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"...tous les effets de la nature, ne sont que

les résultats mathématiques d’un petit

nombre de lois immuables."

--- P. S. Laplace

Data is everywhere, notably in this information ex-
plosion era. Beyond the first-order summary of a sam-
ple by its average value or its median, the bell-shaped
Gaussian (or normal) curve has long been observed in
the histograms of many data samples since the early his-
tory of probability, statistics and related fields. The Gaus-
sian distribution, known commonly under the name of
Law of Frequency of Errors, first appeared in 1733 in
de Moivre’s works (see his Doctrine of Chance, second
edition, first published in 1738, and [9]) as the limit of
suitably normalized binomial distributions; see Figure 1.
The following intuitive arguments of G. Galilei (see [9,
Ch. 1]) may be regarded as the first-level description of
the Law:

“...random errors are inevitable in instru-
mental observations, that measurements are
equally prone to err in one direction or the
other, and that the majority of observations
tend to center around the mean value.”
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While intensive recent attention has been paid on complex networks having the power law
as one of the omnipresent characteristics, the importance and power of the Gaussian distribution
in modeling and predicting theoretical and practical situations should not be underestimated.
Indeed, as Francis Galton put it (see [4]):

“The law would have been personified by the Greeks and deified, if they had known
of it.”
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The prototype source of the normal distribution is the classical central limit theorem (CLT),
first given by Laplace in his Théorie Analytique des Probabilités in the beginning of the nine-
teenth century.

Classical CLT: Given a sequence of indepen-
dent and identically distributed random variables
fXjgj�1, if 0 < �2 WD V.X1/ < 1 exists, then the
distributions of the sums Sn D

P
1�j�n Xj , when

centered and normalized, are asymptotically Gaus-
sian (or normal) in the following sense
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e�t2=2 dt; (1)

as n!1, for x 2 R, where � WD E.X1/.
Figure 1: Binomial to Gaussian.

Laplace’s analytic realization via characteristic functions of this classical “Law of Fre-
quency of Errors” represents (see [11, p. 283]) “the crowning achievement of his persistent
efforts, extending over a period of more than twenty years” (almost forty years, according
to [3, p. 18]).

The early two-century history (from 1730’s to 1930’s) of the central limit theorem is tersely
and amusingly summarized by Le Cam (see [8]):

In the beginning there was de Moivre, Laplace, and many Bernoullis, and they
begat limit theorems, and the wise men saw that it was good and they called it by
the name of Gauss. Then there were new generations and they said that it had
experimental vigor but lacked in rigor. Then came Chebyshev, Liapounov, and
Markov and they begat a proof and Pólya saw that it was momentous and he said
that its name shall be called the Central Limit Theorem. . . .

For more detailed information on the historical aspects of the CLT, see the books [1, 3, 5, 9,
10].

The final form of the classical CLT, from its first primitive version by Laplace in 1810
to its final iff-version for sums of independent random variables by Lindeberg (sufficiency in
1922), Feller and Lévy (necessity in 1935), also marks the beginning of the modern dominant
measure-theoretic approach in probability theory and related fields. In contrast, the classi-
cal analytic approach, based either on characteristic functions or on the method of moments,
has become almost obsolete, and appeared only sporadically in the literature. It is from this
methodological perspective that Flajolet’s works stand out in the modern literature on random
discrete structures, notably through his persistent use and developments of general analytic
schemes (see below for more details). We aim here to highlight, through a brief analysis and a
simple classification of his works on limit theorems, his contribution in random combinatorial
structures and related areas, focusing on one of the central aspects—the Gaussian limit law in
analytic combinatorics.

One standard proof of (1) follows from the line of characteristic functions, first introduced
by Laplace and then popularized by Lyapunov: Define '.t/ WD E

�
eitX1

�
. Then E

�
eitSn

�
D

'n.t/. The asymptotic relation (1) results from a Taylor expansion of second order
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eit.Sn��n/=.�

p
n/
�
D e��

p
nit=�'

�
t

�
p

n

�n

D e�t2=2.1Co.1//;

2



and Lévy’s continuity theorem:

If the sequence of characteristic functions 'n.t/ D E.eitXn/ tends to '.t/ D
E.eitX / as n ! 1, and if '.t/ is continuous at t D 0, then the distribution
function of Xn converges to that of X .

We can schematize the above approach as follows.

RVs
Xj

!
SumsP

1�j�n Xj
!

CFs
'.t/n

!
Limit law

N
; (2)

which, although simple enough, leads to fruitful extensions of many combinatorial distribu-
tions. Here RV denotes “random variable” and CF is the abbreviation of “characteristic func-
tion”.

For example, an intuitive “translation” of the above flow pattern (2) to combinatorial struc-
tures goes as follows.

Components ! Structures !
Generating
functions ! Limit law : (3)

Roughly, we expect that each component (in generic sense) “mimics” the rôle of an individual
random variable and the parameter or characteristic of interest in the structures that of the
“sums”. (Note that the components are generally not independent.) Since the Gaussian law is
pervasive in the situations of large sums of small RVs, one expects that such a “normal” law
has a similar central rôle in analytic combinatorics.

More precisely, this translation leads indeed to a paradigm for random combinatorial struc-
tures, briefly summarized in the following diagram.

(Random)
Combinatorial

Structures

Bivariate
Generating
FunctionsP
n;k an;kykzn

Asymptotic
and Stochastic

Properties

Algebraic Analytic

Singularity
Analysis

Saddle-point
Method

Such a simple diagram is thoroughly discussed in Chapter IX of his authoritative book,
jointly written with Sedgewick, “Analytic Combinatorics” [PF201]. The general question of
interest here is roughly as follows. To each double-indexed nonnegative sequence fan;kg, which
often enumerates the number (weighted or unweighted) of combinatorial structures of size n

with k “components” (or other parameters), we associate the sequence of random variables

P.Xn D k/ WD
an;kP
j an;j

;
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and study the stochastic properties of Xn. A general analytic approach consists in considering
the bivariate generating function f D f .z;y/ WD

P
n;k an;kykzn and deducing the required

asymptotic properties by analytic properties of the function f , regarded as an analytic function
in the complex .z;y/-planes.

Once this paradigm between the connection of random combinatorial structures and their
stochastic behaviors becomes clear through the use of generating functions, one can then fo-
cus on classifying the generating functions, which are themselves analytic functions in almost
all cases of interest, leading to the systematic study of schemas (or analytic schemes) fully
explored in [PF201, Ch. IX]; see the following diagram.

Combinatorial
Structures

Stochastic
Properties

Bivariate GFs
Complex
Analysis

Classification of Singularities
H) Analytic Schemes

In particular, in the case of asymptotic normality, nine different schemas of diverse nature and
degree of generality (see Table 3 below) are proposed and discussed with great length, largely
extending many previous works including particularly his own papers [PF088], [PF112], [PF117]
and building firmly a stochastic theory via analytic combinatorics.

As described in [PF201, P. 12]:

A parameter of a combinatorial class is fully determined by a bivariate generat-
ing function, which is a deformation of the basic counting generating function of
the class . . . Then, the asymptotic distribution of a parameter of interest is char-
acterized by a collection of surfaces, each having its own singularities. The way
the singularities’ locations move or their nature changes under deformation en-
codes all the necessary information regarding the distribution of the parameter
under consideration. Limit laws for combinatorial parameters can then be ob-
tained and the corresponding phenomena can be organized into broad categories,
called schemas. It would be inconceivable to attain such a far-reaching classifi-
cation of metric properties of combinatorial structures by elementary real analysis
alone.

It is from this methodological perspective and his systematic developments that we see
how Flajolet succeeded in building up a modern theory of limit theorems based on classical
analytic tools. While the notion of analytic schemes is not new and finds its roots in many
early papers on analytic number theory and integer partitions, his unprecedented thoroughgoing
investigation using powerful analytic tools institutes the foundation for analytic combinatorics.

Among all Flajolet’s published papers, there are about two dozens where Gaussian limit
law explicitly appears or is proved, and diverse techniques are developed or theorized. The
majority of random variables studied follow an asymptotically Gaussian distribution of the
form N .cn; c0n/ with linear mean and linear variance, conforming to some extent the analogy
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Paper Parameters of Structures Equation Tool
[PF045] size of trees of given height fkC1.z/ D Poly.z; fk.z// SPM
[PF047] wagons in trains g.z/h.z/k SPM
[PF076] local discrepancy of seqs.

P
0�j�n Xn;j MM

[PF088] components in set (multiset) .1 � z=�/�yg.z;y/ SA
[PF096] depth of increasing trees g.z/y

R z
0 g.t/1�y dt SA

– leaves of increasing trees
R f

0
dt

.y�1/�0C
P
j �j tj

D z SA

[PF107] coeffs. of polynomials log 1
1�z

z.1�y log 1
1�z /

SA

[PF112] algebraic-logarithmic
�

1
1�yg.z/

�˛ �
log 1

1�yg.z/

�k
SA

[PF105]
[PF115]

cost of mergesort Xn
d
D Xbn=2c CXdn=2e C Tn

P
RVi

[PF117] depth of quadtrees .z.1 � z/D/d .f � g/

D 2dyf
SA

– a DE schema
P

0�j�r
'j

.1�z/j
f .r�j/ D 0 SA

[PF135] patterns in BSTs f 0 D f 2 C g SA
[PF142] cost of hashing g.z;y/cn SPM

[PF149]
parameters of non-
crossing structures

P
0�j�r 'jf

j D 0 SA

Table 1: Gaussian limit laws in Flajolet’s published papers before 2000. Here MM denotes
“method of moments”, and BST “binary search tree”. For convenience, f is the abbreviation
of f .z;y/ and the 'j ’s are analytic functions of z and y.

between the two concept patterns (2) and (3); see also Table 3 for a list of more general schemas.
In words, we may say that the standard combinatorial constructions (such as sequence, set,
etc.), tend to build structures that have regularly behaved components, generating the Gaussian
law.

Instead of classifying the diverse CLTs by the order of the mean and that of the variance,
we provide a different means based on the major analytic techniques used: singularity analysis
(SA), saddle-point method (SPM) and other approaches; see Tables 1 and 2 and Figure 2. Note
that this simple classification is completely general and not limited to Flajolet’s works.

Tables 1 and 2 summarize all Gaussian limit laws appearing in Flajolet’s published papers,
where we see not only the diversity of the random structures studied (from algorithmics and
combinatorics), but also, through the wide spectrum of analytic forms, the power of his analytic
knowledge in solving these problems and in establishing an “analytic universe”. Note that the
classification by the major techniques used is not unique and serves mostly for a better synopsis
of his works. Indeed, many analytic problems solvable by SA can be changed into a problem
suitable for SPM by a change of variables, or particularly Lagrange’s inversion formula.

An important notion to be mentioned here is the quasi-power approximation (another term
coined by Flajolet; see [PF201], [6]), which refers to the property that the moment probabil-
ity generating function satisfies asymptotically g.s/e�nh.s/, where �n ! 1 (not necessarily
integers) with n, and g; h are analytic functions for sufficiently small s 2 C. The major charac-
teristic of such an estimate, as mostly resulted from SA or SPM in the case of large powers of
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Paper Parameters of Structures Equation Tool(s)

[PF155] crossings in chord diagrams
Pn

kD�n
2nn!.�1/kyk.k�1/=2

.nCk/!.n�k/!.1�y/n
SPM

[PF159] cost of radix selection f D beyz.b�1/=bf
�yz

b
;y
�

Cz.1 � y/
QP

– cost of distributive sort g.z;y/n SD
– cost of radix sort f D f b

�yz
b
;y
�
C z.1 � y/ SD

[PF152]
[PF160]

composition scheme g.yh.z// or hk.z/ SD

[PF168] final altitude of meander g.z;y/
1�yh.z/

SA
[PF151]
[PF174]

motifs in text g.z;y/
det.Im�m�zh.y// SG

[PF176]
[PF193]

probabilistic counters 1
m

P
1�j�m Cm;j

P
RVi

[PF183]
[PF186]

balls in urns
.1 � szybCs/f 0z
C.ybCsC1 � y1�a/f 0u
D t0ybCsf

PDE
SA

[PF164]
[PF191]

hidden pattern in texts
P

j Xn;j MM

– (fully constrained) g.y/t h.y/n�c1 QP

[PF198]
symmetries in

phylogenetic trees
f D z C f 2

2

C.y � 1
2
/f .z2;y2/

SA

Table 2: Gaussian limit laws in Flajolet’s published papers after 2000. Here PDE denotes
“partial differential equation” and QP “quasi-power theorem”. Again, f without parameters
denotes f .z;y/.

generating functions, is that the asymptotic approximation holds uniformly for s lying in some
neighborhood of the origin, implying more analytic techniques can be applied for obtaining the
properties of interest.

Flajolet was one of the few who re-
ally managed to prove the local limit the-
orem, which provides a theoretical justi-
fication closer to what one often draws
for discrete distributions. Papers where
local limit theorems are proved include
[PF047] (wagons in trains), [PF135]
(patterns in BSTs), [PF151], [PF174]
(motifs in texts), [PF160] (planar maps),
[PF164], [PF191] (texts), [PF198] (phy-
logenetic trees). An application of
the SPM is needed for which the hard
part always lies in obtaining a uni-
form estimate of jf

�
z; ei�

�
j (or that of

jE.eXni�/j) for z � 1 and j� j � � .

y-plane

Local limit
f .z;ei� /

j�j � �

Moments
f .z;1C o.1//

Counting
f .z;1/

Large deviations
(right) f .z;y/

y� 1� "

Central limit
f .z;ei� /

j�j � "

Large deviations
(left) f .z;y/
y� 1��"

jyj D 1

0�1

The correspondence between the stochastic proper-
ties of the random variables in question and the cor-
responding bivariate GF; this is essentially Figure
IX.9 (p. 649) of [PF201].

While most analytic schemes seem centering around the use of SA, one should note that
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Gaussian

limit law

Singularity

Analysis

Saddle-Point

Method

Other

Approaches

Moving

Singularity

Moving

Exponent

Quasi-Power

Large

Power

(explicit)

de-

Poissonization

(implicit)

P
i Xn;i

Method of

Moments

Explicit Implicit

[PF047]

[PF074]

[PF107]

[PF112]

[PF151]

[PF168]

[PF096]

[PF135]

[PF144]

[PF183]

[PF188]

[PF088]

[PF096]

[PF117]

[PF144]

[PF164]

[PF191]

[PF045]

[PF047]

[PF142]

[PF152]

[PF155]

[PF159]

[PF159] [PF105]

[PF115]

[PF164]

[PF176]

[PF191]

[PF193]

[PF164]

[PF191]

Figure 2: A classification of all Gaussian limit laws appearing in Flajolet’s published pa-
pers. Following the treatment in [PF201, Ch. IX], all CLTs established by SA are divided
into two subclasses: moving singularity and moving exponent. Moving singularity refers to
a singularity of the type g.y/.1 � z=�.y//�˛, implying an asymptotic estimate of the form
Qg.y/.�.y/=�.1//�n for y near unity, which then leads to the asymptotic normality N .cn; c0n/.
On the other hand, moving exponent is connected to the local expansion g.y/.1 � z=�/�˛.y/

near the dominant singularity, yielding the asymptotic estimate Qg.y/n˛.y/�1 for y � 1, which
in turn entails N .c log n; c0 log n/. In the case of CLT via SPM, we can further distinguish
between large powers of generating functions and de-Poissonization, the functions in question
in the former class being often explicit while those in the latter implicit.

the application of SPM consists itself of a process of Gaussian approximation (if the order of
the saddle-point is two). SPM is applied in the papers [PF036], [PF037], [PF043], [PF045],
[PF047], [PF069], [PF074], [PF078], [PF079], [PF080], [PF091], [PF094], [PF097], [PF121],
[PF123], [PF124], [PF125], [PF135], [PF142], [PF156], [PF160], [PF162], [PF173], [PF179],
[PF183], [PF191], [PF195], [PF197], [PF198], [PF206], [PF207], where they can be further
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classified into large powers of functions, Mellin integrals and product forms, details are omitted
here.

Other tools used for proving Gaussian limit laws in Flajolet’s papers include sums of in-
dependent random variables and method of moments. In addition to [PF164] and [PF191],
the method of moments was also employed to establish several other non-normal limit laws:
[PF033] (height of random trees), [PF114], [PF132] (lattice reduction), [PF142] (linear probing
hashing), [PF165] (Airy), and [PF175] (hashing).

To further illustrate the ubiquity of Gaussian law in analytic combinatorics, we summarize
in Table 3 all Gaussian schemas thoroughly expounded in [PF201, Ch. IX].

Theorem or
Proposition

Page(s) Schema Analytic form N
�
�n; �

2
n

�
Thm IX.8 645 Quasi-Power theorem � g.y/h.y/˛n N .c˛n; c

0˛n/

Prop IX.6 650–651
Supercritical
composition

g.yh.z// N .cn; c0n/

Thm IX.9 656 Meromorphic schema h.z;y/
g.z;y/

N .cn; c0n/

Thm IX.10 665
Systems of functional

equations
linear systems N .cn; c0n/

Thm IX.11 669
Variable exponent

perturbation '1 C '2g.z/�˛.y/ N .cn; c0n/

Thm IX.12 676
Algebraic singularity

schema
'1 C '2g.z;y/�˛ N .cn; c0n/

Prop IX.17 682
Perturbation of

algebraic functions
f D Poly.z;yIf / N .cn; c0n/

Prop IX.18 685–686 Linear DEs
P

0�j�r

'jf
.r�j/

.��z/j
D 0

N .c log n;

c0 log n/

Thm IX.13 690
Generalized quasi-

power theorem
� egn.y/

N .g0n.1/;

g0n.1/C g00n.1//

Table 3: All analytic schemas in [PF201, Ch. IX] for Gaussian limit laws proved by singularity
analysis and related techniques. Here 'j ’s are analytic functions of z and y.

The seven papers grouped in this chapter are all covered in the above tables; their contents
can be briefly summarized as follows.

– [PF045]: motivated by the study of the height of trees, Flajolet and Odlyzko studied the
polynomial iteration fkC1.z/ D Poly.z; fk.z//, and derived very precise estimates for
Œzn�fk.z/ when n is near cdk for some structural constant c and d is the degree of the
polynomial. The crucial estimate is the uniform quasi-power approximation fk.z/ �

g.z/h.z/d
k

for z lying in certain region.

– [PF088]: the exp(log)-schema was proposed and examined in details with a large number of
examples of the form N .c log n; c0 log n/. This paper has many follow-ups, including
particularly the book [2] on logarithmic combinatorial structures; see also [7].

– [PF096]: increasing trees were proposed and systematically studied, centering on combina-
torial, asymptotic and stochastic properties. An important feature is the contrast between
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the order log n for the depth of increasing trees (with enumerating generating functions
of the form f 0 D ‰.f /) and

p
n for that of Meir and Moon’s simply-generated family

of trees (with enumerating generating functions of the form f D z‰.f /).

– [PF112]: the alg-log schema (see Table 2) was developed by SA, with a wide range of
applications.

– [PF144]: a highly inspiring survey paper; continued fraction algorithms (including Euclidean
algorithm and the lattice reduction algorithm of Gauss) are examined through the persis-
tent use of transfer operators, yielding either stronger estimates or simpler proofs.

– [PF159]: different selection and sorting algorithms using bucketing techniques are analyzed.

– [PF198]: what is the probability that two randomly chosen phylogenetic trees of the same
size are isomorphic? Very precise asymptotic expansion is derived by analytic-combinatorial
techniques; as a byproduct, the number of symmetrical nodes in random phylogenetic
trees is showed to follow not only a CLT but also an LLT.

Laplace, in his Théorie Analytique des Probabilités, wrote

. . . la théorie des probabilités n’est, au fond, que le bon sens réduit au calcul . . . ;

and, according to Fischer [3],

Laplace’s accomplishments in probability theory . . . as he was working entirely
within the framework of classical probability theory to develop stochastics into a
universal method to which all scientific fields could be made accessible.

. . .

His “analytical” probability theory already transcended the range of its applica-
tions due to the relevance of its mathematical methods.

While the CLT is generally regarded as a bridge linking classical and modern probability
theory (see [3, Ch. 8]), we see, in Flajolet’s works, that classical analytic techniques, as he
largely adopted, revived and promoted, served as an effective platform on which diverse as-
pects of Combinatorics, Algorithmics, and Probability were clarified and theorized. In a sense,
Flajolet modernized Laplacian Mathematics.

We conclude this introduction with three histograms in Figure 3, showing further the ubiq-
uity of the Gaussian law.

"If you can specify it, you can analyse it"

--- Philippe Flajolet

References
[1] W. J. Adams. The Life and Times of the Central Limit Theorem, volume 35 of History of

Mathematics. American Mathematical Society, Providence, RI, second edition, 2009. In-
cluding papers by W. Feller and L. Le Cam and comments and a rejoinder by H. F. Trotter,
J. L. Doob, David Pollard and Le Cam, With an appendix containing four fundamental
papers by A. M. Lyapunov.

9



�2 �1 0 1 2 3 4 5 6 7
0

0:1

0:2

0:3

0:4

0:18

0:42

0:26

0:11

0:02
0:01

# authors

#
pa

pe
rs
=
2
0
8

�2 0 2 4 6 8 10 12 14 16 18
0

2 � 10�2

4 � 10�2

6 � 10�2

8 � 10�2

0:1

0:12

0:14

0:16

0:005

0:048

0:058

0:034

0:135

0:149
0:144

0:096
0:091

0:101

0:077

0:029

0:014
0:01

0:005 0:005

# words
�10 0 10 20 30 40 50 60 70 80 90 100 110

0

5 � 10�3

1 � 10�2

1:5 � 10�2

2 � 10�2

2:5 � 10�2

0:0029

0:0101

0:0125

0:0245

0:0188

0:0164

0:0096

0:0048

0:0005

# alphabets

Figure 3: A few statistics of Flajolet’s 208 items in his list of publications: the number of
coauthors (left), the number of words in titles (middle) and the number of alphabets (right).

[2] R. Arratia, A. D. Barbour, and S. Tavaré. Logarithmic Combinatorial Structures: a Prob-
abilistic Approach. EMS Monographs in Mathematics. European Mathematical Society
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