}{2}!\sum_{K} d_{k} \ldots
$$

Tdeynuin 4ur 1"Abupytione

Prita cule has late 0 anviland and intifs hime $=k$ (coz) This is

$$
\left.=\left\{Y^{n-c}\right]-\left[y^{n-c-1}\right]\right\} e^{\frac{1}{n}\left(y-y^{4} / 2\right)+n^{4}} \text { etc.... BoF!! }
$$

Returnigts the intyal hay.fom

$$
\begin{aligned}
& A(4)=\sum a_{k} u^{k} N^{2} \sum_{k} \frac{1}{N}\left(\int_{k-1}^{N-1}\right)^{-1} a_{k}=\sum a_{k} \frac{\Gamma(k) r(N-1+1)}{\Gamma(N+1)} \\
& \left.f(A)=\int_{0}^{1}(1-u)^{N} A\left(\frac{u}{1-a}\right) \frac{d u}{u}\right]^{\left(\frac{n}{2}\right)} \quad N \geq \operatorname{deg} A(\cdot) \quad A(0)=0
\end{aligned}
$$

Planis (1) Uxe chog fomith litu in proof of log gigitten
(1) Une oadale poin meltood to devire vatines of

$$
A_{n}(4)=\left[\begin{array}{l}
3_{n}^{n} n
\end{array}\right] C(3,4)
$$

(3) Apry manpormation \& evaluate -it Laphénimicent

Set $v=4 e^{-4}$

$$
\begin{aligned}
& \text { Sex } v=y e^{-y} \\
& h(x)=\frac{n}{2 i=} \cdot u^{n} \int_{0} \frac{1}{2} y^{c}(1-y) e^{\left.\frac{1}{4}\left(x-y^{2} / 2\right)\right)} e^{n y} \frac{d y}{y^{n+1}}
\end{aligned}
$$

\square

$$
Y \approx 1-\sqrt{2} \sqrt{1-c 8}
$$

$\sim \frac{1}{2} \sqrt{\frac{2}{2 n}} e^{n} x^{-1 / 2} n^{1} \sim \frac{1}{2} e^{\frac{1}{2} / 2} n^{n}$
nd thin kn $A_{n}(4)$ $=$ aratar forlite

$$
\begin{aligned}
& {\left[3_{n!}^{n}\right] \frac{1}{2} y^{c}\left(z^{u}\right) e^{\frac{1}{4}\left(4\left(3^{4}\right)-4^{n}\left(3^{n}\right) / 2\right)}=A_{n}(u)} \\
& A_{n}(4)=\frac{n^{\prime}}{2 n} \int_{0} \frac{1}{2^{2}} 4^{\prime}\left(z^{4}\right) e^{\frac{1}{2}\left(4\left(z_{3}\right)-4^{2}\left(y_{0}\right) / 2\right)} \frac{d z}{z^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& m=24 \\
& \operatorname{An}(1)=0.595772 x \\
& =\frac{n^{1}}{2 n} \int_{0}^{\frac{1}{2}} \frac{1}{4} y^{4}(v) e^{\frac{1}{v}\left(y(v)-y^{2}(v) / 2\right)} \frac{\int^{\frac{2}{2}}(y / \omega}{(V / \omega)}
\end{aligned}
$$

FIRST CYCLE IN EVOLVING GRAPHS

$$
\begin{aligned}
& 17 / 4185 \text { Summary The men otis }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { - for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to com mind for bal of } a=O\left(\frac{1}{n}\right) \text {, has } \\
& \text { nut sing } \\
& \text { (redan) } \\
& \text { To the } \\
& 4 . \\
& \text { mf Cash's ugnt lowe } \\
& a_{n}(r)=\frac{1}{2 n} \int a(3,4) \frac{d 3}{3^{4-1}} \quad(5) \\
& \text { and }
\end{aligned}
$$

(2000

FIRST CYCLE IN EVOLVING GRAPHS

Note Exped $\lambda \leqslant 2$ to pir mool of cmbibutimis miue $(1-u)^{N}(+6)^{k}$ is meringed othen $u \approx \frac{k}{N} \leqslant \frac{2}{m}$.
Mus thej-s slaold hafp when $\lambda \leq 1$
Good hope saddle prome for untigal untl $\frac{1}{2} \frac{4^{2}}{1-4} e$ appears when $Y \approx \lambda$ whet is suce lear terman in $e^{\text {n. }}$ are cancelled by the olse onso.....it Evag ley coons prominy AgAiN Take for tuhonces pabor that ade has bite c. Then fly unts (I)
 them

$$
\text { दnante } \phi\left(\lambda \frac{1}{2} \int_{0}^{1} e^{x_{2}+\lambda^{1 / 4}} d \lambda \lambda^{2} \frac{1}{\sqrt{\left(1-1 / n+\frac{\lambda^{2}}{(1-\lambda)^{2}}\right.}} \times \frac{1}{1-\lambda}\right.
$$

sमा
8
8
mas

FIRST CYCLE IN EVOLVING GRAPHS

fin in k
Theoum Let $f(z)$ analg, for $|z| \leq 1$ wit the excephin
of of a unp. mplacty at $z=1$. Adsume (that $f(z)$ satisise $(\infty<1)$ $f(3)=0\left(\frac{1}{(1-z)^{2}} L\left(\frac{1}{1-z}\right)\right)$ m . nthlourfoed of $B y=1 \mathrm{lz} / \mathrm{s}$ Where
(i) L is an incuais C - hinie $\rightarrow \infty$
(ii) L in dowey inneacis, thed is k say

$$
\forall c>0 \quad \frac{L(x)}{L(x)} \rightarrow 1 \quad \text { as } x \rightarrow \infty \text {. }
$$

Then

$$
\left[z^{n}\right] f(z)=O\left(n^{\alpha-1} L(n)\right)
$$

Exants ane
$\left[z^{n}\right] O\left(\frac{1}{(1-z)^{2}} \log \log \frac{1}{1-z}\right) \Longrightarrow O(n \log \log n)$
$\left[8^{n}\right] O\left(\frac{1}{(1-z)^{3 / 2}} \sqrt{\log \frac{1}{1-z}}\right)=O\left(n^{1 / 2} \sqrt{\log n}\right)$
Prof: Iex temme
$\exists g(x) \lim _{\substack{ \\f(x) \rightarrow \infty \\ x \rightarrow \infty}}^{\substack{\text { s. }}} \frac{L(x g(x))}{L(x)}, 1$
Then wue the fopeys nuthod.

$$
\begin{aligned}
& \int_{r_{1}}^{r_{2}}=O\left(\frac{1}{n} \times n^{\alpha} L(n)\right) \\
& \left|\int_{r_{2}}\right| \leqslant \int_{y_{n} / n}^{\pi} \frac{d \theta}{\theta^{*}} L(n)=n^{\alpha}
\end{aligned}
$$

$$
1 \int_{r_{2}} \left\lvert\, \leqslant \int_{y_{n}}^{\pi} \frac{d s}{\theta^{*}} L(n)=n^{x-1} L(n)\right.
$$

(NB) Unambly thefatit thal L is incuanigy
Poflemis: What aboul slonly decraning function?

FIRST CYCLE IN EVOLVING GRAPHS

FIRST CYCLE IN EVOLVING GRAPHS

FIRST CYCLE IN EVOLVING GRAPHS

$$
\begin{aligned}
& \text { Another approach } \\
& u_{n}=\left\{\left(\frac{3}{2}\right)^{n}\right\} \\
& \Rightarrow \cos \left(u_{n} x\right) \\
& \text { has dutribution } \\
& \cos (\pi D) \text { aver }(-1,+2) \\
& \operatorname{Pr}\{u \in[x, x+d x]\}=\alpha(x) d x \\
& \Rightarrow \operatorname{Pr}\{\cos \pi u \in[\cos (x x), \cos (n(x+d x))]=\alpha(x) d x \\
& \Rightarrow \operatorname{Pr} \quad Y \in[\cos \pi x, \cos n x-n d x \sin \pi x]=\alpha(x) d x \\
& \Rightarrow \operatorname{Pr} \quad y \in[y, y-d y]=\alpha\left(\operatorname{acos}\left(\frac{y}{a}\right)\right) \quad y=\cos \pi x \\
& \Rightarrow \operatorname{lr} \quad y \in[y, y-d y]=\frac{\alpha\left(\operatorname{acos}\left(\frac{y}{\pi}\right)\right)}{\pi \sqrt{1-y^{2}}} \quad \begin{array}{ll}
x=\frac{1}{\pi} \operatorname{acos} y \\
d y=\frac{4}{\pi}-\pi \sin \pi x
\end{array} d x \\
& \text { Sel } y_{n}=\text { as }\left(\pi\left(\frac{3}{2}\right)^{n}\right) \text {. Intesty fal is U-d ynar co be } \\
& \text { (more on lene) appulis him yn. Hay, thene is te mbl! } \\
& \begin{array}{l}
\cos 3 t=4 \cos ^{3} t-3 \omega_{0} t=\operatorname{car}\left(4 \omega^{3} t-3\right) \\
\cos t=2 \cos ^{2} t-1 \Rightarrow \cos t= \pm \sqrt{1+\cos ^{t} t}
\end{array} \\
& y_{n+1}= \pm \sqrt{\frac{1+y_{n}}{2}}\left(2 y_{n}-1\right)
\end{aligned}
$$

Let $\phi(y)=$ with Θ sypn alove then we coppuli $\phi^{(n)}(-1)$ and lind In the hatigam of werats afir $n=500,1000,1500$ vinalias

FIRST CYCLE IN EVOLVING GRAPHS

FIRST CYCLE IN EVOLVING GRAPHS

RANDOM GRAHS
Returringt apmel polem
$\varepsilon_{\operatorname{ran} t} \int_{0}^{\infty} \frac{\lambda^{n}}{n^{n}}\left(1+\frac{1}{n}\right)^{-\left(\frac{\lambda_{2}}{2}\right)} \operatorname{Inf}\left(\frac{\lambda}{n}\right) \frac{d \lambda}{\lambda\left(1+\frac{1}{n}\right)} x n!$
Uniy cract (rwomencal) sadde prinit witt λ \& corpen ace arative
Value of mitgrond at $\lambda=1$ of
n. $\cdot \int_{0}^{1}(1-w)^{2} \operatorname{En}\left(\frac{4}{1-u}\right) \frac{d u}{4}$

FIRST CYCLE IN EVOLVING GRAPHS

Conclumui- For $\lambda=1$, the saddle point is $1-n^{-1 / 3}+\frac{1}{3} n^{-2 / 3} \ldots$
Equation is:

$$
\text { The candle poiw bor geeral } \lambda
$$

$$
h=m y+\frac{n}{\lambda}\left(y-y^{2} / 2\right)-n \log y-\log (1-y)
$$

$$
\begin{aligned}
& n=n y+\frac{n}{\lambda}\left(y-y^{2} / 2\right)-n \log y-\log (1-y) \\
& h^{\prime}=n+\frac{n}{\lambda}-\frac{n y}{\lambda}-n+1
\end{aligned}
$$

$$
\begin{aligned}
& =n\left(1+\frac{1}{\lambda}\right)-\frac{n}{\lambda} y-\frac{n}{y}+\frac{1}{1-y} \\
& \text { Sel } y=1-\varepsilon . \text { Then: }
\end{aligned}
$$

$$
\begin{aligned}
& n\left(1+\frac{1}{\lambda}\right)-\frac{n}{\lambda}(1-\varepsilon)-n\left(1+\varepsilon+\frac{\varepsilon^{2}}{1-\varepsilon}\right)+\frac{1}{\varepsilon}=0 \\
& \frac{n}{n} \varepsilon-n \varepsilon-\frac{n \varepsilon^{2}}{1}+\frac{1}{c}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n}{\lambda} \varepsilon-n \varepsilon-\frac{n \varepsilon^{2}}{1-\varepsilon}+\frac{1}{\varepsilon}=0 \\
& n\left(\frac{1}{\lambda}-1\right) \varepsilon^{2}-\frac{n \varepsilon^{3}}{1-\varepsilon}+1=0
\end{aligned}
$$

- $\lambda>1$ Solution is
$\frac{1}{\sqrt{n\left(1-\frac{1}{\lambda}\right)}} \cong \varepsilon_{\text {sad }}$
- $\lambda<1 \quad \varepsilon \approx(1-\lambda) \Leftrightarrow \sigma \approx \hat{\lambda}$. So $x t$

$$
y=\lambda(1+p) \text { Utiskmi : we Find }
$$

$$
\begin{gathered}
n\left(1+\frac{1}{\lambda}\right)-\frac{n}{\lambda} \lambda(1+\eta)-\frac{n}{\lambda}\left(1-\eta+\frac{\eta^{2}}{1-\eta}\right)+\frac{1}{(1-\lambda)\left(1-\frac{\lambda \eta}{1-\lambda}\right)}=0 \\
-n \eta+\frac{n}{\lambda} \eta+\frac{n}{\lambda} \frac{\eta^{2}}{1-\eta}+\frac{1}{1-\lambda}+\frac{\lambda \eta}{(1-\lambda)^{2}}+\frac{\lambda \eta^{2}}{(1-\lambda)\left(1-\frac{\lambda \eta}{1-\lambda)}\right.}=0 . \\
\Rightarrow n \eta\left(\frac{1}{\lambda}-1\right)+\frac{1}{1-\lambda}+5 \cdot 0 . t=0 \quad \eta \approx-\frac{\lambda}{\eta} \\
\sigma=\lambda\left(1-\frac{1}{n}+\text { s.0.t. }\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { The naddle poimel when } \lambda=1 \text { is }(1-\varepsilon) \text { with: MAXV } \\
& \left.2 n-n(1-\varepsilon)-\frac{n}{1-\varepsilon}+\frac{1}{\varepsilon}=0 \quad \right\rvert\, \cdot n(y)=n y+n\left(y-4^{2 / 2}\right)-n \log y \\
& \begin{array}{c}
-h^{\prime}(y)=\log (1-y) \\
2 n-n y-\frac{n}{y}+\frac{1}{1-y}
\end{array} \\
& \text { Srit: } n \varepsilon^{3}=1-\varepsilon \\
& \begin{aligned}
& \varepsilon=n^{-1 / 3}(1-\varepsilon)^{+1 / 3} \\
& \Rightarrow \varepsilon=n^{-1 / 3}-\frac{1}{3} n^{-2 / 3}+0 \cdot n^{-1}+\frac{1}{21} n^{-4 / 3}+\cdots \\
& \Rightarrow h(y)=e^{3 / 2 n+1 / 3-\log (t)+1 / 4 t+1 / 30 t^{2} \cdots} \operatorname{set} t=n^{-1 / 3}
\end{aligned} \\
& h^{\prime \prime}(y)=\frac{1}{t^{2}}\left(3+t+7 / 3 t^{2}+\cdots\right) \\
& \Rightarrow \frac{e^{h(y)}}{\sqrt{2 \pi b^{\prime \prime}(y)}}=\frac{e^{1 / 3+3 / 2 x}}{\sqrt{6 \pi}}\left(1-\frac{t}{4}-\frac{107 t^{2}}{1440}-\frac{47 t^{3}}{5180}\right) \\
& \begin{array}{l}
\text { We find finally }(t=1) \quad t=n^{-1 / 3} \\
\left(1+\frac{\lambda}{n}\right)^{-(2)} \frac{e^{h(\sigma)}}{\sqrt{2 \pi h(\sigma)}} \times\left. n!A\right|^{-n}
\end{array} \\
& \begin{array}{c}
=\sqrt{\frac{2 \pi n}{3}} e^{13 / 12}\left(1-\frac{t}{4}-\frac{107}{1440} t^{2}\right) \\
+0\left(t^{3}\right)
\end{array}
\end{aligned}
$$

> I Sind whis these ativints (Ther doved be cfoctor of $1 / 2$)
> This \geq in [rAxV] is watin $t \int_{0}^{\infty} \frac{d \lambda^{n}}{\left(1+\frac{\lambda}{n}\right)^{N}}[\cdots]$.

FIRST CYCLE IN EVOLVING GRAPHS
\qquad

$$
\text { L/ } k \varepsilon^{2} \geqslant t^{2}=\frac{11}{n} \quad \Rightarrow \varepsilon^{3} \Rightarrow k_{\lambda \gg n^{-1 / 3}}^{\lambda>1+n^{-1 / 3}}
$$

$$
W^{2} A^{2}(x)=1
$$

$$
\begin{aligned}
& \operatorname{Cank} \lambda>1 \text { Set } 1-\frac{1}{\lambda}=K \text {. ign is } \\
& -k n \varepsilon^{2}(1-\varepsilon)-n \varepsilon^{3}+(1-\varepsilon)=0 . \\
& -k \varepsilon^{2}+k \varepsilon^{3}-\varepsilon^{3}+t^{2}-\varepsilon \epsilon^{2}=0 \\
& \Rightarrow k \varepsilon^{2} \approx t^{2} \quad \varepsilon \approx \frac{1}{\sqrt{n}} \frac{1}{\sqrt{1-\frac{1}{x}}} \\
& \varepsilon=c_{1} t+c_{2} t^{2}+c_{3} t^{3}+\cdots \\
& \frac{1}{\sqrt{k}} \frac{1}{2 k^{2}} \quad \frac{1}{2} k^{5 / 2}+5 / 8 \frac{1}{k^{3 / 2}} \\
& E=\frac{1}{\sqrt{k n}}-\frac{1}{2 k^{2} n}+\left(\frac{5}{8 k^{3}}-\frac{1}{2 k^{2}}\right) \frac{1}{\sqrt{k n^{3}}} \\
& \sigma=1-\varepsilon \text { saddle pr. } \\
& k=1-\frac{1}{\lambda} \\
& \left\{\begin{array}{l}
h(\sigma)+\log t=\frac{1}{2} \log k+\frac{1}{2}+\frac{1}{3} \frac{t}{k^{3 / 2}}+3 / 2 n-1 / 2 k n+\theta\left(+2 t^{2}\right.
\end{array}\right. \\
& \left\{t^{2} h^{\prime \prime}(\sigma)=2 k+\frac{2 t}{\sqrt{k}}-3 / 2 \frac{t^{2}}{k^{2}} \cdots\right.
\end{aligned}
$$

Case $\lambda 1$
$t=1 / n$

$$
\varepsilon=\frac{\lambda}{(1-\lambda)^{2}} t-\frac{\lambda(\lambda+1)}{(1-\lambda)^{5}} t^{2}+\cdots \text { wilt } \sigma=\lambda(1-\varepsilon)
$$

$h^{\prime}(\sigma)=O\left(t^{3}\right)$ (with mp repanim, looksg.ad).

$$
\begin{aligned}
h(\sigma) & =\frac{1}{t}\left(\frac{\lambda}{2}+(-\log \lambda) t^{-1}-\log (1-\lambda)\right. \\
& +t \frac{1}{2} \frac{\lambda^{2}}{(1-\lambda)^{3}}+t^{2} \frac{1}{6} \frac{\lambda^{3}(3 \lambda+2)}{(1-\lambda)^{6}}+\cdots \cdots
\end{aligned}
$$

FIRST CYCLE IN EVOLVING GRAPHS

FIRST CYCLE IN EVOLVING GRAPHS

$$
h 0 b=-\frac{1}{2} k \alpha_{1}^{2}+\frac{1}{2} k^{3}+\frac{1}{3} d_{1}^{3}-\log \alpha_{1}+\frac{\frac{1}{2} t^{2} n^{1 / 3}+1 / 2 k n^{2 / 3}}{\sin }+3 / 2 n
$$

$$
h q 1=\left(-\lambda+2 \alpha_{1}+\frac{1}{\alpha_{1}^{2}}\right)+0(t)
$$

$$
\left[\text { h1a canuls } \Rightarrow O\left(t^{3}\right)\right. \text { whil in good!] }
$$

$$
\text { Saddep plat } 1-\varepsilon \text { where }
$$

$$
\varepsilon=\alpha_{1} t+\frac{\left(1+\alpha_{1}\right) t^{2}}{\left(2\left(1-3 \alpha_{1}\right) \alpha_{1}\right.} \xi^{2} \ldots
$$

$$
\text { Girs bask } e^{13 / 2 \pi} \sqrt{\frac{2 n}{3} n}
$$

$$
\text { Exponation when } \lambda=1-4 n^{-1 / 3} \text { He } \sigma=1-t+\frac{1}{3} t^{2}+o\left(t^{4}\right)
$$

$$
\alpha_{1} t-o\left(t^{3}\right) \quad\left(-\alpha_{1} t+\alpha_{2} t^{2}+\alpha_{3} t_{3}^{3}+-\right)
$$

$$
\text { Where } \alpha_{1} \text { is on ofjebraic fmuber of degree } 3 \text { satisfying }
$$

$$
\alpha_{1}^{2} \mu-\alpha_{1}^{3}+1=0
$$

$$
\begin{aligned}
& \cdot R^{(\lambda)}=1-f^{(t)}+t, \quad(\lambda \equiv 1-\mu t) \\
& m=1 / t^{\wedge} 3 \text {; } \\
& \operatorname{raylor}\left(-\frac{n(n-1)}{2} * \log \left(1+\frac{L}{n}\right), t=0,9\right) \\
& \frac{\text { smale }=-1 / 2 t^{-5}+\frac{1}{2} \ell l t^{-2}+3 / 4+O(t)}{12+30(m)+I c^{2}} \\
& e^{-h d_{1}^{2}+\frac{1}{2} h^{3}+\frac{1}{3} \alpha_{1}^{3}-l h \alpha_{1}+\sqrt[y]{k} k n^{2 / 3}+1 / 2 h^{2} n^{1 / 3}+3 / 2^{n}}
\end{aligned}
$$

FIRST CYCLE IN EVOLVING GRAPHS

$\begin{array}{ll}\begin{array}{l}\text { Concluxim; When } \lambda \geq 1\end{array} & \lambda=1-k n^{-1 / 3} \\ \text { enapte; works quib Sine } & (\mu<0)\end{array}$

/ Sos nod harie when
If one ties $t=n^{-16}$, then an sholet tukke $\binom{\alpha_{1}=\mu($ (P) $)}{\alpha_{1}=0}$
\Rightarrow hake a omaller t and $\mathrm{LL} \quad h \rightarrow \infty$ expisito
 rided

Equation for cadal phiso:
Sthating agouf
Thien groes well n (he raddl foin (memerice) itimals

$$
\begin{array}{l|l}
\left.\frac{\alpha \text { varu hrom o to } \infty}{\mu \text { vaus ham }-\infty \text { t }} \right\rvert\, & h^{3}-\alpha^{3}=-3+\frac{3}{\alpha^{3}}-\frac{1}{\alpha^{6}} \\
& \alpha \mu=\left(1+\frac{2}{\alpha^{3}}\right) d \alpha .
\end{array}
$$

\Rightarrow coff

$$
\int^{\infty} e^{-3+3 / \alpha^{3}-1 / \alpha^{6}}
$$

\Rightarrow leods t

$$
\int_{0}^{\infty} \frac{e^{3 t-t^{2}}}{\sqrt{1+t}} t^{1 / 3} d t \text { as coefficient }
$$

don'r ansid

$$
4
$$

\Rightarrow coeff is

$$
\frac{\left(1+\frac{2}{\alpha^{3}}\right)}{\sqrt{2+\alpha^{3}}} d \alpha
$$

$\int_{0} e^{-3+3 / \alpha^{3}-1 / \alpha^{6}} \frac{\left(1+\frac{2}{\alpha^{3}}\right)}{\sqrt{2+\alpha^{3}}} d \alpha$

$$
e^{\left[t^{1 / 6}\right]}\left[\sum a_{k} t^{k}\right) d t
$$

NB A quick

$$
n=100 \quad \text { are }=50.45
$$

$$
\begin{array}{ll}
n=500 & \text { are }=214.62 \\
n=1000 & \text { are }=437.2
\end{array}
$$

$$
223.32
$$

$m>2000$
ave $=870.70$
860.12
231.8

Timi is quiti cleally $0.43 n$

FIRST CYCLE IN EVOLVING GRAPHS

CYCLES IN A RANDOT GRAPH

Assumplini: Unmexted edges, no edg choen trice, no EVOLUTION MODEL (kNEEL)
(A) Let $C_{n, k}[a]$ be the $\#$ of conforuations satirigucy condition Q, and est $P_{n}(Q)$ be toe prodabity for Q bo be satished. then wit $N=\binom{n}{2}$:
$\operatorname{Pr}(Q)=\sum_{k} \frac{(k-1)!}{N(N-1)-(N-k)} C_{n, k}[Q] \quad$ (1) sam froule woise of anditinal expctations. Formula (1) guies the relators tehweu- He combratanial model (counting) and to probalilisic model.
the Cuiv can be computed by the lerny of the exponealial querating hinction. For intance, of Q is cyule has lengts c, then

$$
\sum c_{m, x} u^{k} \frac{8^{n}}{m!}=\frac{1}{2} \frac{y^{c}}{(1-y)} e^{\frac{1}{4}\left(y-y^{2} / 2\right)}
$$

$$
\text { where } y=y\left(z^{u}\right) \text { and } y(t):: y(t)=t e^{+y(t)}
$$

Thus por imbanc the expcration of cucb length a under the probatilistic nodel is

$$
\bar{K}_{n}=\sum_{k} \frac{(k-1)!}{N(N-1) \cdot(N-k)}{ }^{n!}\left[z^{n}\right]\left\{\frac{1}{2} \frac{y^{3}}{(1-y)^{2}} e^{\frac{1}{4}\left(y-y^{2} / 2\right)}\right\}(26)
$$

(B) Trampormation (1) has an inlegral uepesentation uelalid to the Eulevian Bche untegral. Namely

$$
p_{n}=n \cdot \int_{0}^{1} c\left(\frac{v}{1-v}\right)(1-v)^{N} d v \quad c[u]=\left[z^{n}\right] \sum c_{n, k} u^{k} \frac{z^{n}}{n!}(3 a,
$$

t m no deo, kedges.

FIRST CYCLE IN EVOLVING GRAPHS

which becomes

$p_{0}=n!\int_{0}^{\infty} \frac{v^{n}}{(1+v)^{n}}\left\{\left[z^{n}\right] c\left(z, \frac{1}{v}\right)\right\} \frac{d v}{v(1+v)}$

$$
\begin{equation*}
\text { and setting } v=\lambda / n \tag{36}
\end{equation*}
$$

$$
p_{n}=n!n^{-n} \int_{0}^{\infty} \frac{\lambda^{n}}{\left(1+\frac{1}{n}\right)^{N}}\left\{\left[z^{n}\right] c\left(z, \frac{\lambda}{n}\right)\right\} \frac{d \lambda}{\lambda\left(1+\frac{1}{n}\right)}
$$

For intonnc if we lake as "parameter" Q the expchation of cycle length (-3), by $(C 1)$

$$
\begin{aligned}
& \text { Hentyc2 } \\
& \bar{k}_{n}=n l n^{-n} \int_{0}^{\infty} \frac{\lambda^{n}}{\left(1+\frac{1}{n}\right)^{N}}\left\{\frac{1}{2 \operatorname{2in}} \int \frac{1}{2} \frac{y^{2}}{(1-y)^{2}} e^{\frac{n}{\lambda}\left(y-y^{2}\right)+n y-n \log y} d y\right\} \frac{d \lambda}{\lambda\left(1+\frac{\lambda}{n}\right)}
\end{aligned}
$$

and applying (C3) uppesents nom challenge.

(D) The cade pain method

What happen uelimately is. The integrand of (5) (ie the fig function of λ and n in $\int_{0}^{\infty} . . d \lambda$) has a peak ar $\lambda=1+\varepsilon_{n}$.

> For fixed $\lambda, 2$ cases a pear
> The saddle point $\sigma=\sigma(\lambda, n)$ salishes an elaebraic
> equaturi of degree 3 bul the to be picked changes
> pusdenly at $\lambda=1$. BRANCh
> For $\lambda<1 \quad \sigma=\lambda+\theta(1)$
> For $\lambda>1 \quad \sigma=1-\theta(1)$
> and using mpmbleic mampulation opptem, I find the $I(\lambda)$
> denoting the integrand of 5 normalized by $m!n^{-n}$:
$\lambda>1: I_{n}(\lambda) \sim e^{1 / 2} \frac{\sqrt{n}}{2} e^{\lambda / 2+\lambda^{7 / 4}} e^{\frac{n}{2}\left(\frac{1}{\lambda}+\log \lambda \lambda\right)}$
This the $\left\{\begin{array}{l}=\frac{\text { expreatially } 2 \text { mall }}{\text { for fixed } \lambda, n \rightarrow \infty}\end{array}\right.$
Thus the contribution should be localized around $\lambda=1$
Ar $\lambda=1$:

$$
I_{n}(1) \sim \frac{1}{2} \sqrt{\frac{n}{3}} e^{13 / 12}
$$

- increases as $O(\sqrt{n})$.

This the problem is to find how this behave for λ veyclose
to 1 but a function of n uriel
(E) It takes a cattle while b hind thad the proper scaling factor
is $t=n^{-1 / 3}$ and we comider now
the rattle pries $\lambda=1-k t \equiv 1-\mathrm{kn}^{-1 / 3}$ hiked.
Then the saddle point $\sigma=\sigma(\lambda, n)$ has an asyypklac
expansion for $t \longrightarrow 0 \quad(n \rightarrow \infty)$

$$
\begin{equation*}
\sigma=1-\alpha_{1}(t)+\frac{h+\alpha_{1}(t)}{\left(2 \mu-3 \alpha_{1}(t)\right) \alpha_{1}(k)} \times t^{2}+O\left(t^{3}\right) . \tag{6}
\end{equation*}
$$

(more terms are neesayy and have been conputiol unity maple). In (6) $\alpha_{1}(h)$ is an deytraii Auction of degree 3 defined by

FIRST CYCLE IN EVOLVING GRAPHS

$$
\alpha_{1} \mu^{2}-\alpha_{1}^{3}+1=0 \quad(7)
$$

α_{1} nueers contimones hom $0 \hbar+\infty$ as f gos from $-\infty$ to $+\infty$.
Uains the raddle prim method with expamimes expunecil as fuictinin of μ and $\alpha_{1}=\alpha_{1}(k)$ (anly

$$
\begin{equation*}
I_{n}(\lambda) \approx \frac{\sqrt{n}}{2} e^{13 / 12} \frac{e^{\frac{1}{6}\left(x^{3}-\alpha_{1}^{3}\right)}}{\sqrt{2+\alpha_{1}^{3}}} \tag{8}
\end{equation*}
$$

$$
\text { uns after a bealing mice } d n=n \quad \text { apt } 1 \text { moms }
$$

$$
\begin{equation*}
\bar{K}_{n} \sim \frac{e^{13 / 2}}{2} n^{1 / 6} \int_{-\infty}^{+\infty} \frac{e^{\frac{1}{6}\left(k^{3}-\alpha_{1}^{3}\right)}}{\sqrt{2+\alpha_{1}^{3}}} d n \tag{9}
\end{equation*}
$$

thil canke re-expered uning h as an undy-deul vaviable
Theoum:

$$
\begin{equation*}
\bar{K}_{n} \sim \frac{e^{13 / 2}}{2} n^{1 / 6} \int_{0}^{\infty} \frac{e^{3 \alpha-\alpha^{2}}}{\sqrt{1+\alpha}} \alpha^{-1 / 3} d \alpha \tag{10}
\end{equation*}
$$

Whechis then omponsinfly proposhimial to $n^{1 / 6}$!
1 have als mitter mulation programmes. for umbac, 1 and
that baxd om

$$
\begin{aligned}
& 1000 \text { suratimin } n=100 \rightarrow \bar{K}_{100} \cong 6.75 \\
& 100 \text { meation } n=6400 \rightarrow \bar{K}_{6400} \cong 13.25
\end{aligned}
$$

Not trolad!.
Othappicitiai: Sintiy probatelt, ds shibutin: of cyd leyt, ygy of

FIRST CYCLE IN EVOLVING GRAPHS

$$
\begin{aligned}
& \text { Coputy the contanl: H should be } \\
& \frac{1}{2} e^{13 / 12} \int_{-\infty}^{+\infty} \frac{e^{\frac{1\left(h^{3}-\alpha^{3}\right)}{6^{3}}}}{\sqrt{2+\alpha^{3}}} d h=\frac{1}{2} e^{7 / 12} \int_{-\infty}^{+\infty} \frac{e^{\frac{1}{2 \alpha^{3}}-\frac{1}{6^{6}}}}{\sqrt{2+\alpha^{3}}} d x \\
& =\frac{e^{7 / 12}}{2} \int_{0}^{\infty} e^{\left(\frac{1}{2 \alpha^{3}}-\frac{1}{\left.6 \alpha^{6}\right)}\right.} \frac{1}{\alpha^{3}} \sqrt{2+\alpha^{3}} d \alpha \text { fince } d / 1=\frac{1}{\alpha^{3}}\left(\alpha^{3}+2\right) \\
& \left\{\frac{1}{\alpha^{3}}=t \quad \alpha=t^{-1 / 3} \quad d \alpha=-1 / 3 t^{-2 / 3}\right\} \\
& =\frac{e^{7 / 12}}{2} \int_{0}^{\infty} e^{t / 2-t / 6} t \sqrt{2+\frac{1}{t}} \frac{1}{3} t^{-2 / 3} d t \\
& k=\frac{e^{7 / 12}}{6} \int_{0}^{\infty} e^{t / 2-t^{2} / 6} \sqrt{1+2 t} t^{-1 / 6} d t
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
0.363377 \text { (nder } 8 \\
=0.36618(50 n d e r 6)
\end{array}\right. \\
& \text { unj hater ot } t=0, t=1 / 4 \text { numuiall, this is thare } t \frac{2.43}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NB: } f^{\prime}(1)=-.5928430 \text { and Enber Naclami is: } \\
& \sum_{1 \leqslant k<n} g(x)=\int_{1}^{n}-\frac{1}{2}(g(n)-g(1))+\frac{B_{2}}{2!}\left(g^{\prime}(x)-g(1)\right) \\
& \left.+\cdots+(-1)^{m} \frac{B_{m}}{m!} g^{\left.(m-1)^{2}\right)}(n)-g^{(m-1)}(1)\right) \\
& B_{0}=1 \quad B_{1}=-\frac{1}{2} \quad B_{2}=\frac{1}{6} \quad B_{3}=0 \quad B_{4}=-\frac{1}{30} \\
& \text { noltat conectirlerm dount ve } \\
& f^{\prime}(1)=-e^{-2 / 3} 3^{1 / 2}+\frac{e^{-2 / 3}}{3^{1 / 2}}
\end{aligned}
$$

FIRST CYCLE IN EVOLVING GRAPHS

(11) $\frac{1}{2} \frac{R^{c}(3 \omega)}{1-R(3 \cdots)} e^{\frac{1}{\left.2(R / 3-)-R^{2}(3-) / 2\right)} e^{2}} e 1 u$

(15)

(16) $\int_{0}^{1} \frac{x^{k}}{(1-2)^{k}}(1-2)^{v} \frac{d x}{2}$

(18) $\bar{Q}_{n}=n!\int_{0}^{\infty} \frac{1}{(1+v)^{N}} Q_{n}(v) \frac{d v}{v(1+v)} \quad$ odn fant bo exyidation
(10) $\left.\bar{K}_{n}=3+n!\int_{0}^{\infty} \frac{v^{n}}{(1+v)^{n}} R_{n}(r) \frac{d v}{v(1+v)} \quad f_{n}(v)=\left\{_{3}\right)^{-1}\right) \frac{1}{2} \frac{R^{4}}{(1-k)^{2}}$

(z1) $f_{n}(x)=\frac{1}{2 \pi n} \int_{0^{+}} \frac{1}{2} \frac{R^{4}(z)}{\left(1-K_{z}(3)\right)^{2}} e^{\frac{1}{t}\left(R(\xi)-r^{2}(z) / c\right)} \frac{d z}{\delta^{n+1}}$
(22) $h_{2}(v)=\frac{1}{\operatorname{lin}_{n}} \int_{0^{+}}^{0^{2}} \frac{1}{2}(1-y)^{\frac{3}{2}} \cdot e^{n y+\frac{1}{v}\left(y-y^{1 / 2}\right)} \frac{d y}{y^{n}}$

Lun2 $(23) \bar{k}_{4}=3+\int_{n^{n} n^{-1}}^{\infty} \frac{\lambda^{n}}{\left(1+\frac{\lambda}{n}\right)^{x}} k_{n}\left(\frac{\lambda}{n}\right) \frac{d \lambda}{x\left(1+\frac{\lambda}{n}\right)}$
(24) $\ln \left(\frac{y}{y}\right)=\frac{1}{2 / n} \int_{0}+\frac{1}{2} y^{3} e^{h(y)} d y$
$\ln (x y)=\operatorname{ty} \log (1+y)^{-1}+n y+5$

FIRST CYCLE IN EVOLVING GRAPHS

```
(26) }P(y)=(1-y)(n(1+\frac{1}{\lambda})y-\sum\mp@subsup{y}{}{2}-n)+y=
sandep
(27) \sigma=\lambda-\frac{\lambda}{(1-\lambda)\mp@subsup{)}{}{2}}t+\frac{\lambda(1+\lambda)}{(1-\lambda\mp@subsup{)}{}{v}}\mp@subsup{t}{}{2}+\cdots\quadt=\mp@subsup{Y}{n}{}
(28) }\mp@subsup{h}{n}{}(\lambda,\sigma)=\frac{1}{t}(\frac{\lambda}{2}+1-\operatorname{log}\lambda)-\operatorname{log}(1-\lambda)+\frac{1}{2}\frac{\mp@subsup{\lambda}{}{2}}{(1-\lambda)\mp@subsup{)}{}{3}}t
(29) }\mp@subsup{h}{n}{\prime\prime}(\lambda\sigma)=\frac{1}{\mp@subsup{\lambda}{}{2}(1-\lambda)}\frac{1}{t}+\frac{\lambda+2}{\lambda(1-\lambda)
(30)}\frac{1}{2\pim}\mp@subsup{I}{1}{}=\sqrt{}{2m}\frac{\mp@subsup{e}{}{n(l)}}{\sqrt{}{4/(5)}
(%achde thal -f 
```



```
    & }|z|=
```


Aumenche 28 Spetenbere (985) Prelablisitic comiting.

From Jeen Bal Alloude's pyre in "Inpormitigns e Mattimatifies"
bet H_{p}) be the Porse - Thure sepuma.

$$
t(x)=(-1)^{\mu(x)} \quad \nu(x)=\# \text { of ans ut... }
$$

$f(0)=1$
$t(2 m)=t(x)$
$t(2 n+x)=-t(x)$

Then:

$$
\frac{1}{\sqrt{2}}=\left(\frac{1}{2}\right)^{H_{(0)}}\left(\frac{2}{4}\right)^{H_{(1)}}\left(\frac{2}{6}\right)^{H^{(2}}\left(\frac{7}{8}\right)^{H_{3}}\left(\frac{7}{10}\right)^{H^{(4)}}\left(\frac{1}{\sqrt{2}}\right)^{\left.H_{3}\right)} \ldots . .
$$

 $\varphi=\frac{2}{3} \prod_{p=1}^{\infty}\left(\frac{(4 p+c)(4 p+22}{(4 p)\left(4_{p}+3\right)}\right)^{t(p)}=\frac{2}{3}\left(\frac{5.6}{4 \cdot 7 \cdot 7}\right)^{t(\omega)}\left(\frac{9.66}{8.21}\right)^{k+2} \ldots$.
Then:
$2110 / 85$ SUTRARY of THINGS TO BE DONE

Subrittes

1. Aurapasadid Cave. Eel, tic fundim

Tobe Subrtted Sinal editiy Fequired

To be dine/finitied.

1- BARTJ. Cop (3) 2 shocks
2. Jof Grabkithy (2) Gides on rening joth

3-T.C.S Anhpith δ trinc

4. Pmation UPren. Relhintrikilyy PleSed delaped.
5. Acgualins Palts. Fundimel Egm
6. Anade risu na ll (r) Gewnt thery
 \qquad

SYNERGISTIC INTERACTION

BACKHOUSE'S CONSTANT

Radius of cv of


```
A030018 Coefficients in 1/(1+P(x)), where P(x) is the generating 8
    function of the primes.
    1, -2, 1, -1, 2, -3, 7, -10, 13, -21, 26, -33, 53, -80,
    127, -193, 254, -355, 527, -764, 1149, -1699, 2436,
    -3563, 5133, -7352, 10819, -15863, 23162, -33887,
    48969, -70936, 103571, -150715, 219844, -320973,
    466641, -679232, 988627, -1437185, 2094446, -3052743 (list;
    graph; refs; listen; history; text; internal format)
    OFFSET
            0,2
    COMMENTS }\textrm{a}(\textrm{n}+1)/\textrm{a}(\textrm{n})=> ~-1.4560749485826896714. - Za
    Seidov, Oct 01 2011.
```


Backhouse's constant

From Wikipedia, the free encyclopedia
Backhouse's constant is a mathematical constant founded by N . Backhouse and is approximately 1.456074948 .

It is defined by using the power series such that the coefficients of successive terms are the prime numbers:

$$
P(x)=1+\sum_{k=1}^{\infty} p_{k} x^{k}=1+2 x+3 x^{2}+5 x^{3}+7 x^{4}+\cdots
$$

and where

$$
Q(x)=\frac{1}{P(x)}=\sum_{k=0}^{\infty} q_{k} x^{k} .
$$

Then:

$$
\lim _{k \rightarrow \infty}\left|\frac{q_{k+1}}{q_{k}}\right|=1.45607 \ldots \text { (sequence A072508 in OEIS). }
$$

The limit was conjectured to exist by Backhouse which was later proved by P. Flajolet.

BACKHOUSE'S CONSTANT

Backhouse's Constant

Let $\mathrm{P}(\mathrm{x})$ be the formal power series whose nth term has coefficient equal to the nth prime number:
$P(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=1+2 x+3 \cdot x^{2}+5 x^{3}+7 x^{4}+11 x^{5}+13 \cdot x^{6}+$
Let $Q(x)$ be the formal power series defined by
$\mathrm{P}(\mathrm{x}) \mathrm{Q}(\mathrm{z})=1$
Thus $\mathrm{Q}(\mathrm{x})$ is the formal reciprocal of $\mathrm{P}(\mathrm{x})$ as a power series. Observe that this is pure formal algebra: no questions of analytical convergence are involved at all.
$\mathrm{Q}(\mathrm{x})$ is an alternating series whose coefficients q_{n} are monotonically increasing in magnitude. Nigel Backhouse has observed that the ratios of successive coefficients tend to a certain constant, i.e., it appears that
$\lim _{n \rightarrow \infty}\left|\frac{q_{n+1}}{q_{n}}\right|=1.45607494858268967139959535111654356$
In a personal communication, Backhouse wrote:
The approximation given was generated in 37 seconds uaing Maple V (selease 3) in batch mode on a Sillicon Graphics Irix6 $P(x)$ was taken to 550 terms and $Q(x)$ produced as the Taylor serles of $P(x) \wedge(-1)$.

Unfortunately, I have no references to this result or anything
like it. In particular I have no evidence as to the originality
of my observation. I was just curious, as someone with an amateur
interest in number theory
interest in number theory
I should, of course, be very interested to hear, if, as a result
of your enterprise, someone has anything to add to my rather thin story.

The 35 -place decimal approximation above also appears at the CECM Inverse Symbolic Calculator web site. I am grateful to Simon Plouffe for pointing out to me the existence of this constant and to Nigel Backhouse for providing the information on which this essay is based.

Relevant Mathcad files will be included as time permits.

BACKHOUSE CONSTANT

backhouse.txt Sat Nov 25 16:39:04 1995 1

on the existence and the comeutarion of BACKHOUSE'S CONSTANT

Phillppe Elajolet, Algorlthms Froject, INRIA November 25, 1995 <phillppe, Flajoleteinifa.fr>
I. THE PROBLEM

Let $p(n)$ be the n-th prime, with $p(1)-2$, and define
intinity
$p(z)=1+1 \quad p(n)=$

Nigel Backhouse examines the coelflcients $q(n)$ in the series $Q(z)-1 / p(z)$; ineinity

$$
Q(z)=\frac{1}{P(z)}=\sum_{i}^{1} \quad q(n) z
$$

He notices empirically that the $q(n)$ alternate $\ln s i g n$ and that the
He notices empirically that the $q(n)$) a constant equal (up to sign) to ratio between successive values tends a constant equal fup
$1.45607 \ldots$ and called now ' Backnouse'a constant', See the
description In Steven Finch's pagos
chttp://www. mathsoft.com/asolve/constant/backhous/backhous.html>

- ANALYSIS

Here 13 what goes on. By the Prime Number theorem, we have $p(n)-n \log (n)$,
Here 13 what goes on. Ay the prime Number theoren, we fave p(nytic
and at any rate $p(n)<(n+1)^{-2}$ for all n. Thus, $P(z)$ is an analytic
and at any rate $p(z)$. Accordingly, $Q(z)$ is meromorphic in $|z|<1$
and has only finitely many poles in any subdisk $|z|<=1-e p s$
of the unit disk. Since $\mathrm{F}(0)=1, \mathrm{Q}(\mathrm{z})$ is analyolo at 0 .
by Cauchy's coefficient formula,

$$
q(n):=\frac{1}{2+p i}: \frac{Q(z)}{(n+1)} d z
$$

Where the integration contour is a sufficiently small circle around 0
Whe observe that $P(z)$ has a unique zero at $50-0.686$ inside the disk
We observe that . Thus, integrating 0.75 .
account the residue of $Q(z)$ at $z \pi s 0$ gives us

$$
q(n)-\left(-\frac{1}{s 0 p^{\prime}(s 0)} a 0^{n}+0\left(.75^{(-n)}\right)\right.
$$

Where $a 0-1 / s 0=-1,45607$ is Eackhouse's constant. This formula is quite where a $0-1 / s 0=-1,45607$ is sackhouse $1 / 0.75=1,33$, hence exponent ially smaller good as its exros term
It is possible to go farther by fishing for che next poles. In this way one can find better and better asymptotio expansions of the type
$q(n)=c[0] a[0]+c[1] a[1]^{n}+c[2] a[2]^{n}+$ etc
(with suitable modifications if multiple poles were to be encountered).
where $\mathrm{a}[]=1 / \mathrm{s}[i]$ and $s[i]$ ts the 1 -th zero of $P(z)$
where a[2]=1/s seem to be real poles apart from so

backhouse.txt Sat Nov 25 16:39:04 1995

nor multiple poles, but I have naturally no proof for this observation, Complex conjugate pairs of poles will make the correction terms fluctuating, as usual.
Note that for any collection of zeros given by a numerical process, a corresponding computer-assisted proof could be built. It suffices to use the principle of the argument (Henrici, Complex and Computational
Analyals) to make sure that all zeros in a certain disk have indeed been captured. Also, all this proves that the coefficients $\mathrm{q}(\mathrm{n})$ eventually alternate in sign. This could be extended to all values of n by using constructive bounds in Cauchy's remainder integral and cheoking exhaustively the few dozen initial values not covered by the bounds
Finally, there is a general theorem of Eolya-Carlson to the effect that a nonrational function with integer coefficlents and radius of convergence 1 admits the unit cirole has a nathit circle as a singular itne
III. A GENERAL REMARK

What we just did ia an instance of a general process well known in the analysis of coelficients of meromorphio functions. It is related to methods for coefficient asymptotics, like Datboux's
method or singularity analyais, that are especialiy useful in "analytic method or singularity analysis, that are espectaly useful to use in teaching coefficiont asymptotios is the following.

A composition of an integer n is a sequence of
integers >0 that add up to n. The number of
compositions of in is a ined Now conside compositions
How many sro there?
Proof. Work wtth the serles $S(z)=1 /(1-R(z)$ Where $R(z)=z^{\wedge} 2+z^{\wedge} 3+z^{\wedge} 5+z^{\wedge} 7+z^{\wedge} 11+\ldots$

Philosophy: This discussion shows these questions to be infinitely easier than true arithmetical ones since this type of problem is (exponentfally) oblivfous of the fine stiucture of intervening analytio functions. For instance, one could define the twin prime pairs!! Even though we don't know a lot,
we could still prove existence of the asymptotio form and COMPUTE the new constant to 1,000 digits in a matter of minutes. Similarly for the Fermat-Backhouse and the Mersenne-Backhouse constants !11

Advertisement: A cutorial on these questions ("Complex Asymptotics and Generating Functions', INRIA Tech. Rep. 2026, Sopt 1993)
going to be part of a forthcoming book by R. Flajolet and R. Sedgewick entitled 'Analytic Combinatorics'
IV. NUMERICAI, VALUE OF BACKHOUSE'S CONSTANT

Here is in connection with Simon Plouffe's dictionary of real numbers Here is in connection with Simon Plouffe's diction
http://ww.cecm, sfu.ca/projects/ISC. html http://www.cecm, sfu.ca/projects/ISC.html (determined in 4 minutes of CPU time with a Maple V, 3 program on a DEC Alpha 3000 stat Lon.)
. 45607494858268967139959535111654355765317837484713154027070291 74140015062653898955996453194018603091099251436196347135486077 $5741400150626538989559964231947405369527499880254869230705808528 \backslash$

BACKHOUSE CONSTANT

Sat Nov 25 16:39:04 1995

51124053000179297856106749197085005775005438769180068803215980)
 $524605523103968123415765254724236564044351398169338973930393708)$ $2465000439023739542046997815299374792625225091766965656321726658)$
455830836636751 531118262706074545210728644758644231717911597527697966195100532 506679370361749364973096351160887145901201340918694999972951200 319685565787957715446072017436793132019277084608142589327171752 140350669471255826551253135545512621599175432491768704927031066 824955171959773504447428530521694205264813827872679158267956816
962042960183918841576453649251600489240011190224567845202131844 962042960183918841576453649251600489240011190224567545202131044 906214030884143685764890949235109954378252651983684848569010127 463899184591527039774046676767289711551013271321745464437503345 595005227041415954600886072536255114520109115277724099455296613 699531850998749774202185343255771313121423357927183815991681750 625176199614095578995402529309491627747326701699807286418966752 89794974645089663963739786981613361814875 ;

v. THE MAPLE PROGRAM

It is just Newton's method applied to $P(z)$ with a close enough starting value, increasing the number of , The call to biT) gives terms in the truncation of $\mathrm{F}(z)$ as we ploce

Digits :-16; \ddagger must be there because of Maple' a Idiosyncrasy
D:=proc $(\mathrm{m}) \ddagger$ computes more than $10 * 2^{\circ} \mathrm{m}$ digits of Backhouse's Constant local ord, \times,
Ithprime:-proc (n) option remember; ithprimo(m); end
Digits:=15;
$x:--1 / 1.45607494858268967$
ord: $=72$;
for 1 from 1 to m do

```
Digits: \(=2 \times\) Dig
```

$\mathrm{P}:-\mathrm{I}$; DP: $=0$; $x):=x$:
for j from 1 to ord do
od; $\mathrm{x}:=\mathrm{x}-\mathrm{P} * \mathrm{x} / \mathrm{DE}$;
od; ;
RETURN $(-1 / x)$;
end:
$6)$: gives 678 exact digits in 70 seconds
$\mathrm{b}(6)$; gives 678 exact $\mathrm{b}(7)$; gives 1357 exact digits in < 4 minutes
an analytic portion in $|z|<1$. In particular, in lang disk
of radius $1-\alpha$, it has only finitely many zero. Accordingly,
$Q(z)=1 / P(z)$ is meromorphic in $|z|<1$ and haw only
fiction many pols in $|z| \leq 1-\alpha \mid p e$.
hance $P(0)=1, Q(z)$ is analytic al 0 . Thus by Cauchy's
formula we get $g(x)=\operatorname{coff}\left[z^{n}\right] Q(z)$ as
$q(n)=\frac{1}{2 \operatorname{in}} \int Q(z) \frac{d t}{z^{n+1}}$
Hemigral beingraken along uncle a pound the origin. pithaendy small enlarge the
aide to heaume $(z)=0.8$ We observe that $P(z)$ has a ump 0

$$
q(n)=\frac{1}{s P^{\prime}(s)} S^{-n}+O\left(R^{-n}\right) .
$$

```
p ( n ) \sim n \operatorname { l o g } n \text { and } p ( n ) < ( n + 1 ) ^ { 2 } \text { for all } m \text { . The } p ( z ) \text { i}
```

```
p ( n ) \sim n \operatorname { l o g } n \text { and } p ( n ) < ( n + 1 ) ^ { 2 } \text { for all } m \text { . The } p ( z ) \text { i}
``` ant raking the isidus sitevoent of the pole into account, in get


\section*{GRAY CODE FUNCTION}
\[
\sum_{0 \leqslant k \leqslant n}\binom{n}{k}(-1)^{n-k} g_{k}, g_{n}=2 g_{\left[\frac{n}{2}\right]}+\frac{1-(-1)^{r q_{1}}}{2}
\]
```

17/12/94.
On the gray code function
A pprtem of Francinclarke

```

```

    (D) se= =0 1, 11,10, 110, 111, 105, 100, 100, ,100, 1111, 40.
    then
G(z)=\sumg(l)\mp@subsup{z}{}{n}
The uberpetation woytuwates
\mp@subsup{a}{n}{}=\mp@subsup{\sum}{k=0}{m}(-1\mp@subsup{)}{}{n-k}($$
\begin{array}{l}{n}\\{k}\end{array}
$$)g(t)
are}\begin{array}{llllllllll}{\frac{n}{n}}\&{0}\&{1}\&{2}\&{3}\&{4}\&{5}\&{6}\&{7}<br>{\mp@subsup{a}{n}{\prime}}\&{0}\&{1}\&{1}\&{-4}\&{12}\&{-28}\&{52}\&{-80}

```


```

    I% mamen) (H.yy
    we lue.
        A(z)=\frac{1}{1+z}G(\frac{z}{1+z})
    ```


GRAY CODE FUNCTION: \(g_{n} \& g_{n-1}-g_{n}\)

\section*{GRAY CODE FUNCTION}
\[
a_{n}:=\sum_{0 \leqslant k \leqslant n}\binom{n}{k}(-1)^{n-k} g(k)
\]
\[
\frac{a_{n}}{(-2)^{n}}=\left[z^{n}\right] G\left(-\frac{z}{2-z}\right) \quad G(z):=\sum_{j \geqslant 0} \frac{2^{j} z^{2^{j}}}{1+z^{j+1}}
\]
\(n=43\) is the first exception that \(a_{n} /(-2)^{n}>0\)

\section*{GRAY CODE FUNCTION}
\[
a_{n}:=\sum_{0 \leqslant k \leqslant n}\binom{n}{k}(-1)^{n-k} g(k)
\]
\[
\frac{a_{n}}{(-2)^{n}}=-\frac{1}{2 \sqrt{2 \pi n}} \int_{-\infty}^{\infty} e^{-(v-n)^{2} /(2 n)} \sum_{3 \leqslant k \leqslant L_{n}+2} \frac{\sin \left(\frac{1}{2} v \pi\right)}{\cos \left(\frac{\pi v}{2^{k}}\right)} d v
\]

Asymptotics of \(\frac{a_{n}}{(-2)^{n} \sqrt{n}}\) remains open

\section*{OPEN PROBLEMS}

\section*{IN PF'S OEUVRES}

\section*{INTRACTABLE}
[PF44] (P762) \& [PF98] (P217): . . . ce qui donne lieu à la plus célèbre conjecture de l'informatique

\section*{\(\mathbf{P} \neq \mathbf{N P}\)}
\[
\text { [PF197]: }\left|\sum_{2 \leqslant k \leqslant n}\binom{n}{k} \frac{(-1)^{k}}{\zeta(k)}\right|=O\left(n^{\frac{1}{2}+\varepsilon}\right)
\]

\section*{\(\equiv\) Riemann Hypothesis}

RH is also connected to algorithm complexity (with Vallée \& Clement): [PF144] [PF157] [PF161]

\section*{SOLVED}
- [PF51] [PF69] [PF72] [PF108]: Height \& diameter of BSTs (Devroye, Reed, Drmota,...)
- [PF122]: height of quadtrees (Devroye)
- [PF112] [PF152]: Quicksort limit law (Fill, Janson, Devroye, Neininger, ...)
- [PF147] Max deg in planar triangulations (Gao, Wormald)
- [PF200] \((1-\lambda)^{-\frac{1}{3}}\) realizable by stochastic context-free grammar? (Banderier, Drmota)

\section*{SOLVED?}

\section*{[PF114] [PF132] [PF144] (with Vallée)}

Spectrum of the Euclid transfer operator
Beginning around 1994,
Underlying a series of papers Stating a set of conjectures seemingly proven in 2013 by Alkauskas
\[
\mathbf{G}_{s}[f](x):=\sum_{m \geqslant 1} \frac{1}{(m+x)^{2 s}} f\left(\frac{1}{m+x}\right)
\]

Philippe was interested in computing the spectrum
- for \(s=1\) : Euclid algorithm
- for \(s=2\) : Gauss reduction algorithm

\section*{CONJECTURES ON THE SPECTRUM OF \(\mathrm{G}_{s}\)}

\section*{For the Gauss-Kusmin-Wirsing operator \(\mathbf{G}:=\mathbf{G}_{1}\)}
- All eigenvalues \(\left|\lambda_{n}\right|\) are simple \& strictly \(\downarrow\)
- They alternate in sign: \((-1)^{n} \lambda_{n}>0\)
- \(\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{\lambda_{n+1}}=-\phi^{2} \quad \& \quad \lambda_{n} \sim(-1)^{n+1} \phi^{-2 n}\)

Alkauskas announced in 2013 a proof of the conjectures
arXiv 1210.4083: "In this work we prove an asymptotic formula for the eigenvalues of L. This settles, in a stronger form, the conjectures of D. Mayer and G. Roepstorff (1988), A. J. MacLeod (1993), Ph. Flajolet and B. Vallée (1995), ..."

He asked Brigitte if other experiments were performed. Then with Julien, more computations made by Philippe were found ...

\section*{STILL OPEN?}
- [PF207]: non-holonomicity of \(\cos \sqrt{n}, \cosh \sqrt{n}\)
- [PF204]: three-sided prudent polygons, \(g_{4}=1+\log _{2} 3\) ?
- [PF200]: Buffon machine for Euler's \(\gamma\) ?
- [PF191]: hidden word statistics, convergence rate to normality?
- [pF185]: Graeffe polynomials computable at a lower cost?
- [PF174]: motif statistics under more general models?
- [PF172]: robustness of interconnection in random graphs, finer properties like variance?

\section*{STILL OPEN?}
- [PF161]: trie statistics under general dynamic sources
- [PF157]: continued fractions \& comparison algorithms, many questions
- [PF144]: continued fraction algorithms, uniformity of quasi-power for MGF?
- [PF69]: linear worst-case time for tree-matching algorithms?
- [PF64]: ambiguity of context free languages, many questions
- [PF54]: collision resolution algorithms in random access systems, limit of stability?

(1)

WHAT TO DO WITH THE CAHIERS?

\section*{Cahiers}

\section*{Digital Forms}

\section*{Web Accessible?}

PolyPF
Project?```

