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Abstract

We consider sequences of random variables whose probability generating functions
have only roots on the unit circle, which has only been sporadically studied in the liter-
ature. We show that the random variables are asymptotically normally distributed if and
only if the fourth central and normalized (by the standard deviation) moment tends to 3, in
contrast to the common scenario for polynomials with only real roots for which a central
limit theorem holds if and only if the variance is unbounded. We also derive a representa-
tion theorem for all possible limit laws and apply our results to many concrete examples
in the literature, ranging from combinatorial structures to numerical analysis, and from
probability to analysis of algorithms.

MSC 2000 Subject Classifications: Primary 60C05, 30C15, 60F05; secondary 62E10, 62E20.
Key words: limit theorems, cumulant, Bessel functions, root-unitary polynomials, self-inversive
polynomials, distribution of coefficients, rank statistics, integer partitions, method of moments,
generating functions.

1 Introduction
The close connection between the location of the zeros of a function (or a polynomial) and the
distribution of its coefficients has long been the subject of extensive study; typical examples
include the order of an entire function and its zeros in Analysis, and the limit distribution
of the coefficients of polynomials when all roots are real in Combinatorics, Probability and
Statistical Physics. We address in this paper the situation when the roots of the sequence of
probability generating functions all lie on the unit circle. While one may convert the situation
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with only unimodular zeros to that with only real zeros by a suitable change of variables,
such root-unitary polynomials turn out to have many fascinating properties due mainly to the
boundedness of all zeros. In particular, we show that the fourth normalized central moments
are (asymptotically) always bounded between 1 and 3, the limit distribution being Bernoulli if
they tend to 1 and Gaussian if they tend to 3.

Although this class of polynomials does not have a standard name, we will refer to them
as, following [25] and for convention, root-unitary polynomials. Other related terms include
self-inversive (zeros are symmetric with respect to unit circle), reciprocal or self-reciprocal
(P .z/D znP .z�1/) or palindromic (aj D an�j ), uni-modular (all coefficients of modulus one),
etc., when P .z/D

P
06j6n ajzj is a polynomial of degree n.

Unit roots of polynomials play a very special and important role in many scientific and en-
gineering disciplines, notably in statistics and signal processing where the unit root test decides
if a time series variable is non-stationary. On the other hand, many nonparametric statistics
are closely connected to partitions of integers, which lead to generating functions whose roots
all lie on the unit circle. We will discuss many examples in Sections 4 and 5. Another fa-
mous example is the Lee-Yang partition function for the Ising model, which has stimulated a
widespread interest in the statistical-physical literature since the 1950’s.

While there is a large literature on polynomials with only real zeros, the distribution of the
coefficients of root-unitary polynomials has only been sporadically studied; more references
will be given below. It is well known that for polynomials with nonnegative coefficients whose
roots are all real, one can decompose the polynomials into products of linear factors, implying
that the associated random variables are expressible as sums of independent Bernoulli random
variables. Thus one obtains a Gaussian limit law for the coefficients if and only if the variance
tends to infinity; see Pitman’s survey paper [38] for more information and for finer estimates;
see also [4, 18]. A representative example is the Stirling numbers of the second kind for which
Harper [20] showed that the generating polynomials have only real roots1; he also established
the asymptotic normality of these numbers by proving that the variance tends to infinity. For
more examples and information on polynomials with only real roots, see [6], [38] and the
references therein. See also [18], [21], [41] for different extensions.

Our first main result states that if we restrict the range where the roots of the polynomials
Pn.z/ can occur to the unit circle jzj D 1, then the asymptotic normality of Xn defined by the
coefficients is determined by the limiting behavior of its fourth normalized central moment.
Throughout this paper, write X �n WD .Xn�E.Xn//=

p
V.Xn/.

Theorem 1.1. Let fXng be a sequence of discrete random variables whose probability gener-
ating functions E.zXn/ are polynomials of degree n with all roots �j lying on the unit circle
j�j j D 1. Then the following properties hold.

– (Bounds for the fourth normalized central moment)

1 6 E
�
X �n
�4
< 3 .n > 1/: (1)

– (Asymptotic normality) The sequence of random variables fX �n g converges in distribution
(and with all moments) to the standard normal law N .0;1/ if and only if

E
�
X �n
�4
! 3 .n!1/: (2)

1The fact that the Stirling polynomials (of the second kind) have only real roots had been known long before
Harper [20]; see for example [14]; in addition, Bell [3] wrote (without providing reference) that all results of
d’Ocagne’s paper [14] were already obtained thirty years before him by a number of English authors.
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– (Asymptotic Bernoulli distribution) The sequence fX �n g converges to Bernoulli random vari-
able assuming the two values �1 and 1 with equal probabilities if and only if

E
�
X �n
�4
! 1 .n!1/: (3)

This theorem implies that Gaussian and Bernoulli distributions are in a certain sense ex-
tremal limit laws for the distribution of Xn, maximizing and minimizing asymptotically the
value of the fourth moment E

�
X �n
�4, respectively, with other limit laws lying in between.

If we define the kurtosis of a distribution X by2

Kurt.X / WD
E.X �E.X //4

V.X /2
; (4)

then the theorem states that the kurtosis of Xn always lies between 1 and 3, and whether the
limit law is normal or Bernoulli depends on the limiting kurtosis being 3 or 1. As can be seen
by applying the Cauchy-Schwarz inequality, the kurtosis of a random variable is always greater
than or equal to 1, but can be arbitrarily large in general. Note that the same kurtosis condition
(1) for asymptotic normality also appeared previously in a completely different context in [35].

While most previous papers dealing with root-unitary polynomials require to check all mo-
ments when the limit law is normal, our proof here relies instead on a closer examination of the
root structure, leading particularly to the optimal conditions.

A standard example where a Gaussian limit law arises is the number of inversions in random
permutations (or Kendall’s � -statistic)

P.n
2/
.z/D

Y
16k6n

1C zC�� �C zk�1

k
:

A straightforward calculation shows that the kurtosis has the form

3�
9.6n2C15nC16/

25n.n�1/.nC1/
;

which implies the asymptotic normality by Theorem 1.1; see [16], Section 4 for more details
and examples.

On the other hand, a Bernoulli limit law results from the simple example

P2n.z/D
1C z2n

2
:

It is then natural to ask to which limit laws other than normal and Bernoulli can the sequence
of random variables X �n converge. The simplest such example is the uniform distribution

P2n.z/D
1C zC z2C�� �C z2n

2nC1
;

or, more generally, the finite sum of uniform distributions.
Observe that the moment generating functions of the above three distributions have the

following representations.

2This definition of kurtosis differs from the usual one by a factor of �3.
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– Normal distribution: es2=2;

– Bernoulli distribution (assuming˙1 with equal probability):

esC e�s

2
D cos.is/D

Y
k>1

�
1C

4s2

.2k�1/2�2

�
I

– Uniform distribution (with zero mean and unit variance):

1

2
p

3

Z p3

p
3

exs dx D
sin.
p

3is/
p

3is
D

Y
k>1

�
1C

3s2

k2�2

�
:

Here we used the well-known expansions (see [48])

coss D
Y
k>1

�
1�

4s2

.2k�1/2�2

�
; and

sins

s
D

Y
k>1

�
1�

s2

k2�2

�
:

We show that these are indeed special cases of a more general representation theorem for the
limit laws.

Theorem 1.2. Let fXng be a sequence of random variables whose probability generating func-
tions are polynomials with only roots of modulus one. If the sequence fX �n g converges to some
limit distribution X , then the moment generating function of X is finite and has the infinite-
product representation

E.eX s/D eqs2=2
Y
k>1

�
1C

qk

2
s2
�
; (5)

where q and the sequence fqkg are all non-negative numbers such that

qC
X
k>1

qk D 1:

The above examples show that qk D
8

�2.2k�1/2
for Bernoulli distribution and qk D

6
�2k2 for

the uniform distribution. More examples will be discussed below.
It remains open to characterize infinite-product representations of the form (5) that are

themselves the moment generating functions of limit laws of root-unitary polynomials. On
the other hand, many sufficient criteria for root-unitarity have been proposed in the literature;
see, for example, the books [33, 45] and the recent papers [29, 46] for more information and
references.

This paper is organized as follows. We first prove Theorem 1.1 in the next section when n

is even, and then modify the proof to cover polynomials of odd degrees. Theorem 1.2 is then
proved in Section 3. We then apply the results to many concrete examples from the literature:
Section 4 for normal limit laws and Section 5 for non-normal laws. A very simple and effective
means (first used by Euler) of computing the zeros of the limiting moment generating function
is sketched in Appendix.
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2 Moments and the two extremal limit distributions
For convenience, we begin by considering (general) polynomials of even degree with all their
roots lying on the unit circle

P2n.z/D
X

06k62n

pkzk ;

where pk > 0. To avoid triviality, we assume that not all pk’s are zero. Observe that if j�j D 1

and P .�/D 0, then P .�/D 0. If �D 1, then its multiplicity must be even since all other roots
can be grouped in pairs and are symmetric with respect to the real line. Thus our polynomials
can be factored as

P2n.z/D
Y

16j6n

.z��j /.z��j /;

where j�j j D 1 for j D 1; : : :n. This factorization implies that root-unitary polynomials enjoy
several properties.

Lemma 2.1. A root-unitary polynomial of even degree 2n is self-inversive and self-reciprocal
(or palindromic), namely,

pn�k D pnCk .0 6 k 6 n/:

Proof. By replacing z by 1=z, we getX
06k62n

p2n�kzk
D z2nP2n.1=z/D

Y
16j6n

.1� z�j /.1� z�j /

D

Y
16j6n

.z��j /.z��j /D P2n.z/D
X

06k62n

pkzk :

Taking the coefficients of zk on both sides, we obtain p2n�k Dpk for 06 k 6 2n, which proves
the lemma.

2.1 Random variables, moments and cumulants
Since the coefficients of P2n.z/ are nonnegative, we can define a random variable X2n by

E.zX2n/D
P2n.z/

P2n.1/
:

For convenience, we write �j D ei�j since j�j j D 1. Then

.z��j /.z��j /D 1�2z cos�j C z2:

It follows that

E.zX2n/D
Y

16j6n

1�2z cos�j C z2

2.1� cos�j /
: (6)

Note that �j 6D 0 for 1 6 j 6 n since P2n.1/ > 0.
It turns out that the mean values of such random variables are identically n.

Lemma 2.2. For n > 1

E.X2n/D n: (7)
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Proof. By (6), take derivative with respect to z and then substitute z D 1.

The relation (7) indeed holds more generally for self-inversive polynomials; see, for exam-
ple, [45].

Corollary 2.3. All odd central moments of X2n are zero

E
�
X2n�n

�2mC1
D 0 .mD 0;1; : : : /:

Proof. This follows from the symmetry of the coefficients pk .

For even moments, we look at the cumulants, which are defined as

E.e.X2n�n/s/D exp

0@X
m>1

�m.n/

m!
sm

1A ;
where �2mC1.n/D 0.

Lemma 2.4. The 2m-th cumulant �2m.n/ of X2n is given by

�2m.n/D .2m/!
X

16k6m

.�1/k�1

k2k
hm;kSn;k .m > 1/; (8)

where 22k sinh2k.s=2/D
P

m>k hm;ks2m, with hk;k D 1, and

Sn;k WD

X
16j6n

1

.1� cos�j /k
:

Proof. By (6), we have

log
1�2es cos�C e2s

2.1� cos�/
D sC log

 
1C2

sinh2.s=2/

1� cos�

!
:

Thus

logE.e.X2n�n/s/D
X

16j6n

log

 
1C2

sinh2.s=2/

.1� cos�j /

!
;

which implies (8).

2.2 Variance and kurtosis
In particular, we obtain, from (8),

�2
n WD V.X2n/D �2.n/D

X
16j6n

1

1� cos�j

: (9)

Lemma 2.5. The variance satisfies the inequalities

n

2
6 �2

n 6 n2: (10)
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Proof. The lower bound follows from (9) and the inequality 1� cos�j 6 2. The upper bound
is also straightforward

V.X2n/D
1

P2n.1/

X
06k62n

pk.k�n/2 6 n2;

which shows that the distance between any root of P2n.z/ to the point 1 is always larger than
c=n, where c > 0 is an absolute constant.

On the other hand, by the elementary inequalities

2

�2
t2 6 1� cos t 6

t2

2
.t 2 Œ��;��/; (11)

we have

2 6
�2

nP
16j6n�

�2
j

6
�2

2
:

We now turn to the fourth central moment. Define

!n WD
Sn;2

S2
n;1

D
1

�4
n

X
16j6n

1

.1� cos�j /2
: (12)

Lemma 2.6. .i/ For n > 1,

1 6 Kurt.X2n/6 3�
1

2�2
n

< 3: (13)

.ii/

Kurt.X2n/! 3 iff !n! 0: (14)

Proof. By definition and by (8),

Kurt.X2n/D 3C
�4.n/

�4
n

D 3C��2
n �3!n:

Now

��2
n �3!n D�

1

�4
n

X
16j6n

2C cos�j

.1� cos�j /2
6 �

1

2�4
n

X
16j6n

1

1� cos�j

D�
1
2
��2

n < 0;

proving the upper bound of (13). On the other hand, since 1=�n 6
p

2=n (by (10)), we see that
(14) also holds. It remains to prove the lower bound of (13), which results directly from the
Cauchy-Schwarz inequality

1D E
�

X2n�n

�n

�2

6

 
E
�

X2n�n

�n

�4
!1=2

:
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By (11), we can replace the condition !n! 0 by

X
16j6n

��4
j D o

 � X
16j6n

��2
j

�2

!
:

This means that whether the limit law is normal depends on how slow the unit roots approach
unity. Roughly, if �j does not tend to zero too fast, say �j�

p
j=n, then the limit law is always

normal; see Figures 1–7 for an illustration. On the other hand, the condition Kurt.Xn/! 3 is
equivalent to �4.n/=�

2
2.n/! 0; the latter condition is in many cases easier to manipulate; see

Section 4.
Note that (13) proves (1) when n is even.

2.3 Estimates for the moment generating functions

Lemma 2.7. For all s 2 C such that jsj6 minf�n;!
�1=4
n g=4, we have

E.e.X2n�n/s=�n/D exp
�

s2

2
CO

�
jsj3

�n

C!njsj
4

��
: (15)

Proof. By (6),

logE.eX2ns=�n/D
X

16j6n

log
�

1C .es=�n �1/C
.es=�n �1/2

2.1� cos�j /

�
Note that, by (9),

�2
n > max

16j6n

1

1� cos�j

:

From the definition (12) of !n, we also have

1

�4
n

max
16j6n

1

.1� cos�j /2
6 !n;

which means that

max
16j6n

1

1� cos�j

6 �2
n

p
!n: (16)

Thus ˇ̌̌̌
es=�n �1C

.es=�n �1/2

2.1� cos�j /

ˇ̌̌̌
6 e2jsj=�n

�
jsj

�n

Cjsj2
p
!n

�
Note that for s satisfying our assumption jsj 6 minf�n;!

�1=4
n g=4 the right-hand side does not

exceed e1=2.1=4C1=42/ < 1 . Thus we can use the Taylor expansion of log.1Cw/ and obtain

log
�

1C .es=�n �1/C
.es=�n �1/2

2.1� cos�j /

�
D

s

�n

C
s2

2�2
n .1� cos�j /

CO

�
jsj3

�3
n .1� cos�j /

C
jsj4

�4
n .1� cos�j /2

C
jsj6

�6
n .1� cos�j /3

�
:

By (16)
jsj6

�6
n .1� cos�j /3

6
jsj6
p
!n

�4
n .1� cos�j /2

:
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It follows, after summing over all j , that

logE.eX2ns=�n/D
s2

2
C

ns

�n

CO

�
jsj3

�n

C .jsj4Cjsj6
p
!n/!n

�
:

Now if jsj6 minf�n;!
�1=4
n g=4, then !3=2

n jsj
6 6 !njsj

4=16, and this proves (15).

Lemma 2.8. For s 2 R, the inequality

E.e.X2n�n/s=�n/6 exp
�

3
2

s2e2s=�n

�
(17)

holds.

Proof. By (6) and the elementary inequality 1Cy 6 ey for real y, we obtain

E.zX2n/6
Y

16j6n

exp
�

z�1C
.z�1/2

2.1� cos�j /

�
D en.z�1/C�2

n.z�1/2=2:

Thus

E.e.X2n�n/s=�n/6 exp
�

n

2�2
n

s2es=�nC
s2

2
e2s=�n

�
;

and (17) follows from the inequality n=�2
n 6 2.

2.4 Normal limit law
We now prove the second part of Theorem 1.1 in the case of polynomials of even degree,
namely, f.Xn�n/=�ng converges in distribution and with all moments to the standard normal
distribution if and only if

Kurt.X2n/D E
�

X2n�n

�n

�4

! 3:

Proof. Consider first the sufficiency part. By (14), !n! 0, and we can apply the estimate (15),
implying the convergence in distribution of .X2n�n/=�n to N .0;1/.

On the other hand, by Lemma 2.8,

E.e.X2n�n/s=�n/D
X
m>0

�
X2n�n

�n

�2m
s2m

.2m/!
6 e

3
2

s2e2s=�n

:

Taking s D 1, we conclude that all normalized central moments of X2n are bounded above by

E
�

X2n�n

�n

�2m

6 .2m/!e
3
2

e2=�n

:

Thus we also have convergence of all moments.
For the necessity, we see that if f.X2n�n/=�ng converges in distribution to N .0;1/, then

the fact that the moments of .X2n�n/=�n are all bounded implies that all the normalized central
moments of X2n converge to the moments of the standard normal distribution; in particular, the
kurtosis converges to 3.
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2.5 Bernoulli limit law
We now examine the case when the fourth moment converges to the smallest possible value,
that is

Kurt.X2n/! 1: (18)

Note that

V
�

X2n�n

�n

�2

D E

 �
X2n�n

�n

�2

�1

!2

D E
�

X2n�n

�n

�4

�1:

If (18) holds, then by Chebyshev’s inequality, we see that

P
�

X2n�n

�n

2 .�1� ";�1C "/
[
.1� ";1C "/

�
! 1;

for any " > 0. By symmetry of the random variable X2n�n

P
�

X2n�n

�n

2 .�1� ";�1C "/

�
D P

�
X2n�n

�n

2 .1� ";1C "/

�
:

We conclude that the distributions of .X2n� n/=�n converge to a Bernoulli distribution that
assumes the two values 1 and �1 with equal probability.

2.6 Polynomials of odd degree
To complete the proof of Theorem 1.1, we now address the situation of odd-degree polynomials.

Assume Q2n�1.z/ is a root-unitary polynomial of degree 2n� 1 with non-negative coeffi-
cients. If we multiply it by the factor 1C z, then the resulting polynomial

P2n.z/D .1C z/Q2n�1.z/

remains root-unitary with non-negative coefficients. This means that the moment generat-
ing functions of the corresponding random variables E.eY2n�1s/ WDQ2n�1.e

s/=Q2n�1.1/ and
E.eX2ns/ WD P2n.e

s/=P2n.1/ are connected by the identity

E.eX2ns/D
1C es

2
E.eY2n�1s/:

This leads to the relation

X2n
d
D Y2n�1CB; (19)

where B is independent of Y2n�1 and takes the values 0 and 1 with equal probability. Thus

E.Y2n�1/D E.X2n/�
1
2
D n� 1

2
;

V.Y2n�1/D V.X2n/�
1
4
D �2

n �
1
4
; (20)

and
E.Y2n�1�E.Y2n�1//

4
D E.X2n�n/4� 3

2
�2

n C
5

16
: (21)

Thus we obtain

Kurt.Y2n�1/6
�4

n

.�2
n �

1
4
/2

Kurt.X2n/�

3
2
�2

n �
5

16

.�2
n �

1
4
/2
;
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which, by (13), is bounded above by

�4
n

.�2
n �

1
4
/2

�
3�

1

�2
n

�
�

3
2
�2

n �
5

16

.�2
n �

1
4
/2
D 3�

1

�2
n

�
6�2

n �1

�2
n .4�

2
n �1/2

6 3���2
n < 3:

Thus the kurtosis is bounded above by 3; the lower bound follows from the same Cauchy-
Schwarz inequality used in the even-degree cases.

On the other hand, since (again by (19))

X2n�E.X2n/p
V.X2n/

d
D

p
V.Y2n�1/p
V.X2n/

�
Y2n�1�E.Y2n�1/p

V.Y2n�1/
C

B� 1
2p

V.X2n/
;

we have, by (20),

X2n�E.X2n/p
V.X2n/

d
D

Y2n�1�E.Y2n�1/p
V.Y2n�1/

�
1CO

�
1
p

n

��
CO

�
��1

n

�
: (22)

The last identity implies that both sides converge to the same limit law.
Assume that the kurtosis of Y2n�1 satisfies

Kurt.Y2n�1/! 3:

Then, by (21), we obtain

Kurt.X2n/D

�
V.Y2n�1/

V.X2n/

�2

Kurt.Y2n�1/CO
�
��1

n

�
:

Thus the left-hand side also tends to 3 and, consequently, X2n is asymptotically normally dis-
tributed. The asymptotic distribution of X2n then implies, by (22), that of Y2n�1.

The proof for the Bernoulli case is similar and is omitted.

3 The infinite-product representation for general limit laws
We first prove Theorem 1.2 in this section, and then mention some of its consequences.

3.1 Proof of Theorem 1.2
The proof of Theorem 1.2 relies on the Hadamard factorization theorem (see [48, Ch. 8]; see
also [34] for a similar context). Indeed, assume that .X2n�n/=�n converges in distribution to
some limit law X , then the inequality (17) implies thatˇ̌

E.eX s/
ˇ̌
6 e3jsj2=2 .s 2 C/:

In other words, it is an entire function of order 2. Hadamard’s factorization theorem then
implies that such a function can be represented as an infinite product

E.eX s/D eAs2CBs
Y
�

�
1�

s

�

�
es=�;

11



where � ranges over all zeros of the function of the left-hand side. On the other hand, the fact
that all zeroes of the functions E.e.X2n�n/s=�n/ are symmetrically located on the imaginary line
implies the same property for E.eX s/. This yields

E.eX s/D eAs2CBs
Y
k>1

�
1C

s2

t2
k

�
;

for some real sequence tk > 0. Now E.X /D 0 implies that B D 0. Also E.X 2/D 1 leads to

AC
X
k>1

t�2
k D 1:

Denoting by q D 2A and qk D 2=t2
k

, we obtain the representation (5).

3.2 An alternative proof of Theorem 1.2
We give in this subsection an elementary proof that does not rely on complex analysis. It suf-
fices to consider only the sequence of polynomials of even degree. The symmetry of distribu-
tion of the limit law X follows from the symmetry of coefficients of polynomials P2n.z/. The
inequality (17) for the moment generating function of .X2n�n/=�n implies that the moment
generating function of the limit distribution X is also finite, and thus X is uniquely determined
by its moments. This means that the sequence f.X2n�n/=�ng converges in distribution to X

as n!1 if and only if

E
�

X2n�n

�n

�m

! E.X m/ .m > 0/;

as n!1. Thus the cumulant N�m.n/ of .X2n�n/=�n of order m also converges to the cumulant
of X of order m for m > 1. Note that N�2mC1.n/D 0 for m > 0 and (see (8))

N�2m.n/D �
�2m
n �2m.n/D

.2m/!

�2m
n

X
16k6m

.�1/k�1

k2k
hm;kSn;k :

Since Sn;k 6 �2k
n , we the deduce that

N�2m.n/

.2m/!
D
.�1/m�1

m2m
�
Sn;m

�2m
n

CO.��2
n /;

for any fixed m. Now �n!1, we conclude that

�2m

.2m/!
D lim

n!1

N�2m.n/

.2m/!
D
.�1/m�1

m2m
lim

n!1

Sn;m

�2m
n

: (23)

We now introduce the distribution function

Fn.x/ WD
X
1

�2
n.1�cos�j /

6x

1

�2
n .1� cos�j /

;

with support in the unit interval. Then

Sn;N

�2N
n

D

Z 1

0

xN�1 dFn.x/:
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The fact that the left-hand side of the above expression has a limit (23) implies that the corre-
sponding sequence of distribution functions Fn.x/ also converges weakly to some limit distri-
bution function F.x/. Therefore

lim
n!1

Sn;N

�2N
n

D

Z 1

0

xN�1 dF.x/;

which implies that the cumulants of the limit distribution X can be expressed as

N�2m

.2m/!
D lim

n!1

N�2m.n/

.2m/!
D
.�1/m�1

m2m
lim

n!1

Sn;m

�2m
n

D
.�1/m�1

m2m

Z 1

0

xm�1 dF.x/:

It follows that

E.eX s/D exp

0@X
m>1

.�1/m�1s2m

m2m

Z 1

0

xm�1 dF.x/

1A
D exp

 Z 1

0

log
�
1Cxs2=2

�
x

dF.x/

!
:

(24)

Note that the distribution function Fn.x/ has no more than b1="c points of discontinuity in
the interval Œ";1� if " > 0. Thus the weak limit F.x/ of the sequence of Fn.x/ has the same
property: F.x/ has no more than b1="c points of discontinuity qk in the interval Œ";1�, where
qk is the limit of certain points of discontinuity of function Fn.x/. This means that F.x/ is a
distribution function of the form

F.x/D

(
qC

P
qk6x qk ; if x > 0,

0; if x < 0;

where qk > 0 with
P

k>1 qk D 1�q. Here q equals the jump of the function F.x/ at zero. ThusZ 1

0

log
�
1Cxs2=2

�
x

dF.x/D
q

2
s2
C

X
k>1

log
�
1C

qk

2
s2
�
:

Substituting this expression into (24), we obtain (5). This completes the proof of Theorem 1.2.

3.3 Implications of the infinite-product factorization
By (5),

�2m D .2m/!
.�1/m�1

m2m

X
j>1

qm
j .m > 1/:

This yields the sign-alternating property for the sequence f�2mg.

Corollary 3.1. If X is not the normal law, then all even cumulants are non-zero and have
alternating signs

.�1/m�1�2m > 0 .m > 1/:

Corollary 3.2.
1 6 E.X 4/6 3:

13



Proof. By (5),

E.X 4/D 3

�
1�

X
j>1

q2
j

�
; (25)

which implies the upper bound; the lower bound follows directly from Cauchy-Schwarz in-
equality 1D E.X 2/6

p
E.X 4/.

Corollary 3.3. The standard normal distribution is the only distribution for which the fourth
moment reaches the maximum value 3 in the class of distributions that are the limits of random
variables whose probability generating functions are root-unitary polynomials ; similarly, the
Bernoulli distribution assuming ˙1 with probability 1=2 each is the only distribution whose
fourth moment reaches the minimum value 1 in the same class of distributions.

Proof. Note that the standard normal law corresponds to the choices q D 1 and qj � 0, the first
part of the corollary follows then from (25).

For the lower bound, assume that Y is a symmetric distribution such that E.Y / D 0 and
E.Y 2/D E.Y 4/D 1. Then

V.Y 2/D E.Y 2
�1/2 D E.Y 4

�2Y 2
C1/D 0:

This means that Y can only assume two values P.Y 2 f�1;1g/D 1. The symmetry of Y now
implies that Y assumes the values 1 and �1 with equal probabilities.

Remark 3.4. The uniqueness of the standard normal and Bernoulli laws also implies that
a sequence of random variables fXng converges to normal or Bernoulli if and only if their
kurtoses converge to 3 or to 1, respectively. This provides an alternative proof of the last two
statements of Theorem 1.1.

4 Applications. I. Normal limit law
We consider in this section applications of our results in the situations when the limit law is
normal.

4.1 A simple framework
Our starting point is the polynomials of the form

Pn.z/D
.1� zb1/.1� zb2/ � � �.1� zbN /

.1� za1/.1� za2/ � � �.1� zaN /
; (26)

where aj , bj are non-negative integers that may depend themselves on N and

n WD
X

16j6N

.bj �aj /:

We assume that Pn.z/ has only nonnegative coefficients. Such a simple form arises in a large
number of diverse contexts some of which will be examined below. In particular, it was studied
in the recent paper [9].

14



We now consider a sequence of random variables Xn defined by

E.zXn/D
Pn.z/

Pn.1/
:

We have
Pn.e

s/

Pn.1/
D exp

�X
m>1

�N;m

m!
sm
�
;

where

�N;m D
.�1/m

m
Bm

X
16j6N

.bm
j �am

j / .m > 1/;

the Bm’s being the Bernoulli numbers. Note that B2mC1 D 0 for m > 1.
An application of Theorem 1.1 yields the following result.

Theorem 4.1. The sequence of the random variables .Xn�E.Xn//=
p
V.Xn/ converges to the

standard normal distribution if and only if the following cumulant condition holds

lim
N!1

�N;4

�2
N;2

D
144

120
lim

N!1

P
16j6N .b

4
j �a4

j /�P
16j6N .b

2
j �a2

j /
�2 D 0: (27)

The cumulant condition largely simplifies the sufficient condition given in [9], where they
require the convergence of all cumulants (following the proof used in [42])

�N;2m

�m
N;2

! 0 .m > 2/:

See also [23] for a related framework.

4.2 Applications of Theorem 4.1
Theorem 4.1 can be applied to a large number of examples. Many other examples related to
Poincaré polynomials, rank statistics, and integer partitions can be found in the literature; see,
for example, [1, 2, 13, 50] and the references therein.

Inversions in permutations The generating polynomial for the number of inversions in a
permutation of n elements (or Kendall’s � statistic) is given by

Y
16j6N

1� zj

1� z
:

In this case, the cumulant condition (27) has the formP
16j6N .j

4�1/�P
16j6N .j

2�1/
�2 DO.N �1/:

Thus the number of inversions in random permutations is asymptotically normally distributed;
see [16], [42]; see also [12, 30, 32].
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Number of inversions in Stirling permutations In this case, we have the polynomial (see
[37]) Y

16j6N

1� zrC.j�1/r2

1� zr
.r > 1/;

and the cumulant condition (27) is of order

�N;4

�2
N;2

D

P
06j<N

�
.rCj r2/4�1

��P
06j<N

�
.rCj r2/2�1

��2 DO.N �1/:

Consequently, the number of inversions in random Stirling permutations is asymptotically nor-
mally distributed.

Gaussian polynomials The generating function for the number p.n;m;j / of partitions of
integer j into at most m parts, each 6 n, is given by (see e.g. [2])X

06j6N m

p.N;m;j /zj
D

Y
16j6N

1� zjCm

1� zj
:

Then the cumulant condition has the formP
16j6N ..mCj /4�j 4/�P

16j6N ..mCj /2�j 2/
�2 DO

�
1

m
C

1

N

�
:

This means that the coefficients of Gaussian polynomials are normally distributed if both
N;m!1; see [31, 47]. More examples can be found in [2].

Mahonian statistics In this case the polynomials are equal to the general q-multinomial co-
efficients (see [7] and [8])

Pn.z/D

Q
16j6a1C���Cam

.1� zj /Q
16j6m

Q
16i6aj

.1� zi/
;

where nD
P

26k6m ak

P
16j<k aj . By symmetry, we can assume that a1 > � � �> am. Then the

cumulant condition (27) becomesP
16j6a1C���Cam

i4�
P

16j6m

P
16i6aj

i4�P
16j6a1C���Cam

i2�
P

16j6m

P
16i6aj

i2

�2
D

f4.a1C�� �Cam/�
P

16j6mf4.aj /�
f2.a1C�� �Cam/�

P
16j6mf2.aj /

�2 ;
where f2.x/D .2x3C 3x2Cx/=6 and f4.x/D .6x5C 15x4C 10x3�x/=30. By induction,
.a1C�� �Cam/

k �ak
1 � � � ��ak

m is nonnegative and is nondecreasing in k > 1. Thus the right-
hand side is bounded above by

9 �31

30

.a1C�� �Cam/
5�a5

1�� � ��a5
m�

.a1C�� �Cam/3�a3
1�� � ��a3

m

�2
DO

 
a1C�� �CamP

16i<j6m aiaj

!
DO

�
a1C�� �Cam

a1.a2Ca3C�� �Cam/

�
DO

�
1

a2Ca3C�� �Cam

C
1

a1

�
;
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where we use the estimates

.a1C�� �Cam/
3
�a3

1�� � ��a3
m � .a1C�� �Cam/

X
16i<j6m

aiaj ;

.a1C�� �Cam/
5
�a5

1�� � ��a5
m � .a1C�� �Cam/

3
X

16i<j6m

aiaj :

Thus we arrive at the same conditions as those given in [7].

a1!1 and a2Ca3C�� �Cam!1;

for the asymptotic normality of the coefficients of Pn.z/ when a1 > a2 > � � � > am. See also
[13, pp. 128–129] for a closely related structure and results.

Generalized q-Catalan numbers The generating function has the form (see [19])Y
26j6N

1� z.m�1/NCj

1� zj
;

and the cumulant condition (27) also holdsP
26j6N

�
..m�1/N Cj /4�j 4

��P
26j6N

�
..m�1/N Cj /2�j 2

��2 6

P
26j6N .2mN /4�P

26j6N .m�1/2N 2
�2 DO

�
N �1

�
;

which means that the generalized q-Catalan numbers are asymptotically normally distributed,
uniformly for all m > 2. This was previously proved in [9]. For more information, see [19].

Sums of uniform discrete distributions Let Xn be the sum of N independent, integer-valued
random variables

Xn WD J1CJ2C�� �CJN ;

where Jk is a uniform distribution on the set f0;1;2; : : : ;dk�1gwith dk > 2, and nD
P

16j6N .dj�

1/. Then the corresponding probability generating function E.zXn/ is equal, up to a normalizing
constant, to

Pn.z/D
Y

16j6N

1� zdj

1� z
;

which means that Xn is asymptotically normal if and only ifP
16j6N .d

4
j �1/�P

16j6N .d
2
j �1/

�2 ! 0:

Since by our assumption dj > 2, we have dj �1� dj and thus we can simplify our necessary
and sufficient condition for asymptotic normality as

d4
1 Cd4

2 C�� �Cd4
N

.d2
1 Cd2

2 C�� �Cd2
N /

2
! 0 .N !1/: (28)

Note that dj here can depend on N . The continuous version of this problem with Jk being uni-
formly distributed on the intervals Œ0;dj � was considered in [36]. The corresponding necessary
and sufficient condition obtained in this paper was

max16j6N djq
d2

1 Cd2
2 C�� �Cd2

N

! 0

which is equivalent to condition (28).
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Number of inversions in bimodal permutations A permutation � D .s1;s2; : : : ;sn/ of n

numbers 1;2;3; : : : ;n is said to be of a shape .i;k� j ;j ; l/ if the first i numbers in the permu-
tation are decreasing s1 > s2 > � � �> si , the next k�j numbers are increasing siC1 > s2 > � � �>

siCk�j , then followed by j increasing and l decreasing numbers. Assume that � is chosen with
equal probability among all permutations of shape .i;k � j ;j ; l/. Then its number of inver-
sions becomes a random variable InD In.i;k�j ;j ; l/. The probability generating function of
In is, up to some constant, of the form (see [5])

Pn.i;k; l;j Iz/D z.
i
2/C.

j
2/

 Y
16�6i

1� zkC�

1� z�

! Y
16�6l

1� zkCiC�

1� z�

! Y
16�6j

1� zk�jC�

1� z�

!
:

The random variables In are asymptotically normally distributed ifPi
�D1..kC�/

4��4/C
Pl
�D1..kC iC�/4��4/C

Pj

�D1..k�j C�/4��4/�Pi
�D1..kC�/

2��2/C
Pl
�D1..kC iC�/2��2/C

Pj

�D1..k�j C�/2��2/
�2
! 0;

which is equivalent to

ik.kC i/3C l.kC i/.kC iC l/3Cj .k4�j 4/�
ik.kC i/C l.kC i/.kC iC l/Cj .k2�j 2/

�2 ! 0:

If we assume that the parameters i;j ;k; l are proportional to some parameter t , that is i D

b˛tc ;j D bˇtc ;k D b tc ; l D bıtc, where ˛;ˇ;;ı > 0 and ˛C  C ı D 1, then the above
condition is satisfied and as a consequence In is asymptotically normally distributed as t!1.
This fact has been proved in [5] by the method of moments.

Rank statistics Many test statistics based on ranks lead to explicit generating functions that
are of the form (26), and thus the corresponding limit distribution can be dealt with by the tools
we established. In particular, we have the following correspondence between test statistics and
combinatorial structures; see [22, 50] for more information.

Kendall’s � Inversions in permutations
Mann-Whitney test Gaussian polynomials

Jonckheere-Terpstra test Mahonian statistics

On the other hand, the Wilcoxon signed rank test (see [52]) leads to the probability gener-
ating function of the form Y

16j6N

1C zj

2
;

which admits a straightforward generalization to (see [50] for details)Y
16j6N

1C zaj

2
;

where the aj ’s can be any real numbers. When they are all nonnegative integers, we see,
by a similar argument leading to the condition (27), that the associated random variables are
asymptotically normally distributed if and only if

a4
1C�� �Ca4

N

.a2
1C�� �Ca2

N /
2
! 0;

18



Figure 1: Normalized histograms (left) of Kendall’s � statistic (multiplied by standard varia-
tion) for nD 5; : : : ;30 and the distributions of the zeros (right) for nD 20;40;60;80.

Figure 2: Normalized histograms (left) of Wilcoxon’s test statistic (multiplied by standard vari-
ation) for nD 3; : : : ;40 and the distributions of the zeros (right) for nD 10;20;50;100.

as N ! 1. In particular, this applies to Wilcoxon’s test (aj D j ) and to Policello and
Hettmansperger’s test (aj D minf2j ;N C 1g; [39]). See Figures 1–3 for an illustration of
the distribution of the coefficients and the distribution of the zeros.

4.3 Turán-Fejér polynomials
The class of polynomials we consider here (see (29) below) is of interest for several reasons.
First, they lead to asymptotically normally distributed random variables but do not have the
finite-product form (26). Second, they provide natural examples with non-normal limit laws
when the second parameter varies. Finally, they have a concrete interpretation in terms of the
partitioning cost of some variants of quicksort, one of the most widely used sorting algorithms;
see [10, 44].

Fejér [15] studied the Cesàro summation of the geometric series defined by

Fn;k.z/ WD
X

06j6n

Fj ;k�1.z/ .k > 1/;

with
Fn;0.z/ WD

X
06j6n

zj ;
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Figure 3: Normalized histograms (left) of Policello and Hettmansperger’s test statistic (mul-
tiplied by standard variation) for n D 3; : : : ;40 and the distributions of the zeros (right) for
nD 10;20;50;100.

and Turán [49] proved that all F
.k/

n;k
.z/ are root-unitary for 0 6 k 6 n. We characterize all

possible limit laws for the random variables defined via the coefficients of F
.k/

n;k
.z/ for 0 6 k 6

n.
By the relation

Fn;k.z/D Œw
n�

1

.1�w/kC1.1� zw/
;

where Œwn�f .w/ denotes the coefficient of wn in the Taylor expansion of f .w/, we have

F
.k/

n;k
.z/D Œwn�

1

.1�w/kC1
�

k!wk

.1� zw/kC1

D k!
X

06j6n�k

�
j Ck

k

��
n�j

k

�
zj :

Normalizing this polynomial, we obtain

Pn;k.z/ WD
X

06j6n�k

�
jCk

k

��
n�j

k

��
nCkC1

2kC1

� zj ; (29)

which gives rise to a sequence of probability generating functions of random variables, say
Zn;k . Note that

zkPn�k�1;k.z/D
X

k6j6n�k�1

�
j

k

��
n�1�j

k

��
n

2kC1

� zj ;

which arises in the analysis of quicksort using the median of 2kC1 elements; see [10, 44].

Lemma 4.2. For m > 0

E.Zm
n;k/D

X
06`6m

S.m;`/`!

�
kC`

k

��
nCkC1

2kC`C1

��
nCkC1

2kC1

� ; (30)

where S.m;`/ denotes the Stirling numbers of the second kind. In particular,

E.Zn;k/D
n�k

2
and V.Zn;k/D

.n�k/.nCkC2/

4.2kC3/
: (31)
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Proof. By (29), the relation

j m
D

X
06`6m

S.m;`/j � � �.j �`C1/;

and the combinatorial identityX
06j6n�k

�
j Ck

k

��
n�j

k

��
j

`

�
D

�
kC`

k

��
nCkC1

2kC`C1

�
;

(easily proved by convolution), we deduce (30).

Theorem 4.3. The random variables Zn;k are asymptotically normally distributed if and only
if both k and n�k tend to infinity. If 0 6 k DO.1/, then the limit law is a Beta distribution

Zn;k

n

d
�! Beta.k;k/:

If 1 6 ` WD n�k DO.1/, then the limit law is a binomial distribution

Zn;k

d
�! Binom.`I 1

2
/:

Proof. By (31), the variance tends to infinity if and only if n�k!1 (0 6 k 6 n). Also we
obtain, by (30),

E
�
Zn;k �

n�k
2

�4
V.Zn;k/2

�3D�
2.3n2C6nCk2C4kC6/

.n�k/.nCkC2/.2kC5/
DO

�
n

k.n�k/

�
:

The asymptotic normality then follows. We can indeed obtain a local limit theorem by straight-
forward calculations from (29).

When k DO.1/, we have, by (29),

E.Zm
n;k
/

nm
!
.kCm/!.2kC1/!

k!.2kCmC1/!
.m > 0/;

implying that the moment generating function of the limit law satisfies

E.eZks/D
.2kC1/!

k!

X
m>0

.kCm/!

m!.2kCmC1/!
sm
D
.2kC1/!

k!k!

Z 1

0

xk.1�x/kexs dx;

a Beta distribution. Note that we can express the moment generating function in terms of Bessel
functions as

E.e.Zk�1=2/s/D

�
is

4

��k�1=2

�.kC 3
2
/JkC 1

2
.is=2/D

Y
j>1

 
1C

s2

4�2
kC1=2;j

!
;

where J˛ denotes the Bessel function and the �˛;j ’s denote the positive zeros of J˛.z/ ar-
ranged in increasing order. By considering 2.Zk �

1
2
/
p

2kC3, we obtain (5) with qj D

2.2kC3/=�2
kC1=2;j

and kurtosis (see (4))

Kurt.Zk/D 3�
6

2kC5
;
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which lies between 9
5

and 3.
On the other hand, when ` WD n�k DO.1/, we have, by (30),

Pn;k.z/!

�
1C z

2

�`
;

a binomial distribution. Note that we have the factorization

E.e.X�`=2/s=
p
`=4/D

Y
j>1

�
1C

4s2

.2j �1/2�2`

�`
I

also this is a degenerate case because the degree n�k of Pn;k does not tend to infinity.

Figure 4: Normalized histograms (left) of Zn;k (scaled by standard variation) for n D 100

and k D 1; : : : ;99 (from inside out), and the distributions of the zeros (right) for nD 200 and
k D 5;50;100;150.

5 Applications II. Non-normal limit laws
In addition to the extremal cases of the Turán-Fejér polynomials, we consider in this section
more root-unitary polynomials whose coefficients lead to a limit distribution that is not Gaus-
sian.

5.1 Reimer’s polynomials
In the course of investigating the remainder theory of finite difference, Reimer [40] proved, as
a side result, that the polynomials

Rn;m.y/ WD
X

06j6n

�
n

j

�
yj

Z jC1

j

jt.t �1/ � � �.t �n�1/jm dt:

have only unit roots. We consider the distribution of the coefficients of Rn;m.y/.
For simplicity, we consider only mD 1 and write Rn DRn;1. Define the random variables

Xn by

E.yXn/ WD
Rn.y/

Rn.1/
:
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Let
Ak WD Œz

k �
z

log.1� z/
.k > 0/:

These numbers are (up to sign) known under the name of Cauchy numbers; see [11, pp. 293–
294]. See also the recent paper [26] for a detailed study of these numbers.

Lemma 5.1. For n > 1

E.yXn/D 12
X

06j6n

�
n

j

�
yn�j .1�y/jAjC2: (32)

Proof. We have

Rn.y/D
X

06j6n

�
n

j

�
.�1/nC1Cjyj

Z jC1

j

t.t �1/ � � �.t �n�1/dt

D .nC2/!.�1/nC1
X

06j6n

�
n

j

�
.�1/jyj

Z jC1

j

�
t

nC2

�
dt

D .nC2/!.�1/nC1ŒznC2�
X

06j6n

�
n

j

�
.�1/jyj

Z jC1

j

.1C z/t dt

D .nC2/!.�1/nC1ŒznC1�
X

06j6n

�
n

j

�
.�1/jyj .1C z/j

log.1C z/

D .nC2/!ŒznC1�
.1� .1� z/y/n

log.1� z/
: (33)

In particular

Rn.1/D .nC2/!Œz�
1

log.1� z/
D
.nC2/!

12
;

and (32) follows.

The sequence fAkg can be recursively computed by A0 D�1 and

Ak D�

X
06j<k

Aj

kC1�j
.k > 1/:

All Ak’s are positive except A0.

Lemma 5.2. The moments of Xn satisfy

E.X m
n /D

X
06k6m

QAkS.m;k/n.n�1/ � � �.n�kC1/ .m > 0/; (34)

where

QAk WD 12
X

06`6k

�
k

`

�
.�1/`A`C2: (35)

In particular,
E.Xn/D

n

2
; V.Xn/D

n

60
.4nC11/:
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Figure 5: Normalized histograms (left) of Reimer’s polynomials (scaled by standard variation)
for nD 1; : : : ;50 and the distributions of the zeros (right) for nD 10;50;100;150.

Proof. By taking m-th derivative with respect to y and then substituting y D 1 in (33), we
obtain

E.Xn.Xn�1/ � � �.Xn�mC1//D QAmn.n�1/ � � �.n�mC1/;

which yields (34) since by definition

E.X m
n /D

X
06k6m

S.m;k/E.Xn.Xn�1/ � � �.Xn�kC1//:

Theorem 5.3. The sequence of random variables fXn=ng converges in distribution to X whose
m-th moment equals QAm (defined in (35)).

Proof. By (34), E.X m
n / �

QAmnm. Since Ak D O.1=k/, we see that QAm D O.2m/, implying
that such a moment sequence determines uniquely a distribution.

The limit law has the moment generating function

E.eX s/D 12
X
m>0

sm

m!

X
06j6m

�
m

j

�
.�1/jAjC2

D 12es
X
j>0

AjC2

j !
.�s/j :

Note that Kurt.X /D 55
28

. It is less obvious how to characterize all zeros of E.eX s/. We sketch
in Appendix a simple idea due to Euler to compute the locations of the first few zeros.

When m > 2, the same arguments apply but the technicalities become more involved.

5.2 Chung-Feller’s arcsine law
The classical Chung-Feller theorem states that the number of positive terms Wn of the sums
Sn DX1C�� �CXn, where Xi takes˙1 with probability 1=2 each, has the probability

P.Wn D k/D

�
2k

k

��
2n�2k

n�k

�
4�n .k D 0; : : : ;n/:
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Figure 6: Normalized histograms (left) of Wn (scaled by standard variation) for nD 1; : : : ;50

and the distributions of the zeros of E.zWn/ (right) for nD 50;100;150;200.

The limit distribution is an arcsine law (see [17, ~III.4])

Wn

n

d
�!W; where P.W < x/D

2

�
arcsin

p
x:

The corresponding probability generating function is a polynomial with only unit roots.
Indeed, following the same proof as in [49], we can show that E.zWn/ is connected to Legendre
polynomials by the relation

E.zWn/D Œvn�
1p

.1�v/.1� zv/

D zn=2Legendren

�
z1=2C z�1=2

2

�
;

so that the root-unitarity of the left-hand side follows from the property that Legendre polyno-
mials have only real roots over the interval Œ�1;1�. Note that the moment generating function
of the arcsin law with zero mean and unit variance is given by the Bessel function

E.e.W �1=2/s=
p

2/D e�
p

2s

0@1C
X
k>1

�
2k

k

�
.s=
p

2/k

k!

1A
D J0.

p
2is/D

Y
j>1

 
1C

2s2

�2
0;j

!
;

where the �0;j ’s are the positive zeros of J0.z/. So we have (5) with q D 0 and qj D 4��2
0;j .

In a more general manner, from the Gegenbauer polynomials, one can also define the ran-
dom variables Wn by

E.zWn/D
1�

2˛Cn�1

n

� Œvn�
1

.1�v/˛.1� zv/˛

D

X
06j6n

�
˛Cj�1

j

��
˛Cn�j�1

n�j

��
2˛Cn�1

n

� zj .˛ > 0/;
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for which all coefficients are positive and E.zWn/ has only unit roots. The limit law W˛ can be
derived as in the bounded case of the Turán-Fejér polynomials

E.e.W˛�1=2/s/D

�
is

4

��˛C1=2

�.˛C1=2/J˛�1=2.is=2/

D

Y
j>1

 
1C

s2

4�2
˛C1=2;j

!
:

Note that the random variable 2
p

2˛C1.W˛�1=2/ has variance one and kurtosis 3�6=.2˛C

3/, which lies between 1 and 3 for ˛ > 0.
For more potential examples, see [24, Chapter 6]. See also [10] for many many polynomials

of the form

E.zYn/D
X

06j<r

pj

X
j6k<n

�
k

j

��
n�1�k

r�1�j

��
n

r

� zk ;

for a given probability distribution
P

06j<r pj D 1.

5.3 Uniform distribution

Figure 7: Normalized histograms (left) of Pn.z/ (scaled by standard variation) for nD 1; : : : ;50

and the distributions of the zeros (right) for nD 10;50;100;150.

The literature abounds with criteria for the root-unitarity of polynomials. Among these,
[27] proved that a complex polynomial P .z/ WD

P
06k6n akzk with ak D an�k is root-unitary

if
janj>

X
06j6n

jan�aj jI

see also [43]. In particular, if the coefficients of P .z/ are close to a constant, then all its roots
lie on the unit circle. For example, let Ej D j !Œzj �.cosh.z//�1 denote Euler’s numbers; then
the polynomial

Pn.z/D .�1/n
X

06j6n

�
2n

2j

�
E2jE2n�2jzj

D Œwn�
1

cos.
p
w/cos.

p
wz/

;
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is root-unitary (see [28]) with non-negative coefficients. See also [29] for more information
and other root-unitary polynomials. Observe that

.�1/n

.2n/!

�
2n

2j

�
E2jE2n�2j �

4nC2

�2nC2
;

as j ;n�j !1. Thus we can show that the random variables associated with the coefficients
of Pn.z/ will be close to uniform, and the limit law is also uniform. Details are omitted here.
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Appendix. Approximate zeros of the limiting moment gener-
ating function arising from Reimer’s polynomials
Let f0.s/ denote the moment generating function of the limit (centered) random variable X (in
Theorem 5.3, Section 5.1)

f0.s/ WD E
�
e.X�1=2/s

�
D 12

X
m>0

sm

m!

X
06j6m

�
m

j

�
.�1/jAjC22�mCj ;

where the sequence Ak is defined in Section 5.1. Since this function contains only even powers
in its Taylor expansion, we define

f .s/ WD f0.
p

s/D
X
m>0

ˇmsm
D

Y
k>1

�
1C

s

˛k

�
; (36)

where ˛1 < ˛2 < � � � is an increasing sequence and

ˇm WD
E.X �1=2/2m

.2m/!
D 12

X
06j62m

.�1/jAjC2

j !.2m�j /!22m�j
:

To obtain approximate numerical values of ˛k (see Watson’s classical treatise on Bessel func-
tions [51, ~15.5]), we start from computing the sequences �m, which is easily achieved by the
recurrence (by using (36))

�m D .�1/m�1mˇm�

X
16`<m

.�1/`ˇ`�m�`:

From this relation, we can compute successively the val-
ues of �m. Euler’s idea is based on the inequalities

�m > ˛
�m
1 and �mC1 <

�m

˛1

;

or
��1=m

m < ˛1 <
�m

�mC1

:

We then obtain the table on the right-hand side. More
calculations lead to

˛1 � 53:9107695922601406201974030 : : :

m �
�1=m
m �m=�mC1

1 30 86:8966

2 51:0580 58:4874

3 53:4231 54:9899

4 53:8107 54:1995

5 53:8883 53:9917

6 53:9055 53:9339

7 53:9093 53:9174

8 53:9104 53:9127

9 53:91068 53:9113

10 53:91075 53:9109

Once this value is determined, we proceed in a similar way by using the relations0@�m�

X
16j<k

˛�m
j

1A�1=m

< ˛k <
�m�

P
16j<k ˛

�m
j

�mC1�
P

16j<k ˛
�m�1
j

;
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for k D 1;2; : : : . We then obtain

˛2 � 185:8453702068 : : :

˛3 � 396:0710121154 : : :

˛4 � 684:8094715040 : : :

All numbers here are highly sensitive to numerical errors because �m decreases very fast.
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