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Abstract. Skylines emerged as a useful notion in database queries for selecting representative
groups in multivariate data samples for further decision making, multiobjective optimization, or
data processing, and the k-dominant skylines were naturally introduced to resolve the abundance
of skylines when the dimensionality grows or when the coordinates are negatively correlated. We
prove in this paper that the expected number of k-dominant skylines is asymptotically zero for large
samples when 1 ≤ k ≤ d − 1 under two reasonable (continuous) probability assumptions of the
input points, d being the (finite) dimensionality, in contrast to the asymptotic unboundedness when
k = d. In addition to such an asymptotic zero-infinity property, we also establish a sharp threshold
phenomenon for the expected (d− 1)-dominant skylines when the dimensionality is allowed to grow
with n, the sample size. Several related issues, such as the dominant cycle structures, the numerical
aspects, and the practical implications, are also briefly studied.
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1. Introduction. The last decade has undergone a drastic change of informa-
tion dissemination from Web 1.0 to Web 2.0, the most notable representative products
being YouTube and Facebook. Data have been generated in an unprecedented pace
and range, powerful search engines are indispensable, and screening useful or usable
information (via “sort engines”) is generally becoming more important than search-
ing and gathering. Skylines of multivariate data samples were introduced for selecting
representative groups in the database query literature by Börzsönyi, Kossmann, and
Stocker (see [7]) and had appeared in diverse areas under several different guises and
names, including Pareto optimality, efficiency, maxima, admissibility, elite, and sink ;
see [11, 12] and the references therein for more information. These diverse terms reveal
the importance of the use of skylines as an effective means of data summarization in
theory and in practice. Many different notions and variants of skylines have been pro-
posed in the literature, following the original paper [7]. In particular, the k-dominant
skylines were introduced by Chan et al. (see [9]) in situations when the skylines are
abundant and have received much attention since, although they had already been
studied in the Russian literature (see, for example, [3, 23]). We focus in this paper
on the asymptotic estimates of such skylines and prove several types of threshold
phenomena under different probability assumptions of the input samples, which, in
addition to their theoretical interests, are believed to be useful for practitioners.

Skylines and k-dominant skylines. The definitions of a skyline and many of its
variants are based on the notion of dominance. Given a d-dimensional dataset D , a
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406 HSIEN-KUEI HWANG, TSUNG-HSI TSAI, AND WEI-MEI CHEN

point p ∈ D is said to dominate another point q ∈ D if pj ≤ qj for 1 ≤ j ≤ d, where
p = (p1, . . . , pd) and q = (q1, . . . , qd), and is less than qj in at least one dimension.
The nondominated points in D are called the skyline (or skyline points) of D . By
relaxing the full dominance definition to partial dominance, we say that a point p ∈ D
k-dominates another point q ∈ D if there are k dimensions in which pj is not greater
than qj and is less than qj in at least one of these k dimensions.1 The points in D that
are not k-dominated by any other points are defined to be the k-dominant skyline of
D ; see [9]. See also [3] for a different formulation.

The definition of a k-dominant skyline implies that for a fixed dataset the number
of k-dominant skylines decreases as k becomes smaller. Such a monotonicity property
will be used later. To see this, consider any point p in the unit square. It is a skyline
(or 2-dominant skyline) point if no other points have simultaneously smaller x- and
smaller y-values; namely, no other points can lie in the shaded region (where p is
the dotted point in the middle of this figure). However, to be a 1-dominant skyline
point requires that all other points must have simultaneously larger x- and larger
y-values, or, equivalently, they cannot lie in the shaded region .

On the other hand, the transitivity property of skylines fails for k-dominant sky-
lines when 1 ≤ k ≤ d− 1, meaning that their cardinality may be zero and there may
be cycles.

The number of skyline points. The number of skyline points is a key issue in
their use and usefulness. This quantity under suitable random assumptions of the
input is also important for practical modeling or reference purposes, as well as for
the analysis of skyline-finding algorithms. The two major, simple, representative
random models are hypercubes and simplices. Assuming that the input dataset D =
{p1, . . . ,pn} is taken uniformly and independently from the hypercube [0, 1]d, then it
has been known since the 1960s (see [1]) that the expected number of skyline points

of D is asymptotic to (logn)d−1

(d−1)! for large n and finite d, exhibiting the independence

of the coordinates. (Intuitively, if one sorts according to one dimension, then each
other dimension roughly contributes logn skyline points.) On the other hand, if we
assume that the input points are uniformly sampled from the d-dimensional simplex
{|x1| + · · · + |xd| ≤ 1, xj ∈ (−1, 0]}, then the expected number of skyline points is

asymptotic to Γ( 1d)n
1− 1

d , reflecting obviously a stronger negative correlation of the
coordinates; see [5] and the references cited therein. Here Γ denotes Euler’s Gamma
function. For the number of skyline points under other models, see [2, 14, 15, 19, 25]
and the references therein.

On the other hand, in contrast to the recent growing trend of studying high-
dimensional datasets, not much is known for the expected number of skyline points
when d is allowed to grow with n. Such a direction is especially useful as practical
situations always deal with finite n and finite d (whose dependence on n is often
unclear). The only exception along this direction is the uniform estimates given in
[18] (see also [5]) for the expected number of skyline points in a random uniform

sample of n points from the hypercube [0, 1]d. While the order (logn)d−1

(d−1)! may seem to

be slowly growing as d increases, it soon reaches the order n when d is around logn,
which is relatively small for moderate values of n. Consequently, the skyline points
become too numerous to be of direct use. The growth of skyline points in the random

1If we change the definition of the k-dominant skyline to be “exactly k” (instead of ≥ k) coor-
dinates smaller than or equal to and at least 1 smaller than, then the same types of results in this
paper also hold.
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THRESHOLD PHENOMENA IN SKYLINES 407

d-dimensional simplex model is even faster, and we can show that almost all points
are skylines when d roughly exceeds logn

log logn , again small for n not too large.
The cardinality of k-dominant skylines. Since k-dominant skylines were proposed

(see [9]) to resolve the skyline-abundance problem, it is of interest to know their
quantity under suitable random models. A critical step in applying a k-dominant
skyline is to identify an appropriate k such that the size of the k-dominant skyline is
within the acceptable ranges. But this may not be always feasible. Consider the 5-
dimensional dataset D given in Table 1. The six points are all skyline points, one (p6)
is the 4-dominant skyline point, and no point is in the 3-dominant skyline. Clearly, p6

is to some extent better than the other points since it contains two components with
the lowest value 1. However, it was already mentioned in [9] that some k-dominant
skylines may be empty. For example, if we drop p6 from D , then the five points are all
skyline points, but all k-dominant skylines are empty for 1 ≤ k ≤ 4. In this example,
other alternatives to k-dominant skylines have to be used. Unfortunately, such a
property of excessive skylines but few k-dominant skylines is not uncommon, and we
show in this paper that, under the hypercube and the simplex random models, the
expected number of k-dominant skylines tends to zero for large n and 1 ≤ k ≤ d− 1.

Table 1

An example showing the property of many skylines but few k-dominant skylines.

Point Skyline 4-dominant skyline 3-dominant skyline

p1 (1, 2, 2, 3, 3) ✔ - -
p2 (3, 1, 2, 2, 3) ✔ - -
p3 (3, 3, 1, 2, 2) ✔ - -
p4 (2, 3, 3, 1, 2) ✔ - -
p5 (2, 2, 3, 3, 1) ✔ - -
p6 (2, 3, 1, 1, 3) ✔ ✔ -

Threshold phenomena. We clarify two types of threshold phenomena for the
expected number of k-dominant skylines in random samples.

1. Large sample, bounded dimension:

Expected number of k-dominant skylines →
{

0 if 1 ≤ k ≤ d− 1,
∞ if k = d

as the sample size n → ∞. While such a result is not new and is a special
case of the general theory developed in [3] for finite-dimensional skylines, we
will give an independent, transparent, self-contained proof, which, in addition
to being more precise, can be extended to the case when the dimensionality
becomes unbounded with the sample size.

2. Large sample, moderate dimension: There exists an integer d0 = d0(n) ≈√
2 logn

log log n
log log n

+ 1 such that (see (7.2))

Expected number of (d− 1)-dominant skylines →
{

0 if d ≤ d0 − 1,
∞ if d ≥ d0 + 2

as n → ∞, and the two cases d = d0 and d = d0 + 1 lead to two different

oscillating functions, the first (d = d0) fluctuating between 0 and e−γ

2−e−e−1 and

the second between e−γ

2−e−e−1 and O
(

logn
log logn

)
, where γ is Euler’s constant; see
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408 HSIEN-KUEI HWANG, TSUNG-HSI TSAI, AND WEI-MEI CHEN

(7.3) and (7.4). We consider only random samples from hypercubes. Other
regions and other values of k, k < d − 1, are expected to exhibit similar
threshold phenomena with different d0, but the analysis becomes excessively
long and involved. More details will be discussed elsewhere.

We see from these phenomena that the usual “curse of high dimensionality” has thus
another form here which one may term the “curse of constant dimensionality,” which
refers to the situation when no k-dominant skyline point at all exists. Also the model
where dimensionality can vary with the sample size is, at least from a practical point
of view, more reasonable; see sections 6 and 7 for more discussions and details.

Related works. In addition to the partial dominance used in defining k-dominant
skylines (see [9]), there are also several other skyline variants for retrieving more rep-
resentative points; these include skybands [24], top-k dominating queries [20, 24, 28],
strong skylines [29], skyline frequency [10], approximately dominating representatives
[21], ε-skylines [27], and top-k skylines [8, 22]. See also the survey papers [20, 26] for
more information.

Organization of the paper. This paper presents a systematic study on the asymp-
totic estimates of the number of k-dominant skyline points under random models. It
is organized as follows. We derive in the next section (section 2) an asymptotic vanish-
ing property for the number of k-dominant skyline points under a common hypercube
model when the dimensionality is bounded. The extension to include more points in
the partial dominant skyline is shown in section 3 to suffer from a similar drawback.
We then prove in section 4 that changing the underlying model from hypercube to
simplex does not improve the asymptotic vanishing property either. Section 5 deals
with a categorical model for which the results have a very different nature. Roughly,
as the total number of sample points is finite in this model, the expected number of
k-dominant skylines will be asymptotically linear, meaning there will be too many
choices for ranking or selection purposes. All these results point to the drawbacks of
using k-dominant skylines under similar data situations. We then address the advan-
tages in the last few sections by considering again the hypercubes but with growing
dimensionality. A sharp threshold phenomenon is discovered in section 7 when d→ ∞
with n; the required asymptotic approximations will be derived in Appendices A and
B. Another new threshold result, of the expected number of dominant cycles, is given
in section 8. Section 9 provides a uniform lower-bound estimate for the expected
number of skyline points for 1 ≤ k ≤ d − 1. We conclude in section 10 with some
numerical aspects of the estimates we derived, as well as their possible practical use.

2. Random samples from hypercubes. The simplest random model is the
hypercube [0, 1]d, which is also the most natural and most studied one. Hypercubes
can also be used when data are discrete in nature but span sufficiently uniformly over
a large interval.

In this section, we derive asymptotic estimates for the expected number of k-
dominant skyline points in a random sample of n points D := {p1, . . . ,pn} uniformly
and independently drawn from [0, 1]d, d ≥ 2. Let Md,k(n) denote the number of k-
dominant skyline points of D . We first derive a crude upper bound for the expected
number E[Md,k(n)], which implies that E[Md,k(n)] is asymptotically zero as n grows
unbounded and 1 ≤ k ≤ d − 1. More precise estimates are possible and will be
discussed in section 6. For a point p ∈ [0, 1]d, we denote by Bk(p) the region of the
points in [0, 1]d that k-dominates p. Also, |A| denotes the volume of the region A.

Theorem 1 (asymptotic zero-infinity property for large n and bounded d). For
fixed d ≥ 2,
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(2.1) E[Md,k(n)] →
{

0 if 1 ≤ k ≤ d− 1,
∞ if k = d

as n→ ∞.
Proof. The case k = d has been known since the 1960s (see [1]) and was re-derived

several times in the literature. We assume 1 ≤ k ≤ d− 1. Since Md,k(n) ≤Md,d−1(n)
for fixed d and for 1 ≤ k ≤ d− 1, we prove only that E[Md,d−1(n)] → 0.

We start from the integral representation

E[Md,d−1(n)] = nP (p1 is a (d− 1)-dominant skyline point)

= n

∫
[0,1]d

(1− |Bd−1(x)|)n−1
dx(2.2)

because if x is not k-dominated by any of the other n− 1 points, they all have to lie
in the region [0, 1]d \Bk(x). Here and throughout this paper, dx is the abbreviation
for dx1 · · ·dxd.

To estimate the integral in (2.2), we split it into two parts, one part having
sufficiently small volume (corresponding roughly to small x1 · · ·xd) and the other
with |Bd−1(x)| bounded away from zero, rendering the term (1−|Bd−1(x)|)n−1 small
also.

For a fixed number t satisfying 1 < t < d
d−1 , define the region

Qn :=
⋃

1≤�≤d

⎧⎨
⎩x ∈ [0, 1]d : x� ≤ n− t

d and
∏
j �=�

xj ≤ n−d−1
d t

⎫⎬
⎭ .(2.3)

Then

E[Md,d−1(n)] ≤ n |Qn|+ n

∫
[0,1]d\Qn

(1− |Bd−1(x)|)n−1
dx.

The volume of Qn is bounded above by

|Qn| ≤ dn− t
d

∫
x1···xd−1≤n− d−1

d
t

x∈[0,1]d

dx.

To estimate the last integral, let

Ad(δ) :=

∫
x1···xd−1≤δ

x∈[0,1]d

dx (d ≥ 2),

where 0 < δ < 1. Then A2(δ) = δ, and

Ad(δ) =

∫ 1

δ

Ad−1

(
δ

t

)
dt (d ≥ 3).

A simple induction gives

Ad(δ) = δ
| log δ|d−2

(d− 2)!
(d ≥ 2),

and we obtain, by taking δ = n− d−1
d t,

|Qn| = O
(
n−t(log n)d−2

)
.
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On the other hand, by an inclusion-exclusion argument, we have

|Bd−1(x)| =
∑

1≤�≤d

∏
j �=�

xj − (d− 1)
∏

1≤j≤d

xj .(2.4)

Now if x ∈ [0, 1]d \Qn, then

|Bd−1(x)| ≥ max
1≤�≤d

∏
i�=�

xi ≥ n−d−1
d t.

Thus, we have

E[Md,d−1(n)] = O
(
n1−t(log n)d−2

)
+O

(
n exp

(
−(n− 1)n− d−1

d t
))

,(2.5)

and we see easily that the right-hand side tends to zero by our choice of t. More
precisely, if we take

t =
d

d− 1

⎛
⎝1−

log
(

d
d−1 logn

)
logn

⎞
⎠ ,

so as to balance the two O-terms in (2.5), then

E[Md,d−1(n)] = O
(
n− 1

d−1 (logn)d
)
.

This and the monotonicity of Md,k(n) (in k) prove (2.1).
The fact that E[Md,k(n)] → 0 implies that there are many cycles formed by

the k-dominant relation, but the corresponding cycle structures are very difficult to
quantify; see section 10 for some preliminary results.

3. “Clouds” of k-dominant skylines. The asymptotic vanishing property
(Theorem 1) for the expected number of k-dominant skylines limits their usefulness
if the input data are known to exist in similar randomness conditions. In particular,
if one is interested in finding the top K representative points, then the probability
of getting enough candidates tends to zero. A simple remedy to this situation (and
still following the same notion of partial dominance between points) is to consider the
number of points that are k-dominated by a specified number, say, j, of other points,
which we refer to as the “cloud” of k-dominant skylines. But we show that this also
suffers from similar vanishing drawbacks under the random hypercube model, unless
j is chosen to be large enough.

Let Ld,k(n, j) denote the number of points in the random sample {p1, . . . ,pn}
that are k-dominated by exactly j points, where the n points are uniformly and
independently selected from [0, 1]d. Note that Ld,k(n, 0) is nothing but Md,k(n).

Theorem 2 (asymptotic zero-infinity property for clouds of k-dominant sky-
lines). For fixed d ≥ 2 and 1 ≤ k ≤ d− 1,

E[Ld,k(n, j)] →
{

0 if 1 ≤ k ≤ d− 1,
∞ if k = d,

uniformly for 0 ≤ j = o(n(1−ε)/d), as n → ∞, where ε > 0 is an arbitrarily small
constant.
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The theorem roughly says that, even allowing for a more flexible partial dominance
relation, the expected number of the skylines so constructed still approaches zero as
long as the dimensionality is fixed.

Proof. The case when k = d is also derived in [1] (under the name of the “(j+1)st
layer, 1st quadrant-admissible points”), where it is shown that

E[Ld,d(n, j)] =
∑

j<i1≤···≤id−1≤n

1

i1 · · · id−1
,

from which we obtain

E[Ld,d(n, j)] ∼
(
log n

j+1

)d−1

(d− 1)!
(3.1)

if log(n/(j+1)) → ∞, where the symbol “∼” means that the ratio of both sides tends
to 1 as n becomes unbounded. Alternatively, we can use the integral representation
(see [4])

E[Ld,d(n, j)] = n

(
n− 1

j

)∫
[0,1]d

(x1 · · ·xd)j (1− x1 · · ·xd)n−1−j
dx

=
n

(d− 1)!

(
n− 1

j

)∫ 1

0

tj(1− t)n−1−j log
(
1
t

)d−1
dt(3.2)

by the change of variables t 	→ x1 · · ·xd. A straightforward evaluation then gives
(3.1).

Note that
E[Ld,d(n,j)]

n equals the probability that the first-quadrant subtree of the
root has size j in random quadtrees; see [16, appendix]. This connection also provides
several other expressions for E[Ld,d(n, j)]. For example,

E[Ld,d(n, j)] =

(
n− 1

j

) ∑
0≤�≤n−1−j

(
n− 1− j

�

)
(−1)�

(j + 1 + �)d
;

see also [5].
For the remaining cases, we consider only k = d−1 and prove that E[Ld,d−1(n, j)]

→ 0. The reason is that∑
0≤�≤j

Ld,k(n, �) ≤
∑

0≤�≤j

Ld,d−1(n, �) (1 ≤ k ≤ d− 1).

To see this, observe that if a point p (d− 1)-dominates another point q, then p also
k-dominates q for 1 ≤ k ≤ d−2. Thus, the sum on the left-hand side, which stands for
the set that is k-dominated by at most j points, is less than the sum on the right-hand
side, the set that is (d− 1)-dominated by at most j points.

To prove E[Ld,d−1(n, j)] → 0, we apply the same argument used in the proof of
Theorem 1 starting from the integral representation

E[Ld,d−1(n, j)] = n

∫
[0,1]d

P(exactly j points in {p2, . . . ,pn} that k-dominate p1)

= n

(
n− 1

j

)∫
[0,1]d

Bd−1(x)
j (1−Bd−1(x))

n−1−j
dx.
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Now we fix a constant t satisfying 1 < t < d
d−1 and then choose Qn as in (2.3). Then

we have

|Qn| = O
(
n−t(logn)d−2

)
and

n− d−1
d t ≤ |Bd−1(x)| ≤ 1 (x ∈ [0, 1]d \Qn).

It follows that

E[Ld,d−1(n, j)] ≤ n|Qn|+ n

(
n− 1

j

)∫
[0,1]\Qn

Bd−1(x)
j (1−Bd−1(x))

n−1−j
dx

= O
(
n1−t(logn)d−2

)
+O

(
n

(
n− 1

j

)
exp

(
−(n− 1− j)n− d−1

d t
))

.

Now choose

t =
d

d− 1

(
1− log((j + d

d−1) log n)

logn

)

so that

n

(
n− 1

j

)
exp

(
−(n− 1− j)n− d−1

d t
)
= O

(
n1+jn−j− d

d−1

)
= O(n− 1

d−1 ),

and

n1−t = n− 1
d−1

(
j + d

d−1

) d
d−1

(logn)
d

d−1 = O
(
n− ε

d−1 (logn)
d

d−1

)
,

uniformly for j = O(n
1−ε
d ). Thus

E[Ld,d−1(n, j)] = O
(
n− ε

d−1 (logn)d−2+ d
d−1 + n− 1

d−1

)
→ 0.

This proves the theorem.
A more precise asymptotic estimate for E[Ld,d−1(n, j)] will be derived in section 6;

see (6.10). Another easy special case is k = 1, which is dual to the case k = d because
we have

E[Ld,1(n, j)] = E[Ld,d(n, n− 1− j)].

Thus, by (3.2), we have

E[Ld,1(n, j)] =
n

(d− 1)!

(
n− 1

j

)∫ 1

0

tn−1−j(1 − t)j(− log t)d−1dt

∼ nj+1

(d− 1)!j!

∫ ∞

0

e−nttj+d−1dt

∼
(
j + d− 1

j

)
n−d+1

for large n and 0 ≤ j = o(
√
n).

In general, if we are to select the top K representatives using such clusters of
partial dominant skylines, then how large should j be? That is, what is the minimum
m such that

∑
0≤j≤m Ld,k(n, j) > K? Some simulation results are given in Figure 3.1.
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∑
0≤j≤m Ld,k(n, j)

m
0 20 40 60 80 100

0

20

40

60

80

100

(d = 2, k = 1)

(d = 3, k = 2)

(d = 3, k = 1)

(d = 4, k = 3)

(d = 4, k = 2)

(d = 4, k = 1)

∑
0≤j≤m Ld,k(n, j)

m
0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

(d = 2, k = 1)

(d = 3, k = 2)

(d = 3, k = 1)

(d = 4, k = 3)

(d = 4, k = 2)

(d = 4, k = 1)

Fig. 3.1. Simulated values of the partial sums
∑

0≤j≤m Ld,k(n, j) for n = 100 (left) and 5000

(right). Interestingly, the simulations suggest some general pattern that seems independent of the
size of the samples, and they are consistent with our analysis since m has to be very large (compared
with n) to have nonzero partial sums.

4. Random samples from simplices. We show in this section that the asymp-
totic vanishing property of k-dominant skylines occurs not only in the case of the d-
dimensional hypercube distribution but also in the case of the d-dimensional simplex
distribution

Sd =

⎧⎨
⎩x : −1 ≤ xj ≤ 0 and ‖x‖ :=

∑
1≤j≤d

|xj | ≤ 1

⎫⎬
⎭ .

In particular, S2 is the right triangle . Such a shape implies a negative dependence
of the two coordinates and thus a larger number of skyline points. For example, the
expected skyline counts already reach the order

√
n when d = 2; see [5] or (4.1) below.

Let M
[s]
k (n) denote the cardinality of the k-dominant skyline of the set D :=

{p1, . . . ,pn}, where these n points are uniformly and independently distributed over

Sd. For a point p ∈ Sd, denote by B
[s]
k (p) the region of points in Sd that k-dominate p.

Theorem 3 (asymptotic vanishing property for finite-dimensional simplex). For
1 ≤ k ≤ d− 1,

E[M
[s]
d,k(n)] →

{
0 if 1 ≤ k ≤ d− 1,
∞ if k = d,

as n→ ∞.
Proof. For k = d, it is known (see [5, 12]) that

E[M
[s]
d,d(n)] = d!n

∫
D

⎛
⎜⎝1−

⎛
⎝1−

∑
1≤i≤d

xi

⎞
⎠d

⎞
⎟⎠

n−1

dx

= n
∑

0≤j<d

(
d− 1

j

)
(−1)j

Γ(n)Γ
(
j+1
d

)
Γ
(
n+ j+1

d

)
= Γ

(
1
d

)
n1− 1

d

(
1 +O

(
dn− 1

d

))
,(4.1)
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where Γ denotes the Gamma function. Thus the expected number of skylines tends
to infinity as n becomes unbounded.

Consider now 1 ≤ k < d. It suffices to examine the case k = d − 1. For a point

x ∈ Sd (x �= 0), let ξ := x
‖x‖ . Then B

[s]
d−1(ξ) ⊂ B

[s]
d−1(x). We now prove that

(4.2)
∣∣∣B[s]

d−1(ξ)
∣∣∣ ≥ 1

d!dd
(ξ ∈ Sd, ‖ξ‖ = 1).

Since ‖ξ‖ = 1, there is at least one coordinate |ξj | ≥ 1
d . Without loss of generality,

assume |ξd| ≥ 1
d . Then

∑
1≤j<d |ξj | ≤ d−1

d . Let

T := {y ∈ Sd : yj ≤ ξj for 1 ≤ j ≤ d− 1 and yd ≤ 0}.

We have T ⊂ B
[s]
d−1(ξ) and

|T | = |Sd||ξd| ≥ 1

d!dd
,

since T is itself a simplex. Thus (4.2) holds, and we have

E[M
[s]
d,d−1(n)] = nd!

∫
Sd

(
1− d!

∣∣∣B[s]
d−1(x)

∣∣∣)n−1

dx

= O
(
n
(
1− d−d

)n)
→ 0

as n→ ∞.
We see in such a simplex model that the expected number of k-dominant skyline

points tends to zero at an exponential rate (in n), in contrast to the polynomial rate
in the hypercube model. Does the expected number of k-dominant skyline points
always tend to zero? Here is a simple, artificial counterexample.

Example 1. Assume d = 4, k = 3. Let

A := {(−t,−2t, 3t, 4t) : 1 ≤ t ≤ 2} .
Then any two points in A are incomparable (none dominating the other) by the
relation of k-dominance. Thus, the number of k-dominant skyline points is equal to
n almost surely if p1, . . . ,pn are uniformly and independently distributed in A.

5. A categorical model. The preceding negative results are based on assuming
that the points are generated from some continuous models, which are often a good
approximation to situations where the input can assume a sufficiently large range of
different values. What if we assume instead that the inputs are sampled from some
discrete space, which is also often encountered in practical applications? We show
in this section that the expected number of k-dominant skylines is always linear for
1 ≤ k ≤ d, in contrast to the asymptotic zero-infinity property we derived above.

Assume that n points D := {p1, . . . ,pn} are chosen uniformly and independently
from the product space

P :=
⊗

1≤j≤d

Sj ,

where

Sj = {1, 2, . . . , uj} (uj ≥ 2).
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Let M
[c]
d,k(n) denote the number of k-dominant skylines in D . Unlike the continuous

cases, the variation of the random variablesM
[c]
d,k(n) is easier to predict as the number

of possible points in P is finite. Interestingly, the first-order asymptotic estimate for

the expected value ofM
[c]
d,k(n) is independent of k for 1 ≤ k ≤ d, where the case k = d

gives the expected skyline count.
Theorem 4 (asymptotic linearity for finite-dimensional categorical model). The

expected number of k-dominant skylines satisfies

E[M
[c]
d,k(n)]

n
→ 1

u
(1 ≤ k ≤ d; d ≥ 2)(5.1)

as n→ ∞, where

u :=
∏

1≤j≤d

uj .

See Figures 5.1 and 5.2 for plots of E[M
[c]
d,k(n)] and the ratios E[M

[c]
d,k(n)]/n.

Now the problem is again the excessive number of skyline points. Such a dis-
crete model exhibits another interesting phenomenon, not present for the continuous
model, namely, for fixed n, the expected number of k-dominant skyline points is not
monotonically increasing as d grows.

Proof. Let x = (x1, x2, . . . , xd) ∈ P. Denote by B
[c]
k (x) the set of points in P

that k-dominate x. Then

E[M
[c]
d,k(n)] = nP(p1 is a k-dominant skyline point)

=
n

u

∑
x∈P

⎛
⎝1−

∣∣∣B[c]
k (x)

∣∣∣
u

⎞
⎠

n−1

.(5.2)

If y ∈ B
[c]
k (x), then y is greater than or equal to x in all coordinates (at least 1

greater) except for the coordinates, say, j1, . . . , j� for 0 ≤ � ≤ d− k. Thus∣∣∣B[c]
d (x)

∣∣∣ = ∏
1≤j≤d

xj − 1,

and for 1 ≤ k < d

∣∣∣B[c]
k (x)

∣∣∣ = ∑
0≤�≤d−k

∑
1≤j1<j2<···<j�≤d

( ∏
1≤i≤d xi∏
1≤i≤� xji

− 1

) ∏
1≤i≤�

(uji − xji) .(5.3)

Here the product ∏
1≤i≤d xi∏
1≤i≤� xji

=
∏

i�=jr ;r=1,...,�

xi

enumerates all possible locations in the d − � (≥ k) coordinates that a k-dominant
skyline point can assume, and the factor “−1” removes the possibility that all d − �
coordinates are equal to the corresponding xi. The last product in (5.3) describes all
possible locations for the other � coordinates.
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Mean

n

1 5 10 15 20 25
1.0

1.5

2.0

2.5

Mean

n

25 250 500 750 1000
0.0

0.5

1.0

1.5

2.0

Fig. 5.1. A graphical rendering of E[M
[c]
d,k(n)] in the discrete space {0, 1}d for d = 10, k = 9,

and n = 1, . . . , 25 (left) and n = 25, . . . , 1000 (right).

Since there is a unique point 1 := (

d︷ ︸︸ ︷
1, . . . , 1) in P with

∣∣B[c]
k (1)

∣∣ = 0, all other
terms in the sum on the right-hand side of (5.2) being exponentially small, we obtain
(5.1).

In the special case when all uj = 2 for 1 ≤ j ≤ d, then

∣∣∣B[c]
k (x)

∣∣∣ = (
2� − 1

) ∑
0≤j≤d−k

(
d− �

j

)
,

where x ∈ {1, 2}d and � denotes the number of times “2” occurs in x (and “1”
occurring d− � times). The closed-form expression (5.2) simplifies

E[M
[c]
d,k(n)] =

n

2d

∑
0≤�≤d

(
d

�

)⎛
⎝1− 2� − 1

2d

∑
0≤j≤d−k

(
d− �

j

)⎞
⎠n−1

,

from which it follows that

E[M
[c]
d,k(n)]

n
→ 1

2d
as n→ ∞.

Since the product space P is finite and the n points are uniformly distributed on
P, only the proportion of the points of D that have all their coordinates equal to 1

contribute. We can indeed fully characterize the asymptotic distribution of M
[c]
d,k(n)

as follows.
Theorem 5 (asymptotic binomial distribution for finite-dimensional categori-

cal model). The distribution of M
[c]
d,k(n) is asymptotically equivalent to a binomial

distribution with parameters n and 1/u.
Proof. Let Xn denote the number of j’s for which pj = (1, . . . , 1), 1 ≤ j ≤ n.
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n
1 21 22 23 24 25 26 27 28

0.0

0.5

1.0

k = 3

k = 4

k = 5

n
1 51 52 53 54 55 56

0.0

0.5

1.0

k = 3

k = 4

k = 5

Fig. 5.2. Two plots of the ratio E[M
[c]
d,k(n)]/n when d = 5, k = 3, 4, 5 (here the case k = 5

corresponds to the skyline), ui ≡ 2 (left), and ui ≡ 5 (right). All curves in the left figure tend to
the limit 2−5 = 0.03125, while those in the right tend to 5−5 = 0.00032, which is almost zero.

Then, obviously, Xn is binomially distributed with parameters n and 1/u, namely,

P(Xn = �) =

(
n

�

)
1

u�

(
1− 1

u

)n−�

(0 ≤ � ≤ n).

Now if one of the points pj equals (1, . . . , 1), then M
[c]
d,k(n) = Xn. Thus

P

(
M

[c]
d,k(n) �= Xn

)
≤ P (pj �= (1, . . . , 1)) =

(
1− 1

u

)n

→ 0,

and thus the distribution of M
[c]
d,k(n) is asymptotic to the distribution of Xn.

In particular, we see that the variance of M
[c]
d,k(n) is also asymptotically linear:

V[M
[c]
d,k(n)]

n
→ 1

u

(
1− 1

u

)
(1 ≤ k ≤ d).

The consideration can be easily extended to the case of nonuniform discrete
distributions. More generally, assume that the input data is sampled from the set
{a1, . . . , am} ⊂ P and each point is endowed with the probability P(aj). Let pk(aj)
be the probability that aj is k-dominated; that is, pk(aj) is equal to the sum of P(ai)
such that ai k-dominates aj . Then the expected number of k-dominant skyline points
satisfies

E[M
[c]
d,k(n)] = n

∑
1≤j≤m

P(aj) (1− pk(aj))
n−1

.

Let

qk :=
∑

pk(aj)=0
1≤j≤m

P(aj)D
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be the probability of points in {a1, . . . , am} that are not k-dominated. Then since the
expected number of k-dominant points is expressed as a finite sum, we have

E[M
[c]
d,k(n)]

n
→ qk as n→ ∞.

Note that pk may range from zero to one.

6. Uniform asymptotic estimates for E[Md,d−1(n)]. We derive in this sec-
tion two uniform asymptotic estimates for E[Md,d−1(n)] in two overlapping ranges.
To state our results, we need to introduce the Lambert W -function (see [13]), which
is implicitly defined by the equation

W (z)eW (z) = z.(6.1)

For our purpose, we take W to be the principal branch that is positive for positive z
and satisfies the asymptotic approximation

W (x) = log x− log log x+
log log x

log x
+O

(
(log log x)2

(log x)2

)
(6.2)

for large x.
Our first asymptotic estimate covers d in the range

3 ≤ d ≤
√

2 logn

W (2 logn) +K
,

where K → ∞ with n, and the second covers d in the range

(log n)1/3 � d ≤ 2

√
logn

W (c logn)

for c = 4/(e log 2)2 ≈ 1.127. The upper bounds of the two ranges do not differ
significantly but are sufficient for our purposes of proving the threshold phenomenon,
which we discuss in the next section.

Very roughly, the expected number of (d−1)-dominant skylines is asymptotically
negligible in the first range and undergoes the phase transition from being almost zero
to unbounded in the second.

Theorem 6 (uniform estimate for large n and moderate d). If d ≥ 3 and

2 logn

d2
−W (2 logn) → ∞,(6.3)

then

E[Md,d−1(n)] =
n− 1

d−1

d− 1
Γ

(
1

d− 1

)d (
1 +O

(
dn− 1

(d−1)(d−2)

))
(6.4)

uniformly in d for large n.
Note that if d is of the form

d =

⌊√
2 logn

W (2 logn) + 2v

⌋
,
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then

dn− 1
(d−1)(d−2) = e−v

(
1 +O

(
(1 + |v|)W (2 logn)3/2√

logn

))
,

which becomes o(1) if v → ∞.
On the other hand, when d = 2, we have, by (2.2),

E[Md,d−1(n)] = n

∫ 1

0

∫ 1

0

(1− x− y + xy)
n−1

dxdy =
1

n
.

Proof. We again begin with the integral representation (2.2), where Bd−1(x) is
given in (2.4).

By the elementary inequalities (see [6])

e−nt(1− nt2) ≤ (1 − t)n ≤ e−nt (n ≥ 1; t ∈ [0, 1]),

we have

En,d − E′
n,d ≤ E[Md,d−1(n+ 1)] ≤ En,d,

where

En,d := n

∫
[0,1]d

e−n|Bd−1(x)|dx,

E′
n,d := n2

∫
[0,1]d

|Bd−1(x)|2e−n|Bd−1(x)|dx.

We will see that E′
n,d is asymptotically of smaller order than En,d. The intuition

here is that most contributions to the integral come from x for which |Bd−1(x)| is
small, implying that (1−|Bd−1(x)|)n is close to e−n|Bd−1(x)|. Also, replacing n+1 by
n in the resulting asymptotic approximation gives rise only to smaller order errors.
However, the uniform error bound represents the most delicate part of our proof.

We start with the asymptotic evaluation of En,d. By making the change of vari-

ables xj 	→ yj

N , where N := n
1

d−1 ,

En,d = N−1

∫
[0,N ]d

e
−y1···yd

(
1
y1

+···+ 1
yd

)
+ d−1

N y1···yddy

= N−1 (φd(n)− fd(n) +Rd(n)) ,(6.5)

where

φd(n) :=

∫
R

d
+

e
−y1···yd

(
1
y1

+···+ 1
yd

)
dy,

fd(n) :=

(∫
R

d
+

−
∫
[0,N ]d

)
e
−y1···yd

(
1
y1

+···+ 1
yd

)
dy,

Rd(n) :=

∫
[0,N ]d

e
−y1···yd

(
1
y1

+···+ 1
yd

) (
e

d−1
N y1···yd − 1

)
dy.

We focus on the evaluation of the integral φd(n), leaving the lengthier estimation of
the two error terms fd(n) and Rd(n) to Appendix A.
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We now carry out the change of variables tj :=
∏

� �=j y� for 1 ≤ j ≤ d, the
Jacobian being

∂(y1, . . . , yd)

∂(t1, . . . , td)
:=

⎡
⎢⎣

∂y1

∂t1
· · · ∂y1

∂td
...

. . .
...

∂yd

∂t1
· · · ∂yd

∂td

⎤
⎥⎦ ,

whose determinant is equal to 1/ detJ , where

J :=
∂(t1, . . . , td)

∂(y1, . . . , yd)
.

Note that the entries of J satisfy

Ji,j =

{
0 if i = j,
y1 · · · yd
yiyj

if i �= j.

It follows that

detJ = (y1 · · · yd)d−2 detT,

where T is a d× d matrix with Ti,i = 0 and Ti,j = 1 for i �= j. The determinant of T
is seen to be (−1)d−1(d− 1) by adding all rows of T to the first, by taking the factor
d− 1 out, and then by subtracting the first row from all other rows. Thus we have

detJ = (−1)d−1(d− 1)(y1 · · · yd)d−2

= (−1)d−1(d− 1)(t1 · · · td)
d−2
d−1 .

Thus, by the integral representation of the Gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt (x > 0),

we obtain

φd(n) =
1

d− 1

∫
R

d
+

e−(t1+···+td)(t1 · · · td)−
d−2
d−1dt

=
1

d− 1

(∫ ∞

0

e−uu−
d−2
d−1du

)d

=
1

d− 1
Γ

(
1

d− 1

)d

.

We will prove in Appendix A that

fd(n)

φd(n)
= O

(
dn− 1

(d−1)(d−2)

)
,

Rd(n)

φd(n)
= O

(
d2−dn− 1

d−1

)
.(6.6)
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THRESHOLD PHENOMENA IN SKYLINES 421

In a similar manner, we have

E′
n,d = O

⎛
⎜⎝n2

∫
R

d
+

⎛
⎝x1 · · ·xd ∑

1≤j≤d

1
xj

⎞
⎠2

e
−nx1···xd

∑
1≤j≤d

1
xj
dx

⎞
⎟⎠

= O

(
n− 2

d−1

d− 1

∫
R

d
+

(t1 + · · ·+ td)
2
e−(t1+···+td)(t1 · · · td)−

d−2
d−1dt

)
.

The last integral in a more general form can be evaluated as follows. Let [zn]f(z)
denote the coefficient of zn in the Taylor expansion of f .∫

R
d
+

(t1 + · · ·+ td)
j
e−(t1+···+td)(t1 · · · td)−

d−2
d−1dt

= j![zj]

∫
R

d
+

e−(1−z)(t1+···+td)(t1 · · · td)−
d−2
d−1dt

= j![zj]
Γ( 1

d−1)
d

(1− z)
d

d−1

= j!Γ

(
1

d− 1

)d ( 1
d−1 + j

j

)
for j ≥ 0. Thus

E′
n,d

φd(n)
= O

(
n− 2

d−1

)
.

Collecting these estimates proves the theorem.
When d increases beyond the range (6.3), the error term fd(n) (see (6.5)) is no

longer negligible, and a more delicate analysis is needed.
Theorem 7 (uniform asymptotic estimate in the critical range). If

d

(logn)1/3
→ ∞ and d ≤ 2

√√√√ logn

W
(

4 logn
(e log 2)2

) ,(6.7)

then, with ρ := d

en1/d2
,

E[Md,d−1(n)] =
n− 1

d−1

d− 1
Γ

(
1

d− 1

)d (
1

2− e−ρ
+O

(
ρ(ρ+ 1)e−ρ

(2− e−ρ)3

(
1

d
+

logn

d3

)))(6.8)

uniformly in d for large n.
The proof of this theorem is very long and is thus relegated to Appendix B. The

crucial step is to prove an asymptotic estimate for fd(n) by an inductive argument
by first deriving a recurrence of the form

fd(n) = gd(n) + Φ[fd](n) + smaller order terms,

where

gd(n) :=
∑

1≤j≤d−2

(
d

j

)
(−1)j−1(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n
1

d−1− 1
d−1−j ,D
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and Φ is an operator defined by

Φ[fd](n) :=
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1− 1

d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j fd−j(nv1 · · · vj)dv.

Then (6.8) follows from iterating the operator and performing a careful analysis of
the resulting sums.

Corollary 1. If d is of the form

d =

⌊√
2 logn

W (2 logn)− 2v − 2

⌋
,

then

E[Md,d−1(n)]

n
− 1

d−1

d−1 Γ
(

1
d−1

)d
∼

⎧⎨
⎩

1 if v → −∞,
1

2−e−ev if v = O(1),
1
2 if v → ∞.

(6.9)

Proof. Observe that

ρ =
d

en1/d2 = ev
(
1 +O

(
1 + |v|

W (2 logn)

))
.

Thus (6.9) follows from this and (6.8).
Combining the ranges (6.3) and (6.7) of the two estimates (6.4) and (6.8), we see

that the following holds.
Corollary 2. If

3 ≤ d ≤ 2

√
logn

W (4e−2 logn)
,

then

E[Md,d−1(n)] ∼ 1

2− e−ρ
· n

− 1
d−1

d− 1
Γ

(
1

d− 1

)d

uniformly in d.
We conclude from these estimates that E[Md,d−1(n)] is, modulo a constant term,

very well approximated by n
− 1

d−1

d−1 Γ
(

1
d−1

)d
.

Remark. An analysis similar to that for (6.4) leads to (Ld,k(n, j) is defined in
section 3)

E[Ld,d−1(n, j)] ∼ cd,jn
− 1

d−1(6.10)

for each finite integer j ≥ 0, where

cd,j :=
1

(d− 1)j!

∫
R

d
+

(v1 + · · ·+ vd)
je−(v1+···+vd)(v1 · · · vd)−

d−2
d−1dv

=
1

d− 1
Γ

(
1

d− 1

)d (
j + 1

d−1

j

)
,

uniformly when 2 logn
d2 −W (2 logn) → ∞ and j = o

(
n

1−ε
d

)
, ε ∈ (0, 1). The consider-

ation for larger d is similar to that in (6.8).
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7. Threshold phenomenon for E[Md,d−1(n)] when d → ∞. With the
asymptotic estimates (6.4) and (6.8) we derived in the previous section, we prove
in this section a less expected threshold phenomenon for the expected number of
(d − 1)-dominant skylines E[Md,d−1(n)] (in random samples from the d-dimensional

hypercube) when d− 1 is near
√

2 logn
W (2 log n) . Let {x} denote the fractional part of x.

Theorem 8 (threshold phenomenon). Let

d0 = d0(n) :=

⌊√
2 logn

W (2 logn)

⌋
+ 1,(7.1)

where W denotes the Lambert W-function. Then the expected number of (d − 1)-
dominant skyline points satisfies

lim
n→∞E[Md,d−1(n)] =

{
0 if d < d0,
∞ if d > d0 + 1.

(7.2)

If d = d0, then limn→∞ E[Md,d−1(n)] does not exist and is oscillating between 0 and
e−γ

2−e−e−1 ,

E[Md,d−1(n)] ∼ e−γ

2− e−e−1 ϕ0

(√
2 logn

W (2 logn)

)
,(7.3)

where ϕ0(x) is a bounded oscillating function of x defined by

ϕ0(x) := e−{x}x−2{x}.

If d = d0 + 1, then limn→∞ E[Md,d−1(n)] does not exist and is oscillating between
e−γ

2−e−e−1 and O
(

logn
log logn

)
,

E[Md,d−1(n)] ∼ e−γ

2− e−e−1 ϕ1

(√
2 logn

W (2 logn)

)
,(7.4)

where ϕ1(x) is an oscillating function of x defined by

ϕ1(x) := e1−{x}x2−2{x}.

Proof. By monotonicity, it suffices to examine the asymptotic behavior of E[Md,d−1(n)]
for d near d0. Observe that if

d = d0 +m =

√
2 logn

Wn
− τn +m+ 1,

where m is an integer and τ denotes the fractional part of
√

2 log n
W (2 logn) , namely,

τn :=

{√
2 logn

Wn

}
=

√
2 logn

Wn
−

⌊√
2 logn

Wn

⌋
,

then

ρ =
d

en1/d2 = e−1

(
1 +O

(
W

3
2
n |m+ τn|√

logn

))
→ e−1,
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where, here and throughout the proof, Wn :=W (2 logn). Thus for bounded m

1

2− e−ρ
→ 1

2− e−e−1 .

On the other hand, by (6.8) and the asymptotic estimate Γ(x) = x−1 − γ +O(x)
as x→ 0, where γ denotes the Euler constant, we see that

n− 1
d−1

d− 1
Γ

(
1

d− 1

)d

= e−γ+m−τn

(
2 logn

Wn

)m−τn
(
1 +O

(
W

3
2
n (m+ τn + 1)2√

logn

))
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

→ 0 if m ≤ −1,

∼ e−γϕ0

(√
2 logn
Wn

)
if m = 0,

∼ e−γϕ1

(√
2 logn
Wn

)
if m = 1,

→ ∞ if m ≥ 2.

This proves (7.2), (7.3), and (7.4). It remains to consider more precisely the behavior
of ϕ0(x) and ϕ1(x).

Obviously, by definition, ϕ0(x) ∈ (0, 1] and ϕ1(x) ∈ [1,∞) because {x} ∈ [0, 1)
for x ∈ R+. If {x} = 0, then ϕ0(x) = 1; more generally,

ϕ0(x) →
{

1 if {x} logx = o(1),
0 if {x} logx→ ∞.

On the other hand,

ϕ1(x) →
{

1 if (1− {x}) log x = o(1),
∞ if (1− {x}) log x→ ∞.

We now prove that

τn = 0 if and only if n = ii
2

(i ≥ 2).(7.5)

First, if n = ii
2

, then 2 logn = 2i2 log i and the positive solution to the equation (see
(6.1))

Wne
Wn = 2i2 log i

is given by Wn = 2 log i, as can be easily checked. Thus√
2 logn

Wn
= i (i ≥ 2).(7.6)

Conversely, if the relation (7.6) holds, then the positive solution to the equations

2 logn

Wn
= i2 and Wne

Wn = 2 logn

is given by n = ii
2

. This proves (7.5).
It follows particularly, by (6.8), that

lim
i→∞

E[Mi,i−1]
(
ii

2
)
=

e−γ

2− e−e−1 .
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This completes the proof of the theorem.
The function d0 of n on the right-hand side of (7.1) grows extremely slowly. Let

ai := ii
2

with a1 := 2. Then d = i+ 1 for ai ≤ n < ai+1, which is small for almost all
practical sizes of n:

d0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if 2 ≤ n ≤ 15,
3 if 16 ≤ n ≤ 19682,
4 if 19683 ≤ n ≤ 42949 67295,
5 if 42949 67296≤ n ≤ 2.98 · · · × 1017,
6 if 2.98 · · · × 1017 ≤ n ≤ 1.03 · · · × 1028.

This partly explains why the asymptotic vanishing property of E[Md,k(n)] for large n
and fixed d is “invisible” for moderate values of n.

Note that we did not replace the Lambert W-function in (7.1) by its asymptotic
expansion (6.2) so as to make the expression more transparent, the reason being that
no matter how many terms of the asymptotic expansion of W we use, the resulting
expression is never o(1). This is because all terms in the expansion are of orders in
powers of log logn and log log logn, and they are all much smaller than logn in the
numerator of the first term on the right-hand side of (7.1).

Extending the same analysis to other values of k becomes more difficult and messy
except for k = 1, for which we have

E[Md,1(n)] = n

∫
[0,1]d

(x1 · · ·xd)n−1dx = n1−d.

Note that this always tends to zero no matter how large the value of d is.
On the other hand, for 1 ≤ k ≤ d− 1, we can derive the more precise estimate

E[Md,k(n)] = O

⎛
⎝n ∫

[0,1]d
exp

⎛
⎝−n

∑
1≤j1<···<jk≤d

xj1 · · ·xjk

⎞
⎠ dx

⎞
⎠

= O
(
n1− d

k

)
.

However, a more precise uniform asymptotic approximation (in n, d, and k) is less
obvious, and describing the corresponding threshold phenomena if any for other values
of k also remains unclear. Intuitively, the asymptotic vanishing property is expected
to hold as long as k ≥ d/2 regardless of whether d is finite or growing with n because
the probability of a k-dominance for a random pair of points is larger than one half,
meaning that it is less likely to find a k-dominant skyline in such a case.

8. Expected number of dominant cycles. The asymptotic zero-infinity prop-
erty can be viewed from another, different, angle by examining the number of domi-
nant cycles.

Definition. We say that m points {p1, . . . ,pm} form a k-dominant cycle (of
length m) if pi k-dominates pi+1 for i = 1, . . . ,m− 1 and pm k-dominates p1.

Roughly, the number of k-dominant cycles is inversely proportional to the number
of k-dominant skylines. Note that by transitivity there is no cycle when k = d. Thus
the number of cycles seems a better measure to clarify the structure of k-dominant
skylines. However, the general configuration of the cycle structure is very complicated.
We content ourselves in this section with the consideration of cycles of length d when
k = d− 1.
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Lemma 1. Let Cn,d denote the number of (d− 1)-dominant cycles of length d in
a random sample of n points uniformly and independently chosen from [0, 1]d. Then
the expected value of Cn,d satisfies

E[Cn,d] =

(
n

d

)
d!2−d

d
.(8.1)

Proof. Since the total number of cycles of length d is given by
(
n
d

)
d!
d , we see that

E[Cn,d] =

(
n

d

)
d!

d
P ({p1, . . . ,pd} form a (d− 1)-dominant cycle of length d) .

Assume that {p1, . . . ,pd} form a (d− 1)-dominant cycle of length d. Let

pi = (pi,1, . . . , pi,d) (i = 1, . . . , d).

Then for each coordinate j, there exists an � such that

p1,j < p2,j < · · · < p�,j , p�,j > p�+1,j, p�+1,j < · · · < pd,j < p1,j ,

and the �’s are all distinct (d! cases). Thus the probability of the event that {p1, . . . ,pd}
form a (d− 1)-dominant cycle is given by

d!

d!d
,

from which (8.1) follows.
In particular, we see that

E[Cn,2] =
n(n− 1)

4
,

which means that half of the pairs are cycles, rendering the 1-dominant skylines less
likely to occur. The first few other E[Cn,d] are given by

{E[Cn,d]}d≥3 =
{

n(n−1)(n−2)
108 , n(n−1)(n−2)(n−3)

55296 , n(n−1)(n−2)(n−3)(n−4)
1036800000 ,

n(n−1)(n−2)(n−3)(n−4)(n−5)
1160950579200000 , . . .

}
.

We see that the denominator grows very quickly, and we expect another type of
threshold phenomenon.

Let

d1 :=

⌊
log n

W (e−1 logn)
+ 1

2

⌋
,

and let τn denote the fractional part of logn
W (e−1 logn) +

1
2 . Also let

υ(t) :=
1 + 1

2 log 2π

W + 1
+

W

(log n)(W + 1)

(
t

+
12W 3 + (35− 12 log 2π)W 2 + (34− 24 log 2π)W + 23 + 3(log 2π)2

24(W + 1)2

)
,
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where t ∈ R and W represents W (e−1 logn). Note that W is of order log logn.
Theorem 9. The expected number of (d−1)-dominant cycles of length d satisfies

lim
n→∞E[Cn,d] =

{ ∞ if 2 ≤ d < d1,
0 if d > d1.

When d = d1, we can write τn = υ(t); then

lim
n→∞E[Cn,d] =

⎧⎨
⎩

0 if t→ −∞,
et if t = O(1),
∞ if t→ ∞.

(8.2)

Proof. Write

d = d1 −m =
logn

W (e−1 logn)
+ 1

2 − v,

where v = m + τn. Then a straightforward calculation using (8.1) and Stirling’s
formula gives

1

d
logE[Cn,d] = v

(
W (e−1 logn) + 1

)− 1− 1
2 log 2π

+O

(
W (e−1 logn)2 + (v2 + 1)W (e−1 logn)

logn

)
.

Thus E[Cn,d] → ∞ if m ≥ 1 and E[Cn,d] → −∞ if m ≤ −1. When m = 0 (v = τn),
this asymptotic expansion is insufficient, and we need more terms. If v = τn = υ(t),
then the same calculation as above gives

E[Cn,d] = et
(
1 +O

(
W 2 + 1

logn

))
.

This implies (8.2).
Let

ai :=

⌊(
i− 1

2

e

)i− 1
2

⌋
+ 1 (i ≥ 1).

Then

d1 = d1(n) = i if ai ≤ n < ai+1.

The first few values of ai are given as follows.

i 4 5 6 7 8 9 10 11 12
ai 3 10 49 290 2022 16165 145405 1453435 15982276

9. A uniform lower bound for E[Md,k(n)]. The convergence rate in (2.1) is
very slow if d is large and k is close to d. It is interesting to characterize the transition
of Md,k(n) from zero to n as k increases under the condition that d and n are fixed.
However, the exact characterization is not easy, so we derive instead a lower bound
that provides a good approximation to the real transition.
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Theorem 10 (uniform lower bound in d, k, and n). Define

βd,k :=
∑

0≤j≤d−k

(
d

j

)
2−d.

Then, for n ≥ 1 and 1 ≤ k ≤ d− 1,

(9.1) E[Md,k(n)] ≥ nIn(βd,k),

where

In(x) := x

∫ 1

x

t−2 (1− t)
n−1

dt.

Proof. Select two random points x,y uniformly and independently in [0, 1]d.
Obviously,

P (x k-dominates y) = βd,k.

On the other hand, by definition, P (x k-dominates y) =
∫
[0,1]d |Bk(x)| dx. Thus∫

[0,1]d
|Bk(x)| dx = βd,k.

Let

F (t) =
∣∣{x ∈ [0, 1]d : |Bk(x)| ≤ t

}∣∣
be the distribution function of |Bk(x)|. By the Markov inequality

t (1− F (t)) ≤
∫
[0,1]d

|Bk(x)| dx (t ∈ (0, 1)).

Thus

F (t) ≥ 1−
∫
[0,1]d

|Bk(x)| dx
t

= 1− βd,k
t
.

Define

G(t) := max

{
1− βd,k

t
, 0

}
.

Then F (t) ≥ G(t). Now

(9.2) E[Md,k(n)] = n

∫
[0,1]d

(1− |Bk(x)|)n−1
dx = n

∫ 1

0

(1− t)
n−1 dF (t)

dt
.

Since the integral on the right-hand side of (9.2) becomes smaller if the distribution
function F (t) is replaced by G(t), we have

E[Md,k(n)] ≥ n

∫ 1

0

(1 − t)n−1 dG(t)

dt
,
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k

50 60 70 80 90 100
0

200

400

600

800

1000

E[Md,k(n)]

the lower bound (9.1)

Fig. 9.1. Simulation result of E[Md,k(n)] and the lower bound (9.1) for n = 1000, d = 100,
and k from 50 to 100.

from which (9.1) follows.
A useful, convergent asymptotic expansion for In(x), derived by successive inte-

gration by parts, is as follows:

In(x) =
∑
j≥0

(−1)j(j + 1)!

n(n+ 1) · · · (n+ j)
x−j−1(1 − x)n+j

=
(1− x)n

nx
− 2(1− x)n+1

n(n+ 1)x2
+ · · · ,

as long as x� 1/n. In particular, In(x) → 0 in this range of x. If xn → c > 0, then

In(x) → c

∫ ∞

c

u−2e−udu,

the latter tending to 1 as c approaches zero.
We see that the transition of In(x) from zero to 1 occurs at x � n−1 (meaning

that x is of order proportional to n−1). In terms of d and k, this arises when d→ ∞
and βd,k � n−1. Now, by the known estimate for binomial distribution (see [17] and
the references cited therein)

βd,k � (2α− 1)−1d−1/22−dα−αd(1− α)−(1−α)d,

when k ≥ d/2 +K
√
d, where α := k/d, and where K > 1 is a constant. We deduce

from this that the transition of In(βd,k) from zero to 1 occurs at c logn for some
c ∈ (0, 1). The exact location of this c matters less since In is simply a lower bound;
see Figure 9.1.

10. Conclusions. While the notion of a k-dominant skyline appeared as a nat-
ural means of solving the abundance of skylines, its use in diverse contexts has to be
carefully considered in view of the results we derived in this paper. We summarize
our findings and highlight suggestions for possible practical uses.

The asymptotic results we derived in this paper are either of a vanishing type
or of a blow-up nature; briefly, they are either zero or infinity when the sample
size becomes unbounded, making the selection of representative points more subtle.
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The expected number of k-dominant skyline points approaches zero under any of the
following situations.

• Hypercube: both d and k < d bounded.
• Simplex: both d and k < d bounded.
• Hypercube: the k-dominant skyline is extended to the dominance by a cluster
of j points with both d and k bounded.

In all cases, zero appears as the limit when n→ ∞. However, for practical purposes,
n is always finite, and thus the above limit results become less useful from a compu-
tational point of view. One needs asymptotic estimates that are uniform in d, k, and
n. But such results are often very difficult. The uniform asymptotic approximation
(6.4) we obtained leads to several interesting consequences, including particularly the
threshold phenomenon (7.2).

We conclude this paper by showing how the asymptotic results we derived above
can be applied in more practical situations. Assume that our sample is of size, say,
n = 104 or n = 105, and the dimensionality d is in the range {4, 5, 6, 7, 8} (smaller d
may result in more biased inferences, while larger d will yield too many skyline points).
We also assume that our dataset is sufficiently random and can be modeled by the
hypercube model. If our aim is to choose a reasonably small number of candidates
for further decision making, then how can our asymptotic estimates help?

First, for this range of n and d, the expected numbers of skyline points can be
easily computed by the recurrence relation (see [5])

μn,d =
1

d− 1

∑
1≤j≤d−1

H(d−j)
n μn,j (d ≥ 2),(10.1)

where μn,d := E[Md,d(n)], H
(a)
n :=

∑
1≤j≤n j

−a are the harmonic numbers, and
μn,1 := 1, and are given approximately by

E[Md,d(n)] ≈

�����n
d

4 5 6 7 8

104 164.7 426.3 902.7 1633.1 2603
105 304.9 955.8 2432.1 5239.4 9845

which are often too many for further consideration. So we turn to (d − 1)-dominant
skylines and estimate their numbers by our asymptotic approximations. However,
both Theorems 6 and 7 have poor error terms, and a better numerical approximation
to E[Md,d−1(n)] for most moderate values of n and d is given by

φd(n)− gd(n)

n
1

d−1

=
∑

0≤j≤d−2

(
d

j

)
(−1)j(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n− 1
d−1−j .(10.2)

We thus obtain, for example, the following numerical values:

E[Md,d−1(10
4)] ≈

d 4 5 6 7 8
φd(n)−gd(n)

n
1

d−1
0.57 4.82 23.98 83.89 226.65

Monte Carlo 0.61 5.06 24.85 88.90 243.96

and

E[Md,d−1(10
5)] ≈

d 4 5 6 7 8
φd(n)−gd(n)

n
1

d−1
0.29 3.61 24.38 111.79 386.08

Monte Carlo 0.31 3.69 24.94 115.31 404.7
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From these tables, one can choose a suitable d according to the need of practical uses.
Here we also see the characteristic property of the skylines, either very few or very
many points.

Our Monte Carlo simulations were carried out by a three-phase algorithm (ex-
tending our two-phase maxima-finding one in [12]) for finding the k-dominant skylines.
Briefly, the first two phases are modified from the algorithms presented in [12], and
the last phase removes all cycles.

For larger values of n for which only limited simulations can be performed or no
simulations at all are possible (for example, n � 109), our asymptotic estimates can
still provide helpful indications. For example, when n = 109 or 1010,

E[Md,d−1(n)] ≈

�����n
d

5 6 7 8 9

109 0.6 10.8 113.7 835.9 4677.2
1010 0.38 7.9 98.1 838.5 5399.9

In any case, according to our analysis above, the practical use of (d−1)-dominant
skylines is restricted to small dimensions (unless one is interested in larger representa-
tive groups). When the dimensionality is large, smaller values of k or other alternatives
are recommended, although useful theoretical asymptotic estimates are still lacking.

These tables also reveal a feature of the skylines or the random models, namely,
each dimensionality tends to increase the skyline counts significantly, which may be
an inherent property of the dominance relation.

To see further how real data in practice behave or contrast, we examine the
number of k-dominant skylines of the NBA statistics dataset, which contains about
17,000 players’ season records, each of which is a 17-dimensional attribute, describing
the performance of a player in each season. We can regard such a dataset as a
high-dimensional instance on the one hand. In contrast to our random model, most
attributes of such NBA data are strongly correlated, on the other hand, and which
representative attributes to include for selecting the “best players” depends on the
decision-maker’s goal. For example, if we aim at a more general evaluation, we could
choose the following eight factors: total points (PT), field goal percentage (FGP), free
throw percentage (FTP), total rebounds (REB), total assists (AST), steals (STL),
blocks (BLK), and three-point percentage (3PP). Because the last factor (3PP) was
recorded only from 1979 on, we split the calculations into two cases: a 7-dimensional
dataset (1952–2010, without 3PP) and an 8-dimensional dataset (1979–2010, with
3PP). The numbers of k-dominant skylines are listed as follows.

Cardinality d = 7 d = 8

|dataset| 16958 11446
|d-dominant skyline| 976 1594
theoretical values (10.1) (2174) (2832)
|(d− 1)-dominant skyline| 29 80
theoretical values (10.2) (91) (235)
|(d− 2)-dominant skyline| 0 1
|(d− 3)-dominant skyline| 0 0

Thus the behaviors are noticeably different from what is predicted by our esti-
mates. The reason is partly that in practice it is often difficult to select coordinates
that are close to being independent.
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Appendix A. Error analysis: d ≤
√

2 logn
W (2 logn)+K

. Recall that N := n
1

d−1 ,

and consider the integral

fd(n) =

(∫
R

d
+

−
∫
[0,N ]d

)
e
−y1···yd

(
1
y1

+···+ 1
yd

)
dy =

∑
1≤j≤d

(
d

j

)
(−1)j−1φd,j(n),

where

φd,j(n) :=

∫
[0,N ]d−j×(N,∞)j

e
−y1···yd

(
1
y1

+···+ 1
yd

)
dy.(A.1)

So our φd(n) =
1

d−1Γ
(

1
d−1

)d
corresponds to φd,0(n); see (6.5).

Proposition 1. Let d ≥ 3 satisfy 2 logn
d2 −W (2 logn) → ∞. Then

fd(n) = O
(
φd(n)dN

− 1
d−2

)
,(A.2)

uniformly in d.
Proof. We first prove that uniformly for 1 ≤ j ≤ d

φd,j(n) = O

(
Γ
(

1
d−2

)d−1

N− j
d−2

)
.(A.3)

Consider first the range 1 ≤ j ≤ d− 2. By extending the integration ranges and then
carrying out the changes of variables y� 	→ Nvd−�+1 for d− j + 1 ≤ � ≤ d, we obtain
the bounds

φd,j(n) = N j

∫
(1,∞)j

∫
[0,N ]d−j

e
−Njv1···vjy1···yd−j

(
1
y1

+···+ 1
yd−j

+ 1
Nv1

+···+ 1
Nvj

)
dydv

≤ N j

∫
(1,∞)j

∫
R

d−j
+

e
−Njv1···vjy1···yd−j

(
1
y1

+···+ 1
yd−j

)
dydv.

By the change of variables yj 	→ λ−
1

d−1xj for 1 ≤ j ≤ d, we have, for λ > 0,

∫
R

d
+

e
−λy1···yd

(
1
y1

+···+ 1
yd

)
dy =

Γ
(

1
d−1

)d

d− 1
λ−

d
d−1 (d ≥ 2).

It follows that

φd,j(n) ≤
Γ
(

1
d−1−j

)d−j

d− 1− j
N− j

d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j dv

= (d− 1− j)j−1Γ
(

1
d−1−j

)d−j

N− j
d−1−j

= O

(
Γ
(

1
d−2

)d−1

N− j
d−2

)

uniformly for 1 ≤ j ≤ d− 2. The remaining two cases j = d− 1, d are much smaller;
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we start with φd,d(n). By the same analysis used above, we have

φd,d(n) =

∫
(N,∞)d

e
−x1···xd

(
1
x1

+···+ 1
xd

)
dx

≤
∫
(N,∞)d

e
−x1···xd

(
1
x1

+···+ 1
xd−1

)
dx

≤
∫
(N,∞)d−1

e
−Nx1···xd−1

(
1
x1

+···+ 1
xd−2

)

x1 · · ·xd−1

(
1
x1

+ · · ·+ 1
xd−2

)dx.
By the inequality∫ ∞

N

t−αe−λtdt ≤ λ−1N−αe−λN (α ≥ 0, λ > 0),(A.4)

we obtain

φd,d(n) ≤ N−2

∫
(N,∞)d−2

e
−N2x1···xd−2

(
1
x1

+···+ 1
xd−2

)

x21 · · ·x2d−2

(
1
x1

+ · · ·+ 1
xd−2

)2 dx

≤ · · ·

≤ N−2−4−···−2(d−3)

∫
(N,∞)2

e−Nd−2(x1+x2)

(x1 + x2)d−2
dx

≤ N−(d−2)(d−3)

∫ ∞

2N

e−Nd−2w

wd−2
dw

≤ 22−dN−d2+2de−2Nd−1

.

Thus

φd,d(n) = O
(
2−dn−d+1+ 1

d−1 e−2n
)
.(A.5)

Finally,

φd,d−1(n) ≤
∫
(N,∞)d−1

e−x1···xd−1

x1 · · ·xd−1

(
1
x1

+ · · ·+ 1
xd−1

) dx

≤ 1

d− 1

∫
(N,∞)d−1

e−x1···xd−1

(x1 · · ·xd−1)
1+ 1

d−1

dx

by the inequality of arithmetic and geometric means

1

d− 1

(
1

x1
+ · · ·+ 1

xd−1

)
≥ (x1 · · ·xd−1)

1
d−1 .

Applying successively the inequality (A.4), we obtain

φd,d−1(n) ≤ N−1− 1
d−1

d− 1

∫
(N,∞)d−2

e−Nx1···xd−1

(x1 · · ·xd−2)
2+ 1

d−1

dx

≤ · · ·

≤ N−(d2−2d+2)

d− 1
e−Nd−1

.
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It follows that

φd,d−1(n) = O
(
d−1n−d+1− 1

d−1 e−n
)
.(A.6)

We see that both φd,d−1(n) and φd,d(n) are much smaller than the right-hand side of
(A.3).

The remaining case is when d = 2. Obviously,

φ2,1(n) <

∫ ∞

0

∫ ∞

N

e−y1−y2dy2dy1 = e−N .

The upper bound (A.2) then follows from summing φd,j(n) for j from 1 to d using
(A.3),

∑
1≤j≤d

(
d

j

)
(−1)j−1φd,j(n) = O

⎛
⎝Γ

(
1

d−2

)d−1 ∑
j≥1

dj

j!
N− j

d−2

⎞
⎠

= O

(
Γ
(

1
d−2

)d−1

dN− 1
d−2

)
,

since dN− 1
d−2 → 0 for d in the range (6.3).

It remains to estimate Rd(n) (see (6.5)), which can be proved to be bounded
above by

Rd(n) = O

(
d

N

∫
R

d
+

y1 · · · yde−y1···yd

(
1
y1

+···+ 1
yd

)
dy

)

= O

(
1

N
Γ

(
2

d− 1

)d
)
.

This proves (6.6).

Appendix B. Proof of Theorem 7. We prove Theorem 7 in this appendix.
Our method of proof consists in a finer evaluation of the integrals φd,j(n), leading to
a more precise asymptotic approximation to fd(n).

Proposition 2. Uniformly for d in the range (6.7)

fd(n) ∼ 1− e−ρ

2− e−ρ
· 1

d− 1
Γ

(
1

d− 1

)d

,(B.1)

where ρ := d
en1/d2

.

Proof. Consider again (A.1), and start with the changes of variables y� 	→
Nvd−�+1 for d− j + 1 ≤ � ≤ d,

φd,j(n) = N j

∫
(1,∞)j

∫
[0,N ]d−j

e
−λN,j(v)y1···yd−j

(
1
y1

+···+ 1
yd−j

+ 1
Nv1

+···+ 1
Nvj

)
dydv,

where λN,j(v) := N jv1 · · · vj . Then we carry out the changes of variables

y� 	→ λN,j(v)
− 1

d−1−j x� (1 ≤ � ≤ d− j)
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and obtain

φd,j(n) = ψd,j(n) + ωd,j(n),

where

ψd,j(n) = N− j
d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j

∫
[0,N0]d−j

e
−x1···xd−j

(
1
x1

+···+ 1
xd−j

)
dxdv,

with

N0 := N
d−1

d−1−j (v1 · · · vj) 1
d−1−j = (nv1 · · · vj) 1

d−1−j ,

and the error introduced is bounded above by

ωd,j(n) := N− j
d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j

×
∫
[0,N0]d−j

e
−x1···xd−j

(
1
x1

+···+ 1
xd−j

) (
e
−x1···xd−j

N0

(
1
v1

+···+ 1
vj

)
− 1

)
dxdv

= O

(
N−1− 2j

d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 2
d−1−j

(
1
v1

+ · · ·+ 1
vj

)

×
∫
R

d−j
+

e
−x1···xd−j

(
1
x1

+···+ 1
xd−j

)
x1 · · ·xd−jdxdv

)

= O

(
j2−j(d− 1− j)j−2Γ

(
2

d−1−j

)d−j

N−1− 2j
d−1−j

)
.

Thus the total contribution of ωd,j(n) to fd(n) is bounded above by

hd(n) :=
∑

1≤j≤d−2

(
d

j

)
(−1)j−1ωd,j(n)

≤
∑

1≤j≤d−2

(
d

j

)
j2−j(d− 1− j)j−2Γ

(
2

d−1−j

)d−j

n
1

d−1− 2
d−1−j ,

(B.2)

which will be seen to be of a smaller order.
The recurrence relation. Now

ψd,j(n) = N− j
d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j

∫
R

d−j
+

e
−x1···xd−j

(
1
x1

+···+ 1
xd−j

)
dxdv

−N− j
d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j fd−j(nv1 · · · vj)dv

= (d− 1− j)j−1Γ
(

1
d−1−j

)d−j

N− j
d−1−j

−N− j
d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j fd−j(nv1 · · · vj)dv.

So we get the following recurrence relation.
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Lemma 2. The integrals fd(n) satisfy

fd(n) = gd(n) + hd(n) + ηd(n)(B.3)

+
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1− 1

d−1−j

·
∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j fd−j(nv1 · · · vj)dv

for d ≥ 3, with the initial condition

f2(n) = 2e−n − e−2n,

where hd(n) is given in (B.2),

gd(n) :=
∑

1≤j≤d−2

(
d

j

)
(−1)j−1(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n
1

d−1− 1
d−1−j ,

and ηd(n) := φd,d−1(n) + φd,d(n).
Note that, by (A.5) and (A.6),

ηd(n) = O
(
d−1n−d+1− 1

d−1 e−n + 2−dn−d+1+ 1
d−1 e−2n

)
= O

(
n−d+2e−n

)
.

Also, by the change of variables t 	→ v1 · · · vj , we have

fd(n) = gd(n) + hd(n) + ηd(n)

+
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1− 1

d−1−j

(j − 1)!

∫ ∞

1

t−1− 1
d−1−j (log t)j−1fd−j(nt)dt,

which is easier to use for symbolic computation software.
We then obtain, for example,

f3(n) = 3n− 1
2 +O

(
n− 3

2

)
,

f4(n) = 4π
3
2n− 1

6 +O
(
n− 2

3

)
,

f5(n) =
80π4

9Γ
(
2
3

)4 n− 1
12 − 60π

3
2n− 1

4 +O
(
n− 5

12

)
.

But the expressions soon become too messy.
Asymptotic estimate for gd(n). We derive first a uniform asymptotic approxi-

mation to gd(n), which will be needed later. We focus on the case when d tends to
infinity with n.

Lemma 3. If d satisfies (6.7), then

gd(n) =
1

d− 1
Γ

(
1

d− 1

)d {
1− e−ρ + ρe−ρ

(
2ρ− 1

2d
+
ρ− 3

d3
logn

)

+ O

(
ρe−ρ(ρ3 + 1)

d2

(
1 +

log2 n

d4

))}
(B.4)
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uniformly in d.
Proof. First, we have

(
d
j

)
(−1)j−1(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n− j
(d−1)(d−1−j)

1
d−1Γ

(
1

d−1

)d

=
dj

j!
(−1)j−1n− j

d2 exp

(
−j − j(2j − 1)

2d
− j(j + 2)

d3
logn+O

(
j3

d2
+
j3

d4
logn

))

uniformly for j = o(d
2
3 ). Summing over all j gives (B.4). Here the errors omitted are

estimated by the inequalities

⎧⎪⎨
⎪⎩

(
d
j

)
= O

(
dj

j! e
− j2

2d

)
,

Γ
(
1
x

) ≤ x (x ≥ 1),

(d− 1− j)d−1 ≤ dd−1e−j− j2

2d

for 1 ≤ j ≤ d − 2, and we see that the contribution of terms in gd(n) with indices

larger than, say, j0 := �d 3
5 � is bounded above by

∑
j≥j0

(
d

j

)
(−1)j−1(d− 1− j)j−1Γ

(
1

d−1−j

)d−j

n− j
(d−1)(d−1−j)

= O

⎛
⎝ 1

d− 1
Γ

(
1

d− 1

)d ∑
j≥j0

ρj

j!

⎞
⎠

= O

(
1

d− 1
Γ

(
1

d− 1

)d
ρj0

j0!

)
.

Thus for d in the range (6.7)

j0 log ρ− log j0! =
2
5d

3
5 log d− d−

7
5 logn+ d

3
5 +O(log d)

≤ −
(
2−

7
5 − 1

5 2
3
5

)
(logn)

3
10 (log logn)

7
10 (1 + o(1))

≤ − 3
40 (log n)

3
10 (log logn)

7
10 (1 + o(1)),

so that

ρj0

j0!
= O

(
e−

3
40 (logn)

3
10 (log logn)

7
10 (1+o(1))

)
,

and the sum of these terms is asymptotically negligible. The errors
∑

j≥j0
ρj

j! are
estimated similarly.

Iteration of the Φ-operator. To derive a similar estimate for fd(n), we define the
operator

Φ[fd](n) :=
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1− 1

d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j fd−j(nv1 · · · vj)dv.
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By iterating the recurrence (B.3), we obtain

fd = gd + hd + ηd +
∑

1≤j≤d−2

Φj [gd + hd + ηd],

where Φj [fd] = Φ[Φj−1[fd]] denotes the jth iterate of the Φ-operator.
Surprisingly, despite the complicated forms of the partial sums, each Φm[gd] can

be explicitly evaluated and differs from gd only by a single term.
Lemma 4. For any m ≥ 0

Φm[gd](n) =
∑

m<�≤d−2

(
d

�

)
(−1)�−1(d− 1− �)�−1Γ

(
1

d−1−�

)d−�

n
1

d−1− 1
d−1−�σm(�),

(B.5)

where σm(�) is always positive and is defined by

σm(�) :=
∑

j1+···+jm+1=�
j1,...,jm+1≥1

(
�

j1, . . . , jm+1

)
.

Note that

σm(�) = �![z�] (ez − 1)
m+1

=
∑

1≤r≤m+1

(
m+ 1

r

)
(−1)m+1−rr�.

Proof. By definition and by rearranging the terms,

gd(n) =
∑

1≤�≤d−2

(
d

�+ 1

)
(−1)d−��d−2−�Γ

(
1
�

)�+1
n

1
d−1− 1

� .

Substituting this expression into the Φ-operator, we see that

Φ[gd](n) =
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1− 1

d−1−j

∫
(1,∞)j

(v1 · · · vj)−1− 1
d−1−j gd−j(nv1 · · · vj)dv

=
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1

×
∑

1≤�≤d−j−2

(
d− j

�+ 1

)
(−1)d−j−��d−2−j−�Γ

(
1
�

)�+1
n− 1

�

∫
(1,∞)j

(v1 · · · vj)−1− 1
� dv.

Then

Φ[gd](n) =
∑

1≤j≤d−2

(
d

j

)
(−1)jn

1
d−1

∑
1≤�≤d−j−2

(
d− j

�+ 1

)
(−1)d−j−��d−2−�Γ

(
1
�

)�+1
n− 1

�

=
∑

1≤�≤d−2

(
d

�+ 1

)
(−1)d−��d−2−�Γ

(
1
�

)�+1
n

1
d−1− 1

�

∑
1≤j≤d−2−�

(
d− 1− �

j

)

=
∑

1≤�≤d−2

(
d

�+ 1

)
(−1)d−��d−2−�Γ

(
1
�

)�+1
n

1
d−1− 1

�

(
2d−1−� − 2

)
=

∑
1≤�≤d−2

(
d

�

)
(−1)�−1(d− 1− �)�−1Γ

(
1

d−1−�

)d−�

n
1

d−1− 1
d−1−�

(
2� − 2

)
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By repeating the same analysis and induction, we prove (B.5).
Corollary 3. If d satisfies (6.7), then

Φm[gd](n) ∼ (−1)m 1
d−1Γ

(
1

d−1

)d (
1− e−ρ

)m+1
(m = 0, 1, . . . ).

Summing over all 0 ≤ m ≤ d − 2, we deduce (B.1), and only the error estimates
remain.

Error analysis. The consideration of Φm[hd] is similar, and we obtain

Φm[hd](n) ≤
∑

m<�≤d−2

(
d

�

)
2−�(d− 1− �)�−2Γ

(
2

d−1−�

)d−�

n
1

d−1− 2
d−1−�σ′

m(�),

where

σ′
m(�) :=

∑
j1+···+jm+1=�
j1,...,jm+1≥1

(
�

j1, . . . , jm+1

)
jm+1

= �![z�]zez (ez − 1)
m

= �
∑

0≤r≤m

(
m

r

)
(−1)m−r(r + 1)� (m ≥ 0).

Thus, with

ρ0 :=
d

en2/d2 ,

which is always ≤ log 2 when d satisfies (6.7), we then have

Φm[hd](n)

1
d(d−1)2d

Γ
(

1
d−1

)d

n− 1
d−1

= O

⎛
⎝ ∑

0≤r≤m

(
m

r

)
(−1)m−r

∑
�≥0

ρ�0
(� − 1)!

(r + 1)�

⎞
⎠

= O

⎛
⎝ρ0eρ0

∑
0≤r≤m

(
m

r

)
(−1)m−r(r + 1)erρ0

⎞
⎠

= O
(
ρ0e

ρ0
(
(eρ0 − 1)m−1 ((m+ 1)eρ0 − 1)

))
.

Now ∑
0≤m≤d−2

(
(x− 1)m−1 ((m+ 1)x− 1)

)
= O(d2)

whenever 0 ≤ x ≤ 2. It follows that∑
0≤m≤d−2

Φm[hd] = O

(
2−dd−2Γ

(
1

d−1

)d

n− 1
d−1 ρ0e

ρ0

)
,

which holds uniformly as long as eρ0 ≤ 2. This is how the upper limit of d in (6.7)
arises.

In such a case,∑
0≤m≤d−2

Φm[hd] = O

(
2−dd−1Γ

(
1

d−1

)d

n− 1
d−1− 2

d2

)
.
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We consider now Φj [ηd]. Note that an exponentially small term remains expo-
nentially small under the Φ-operator because∫

(1,∞)j
(v1 · · · vj)−1−αe−nv1···vjdv ∼ n−je−n.

So all terms of the form Φm[ηd] are asymptotically negligible. And we then deduce
(B.1).

More calculations give

fd(n)

1
d−1Γ

(
1

d−1

)d
=

1− e−ρ

2− e−ρ
+

ρe−ρ

(2 − e−ρ)3

(
2ρ− 1 + (ρ+ 1

2 )e
−ρ

d

+
2(ρ− 3) + (ρ+ 3) e−ρ

d3
logn

)
+O

(
ρe−ρ

d2
(ρ3 + 1)

(
1 +

log2 n

d4

))
.

Note that the range (6.3) arises because we had to drop factors of the form (−1)j

in estimating the sum of hd(n). With a more careful analysis along the same inductive
line, we can extend the range of uniformity of (B.1).
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