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In  the  past  two decades,  several  models  for food  webs  have  been  proposed.  Those  models  provide  possible
explanations  on how  the  food  webs  we observe  today  arrive  at their respective  network  structure.  Those
well  established  models  almost  all rely  on two  common  parameters,  the  numbers  of  species  and  trophic
links,  as  well  as  assuming  that  species  are  ranked  in  some  hierarchical  order  or  ecological  dimensions.
Under  those  model  assumptions  species  are  then  allowed  to  interact  with  each  other  depending  on  their
relative positions  in  relevant  ecological  dimensions,  resulting  in simulated  food  webs  that  can  capture
the characteristics  of their  real-life  counterparts.  In this  paper,  we propose  a  simple  model  for  food  webs
following  biological  intuitions.  Our model  differs  from  others  in  that we  do  not  have  the  prior  assumption
of  species  being  ordered  in  any  ecological  dimensions,  and  we  do not  assume  a  particular  number  of
trophic  links.  Our  model  here  takes  two  basic  parameters,  the  number  of species  and  the  number  of
resources,  and allows  the random  encounter  between  species  and  resources,  and  as  a  result  forming
trophic  interactions.  One  critical  assumption  in  this  model  is  that after  a species  obtains  resources,  it  will
then become  new  resources  for other  species  to  utilise.  In  essence,  the model  here  constructs  food  webs
by passing  resources  among  different  species.  Our  model  predicts  the maximum  number  of  trophic  links
of a  food  web  when  given  the number  of  species,  and  shows  that  connectance  is  a  non-linear  decreasing

function  of  species  number.  Furthermore,  this  simple  model  also  demonstrates  that  the  number  of  trophic
levels  tends  to decrease  when  resource  number  is  larger,  echoing  empirical  studies  from  the  literature.  We
further  modified  our simple  model  to  fit  a particular  food  web  data  and  suggest  the  possible  mechanism
underlying  the  growth  of the  empirical  food  web.  Lastly,  we  assessed  the  performance  of our  model  by
fitting it to a  wide  range  of real food  webs  and  compared  the  result  with  those  derived  from  other  models.
. Introduction

A  food web is a graphical representation of an ecosystem. It basi-
ally consists of nodes and links representing species and trophic
nteractions respectively. The structural organisations of food webs
ave attracted the attention of ecologists for decades as they are
hought to play a role in the stability or the robustness proper-
ies of various ecosystems (Pimm et al., 1991; Dunne et al., 2002;

elián and Bascompte, 2002; Estrada, 2007; Dunne and Williams,
009; Gilbert, 2009). Although food webs possess complex struc-
ural properties, yet theoreticians seek for simple rules that give rise
o the food webs we observe today (Cohen et al., 1990; Williams and

artinez, 2000; Cattin et al., 2004; Rossberg et al., 2006; Warren
Please cite this article in press as: Liu, W.-C., et al., A fish t
http://dx.doi.org/10.1016/j.ecolmodel.2012.03.036

t al., 2010); and it is this linkage between simplicity in underlying
echanism to complex macroscopic organisation that poses as one

f the major challenges in ecological research (Allesina et al., 2008).
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There have been quite a few food models in the literature in the
past two  decades, with the newer ones incorporating more realistic
or complicated rules mimicking mechanisms that seem to operate
in nature, and therefore they naturally perform better in fitting real
food webs than their older counterparts. The simplest food web
model to date is the cascade model where species are assumed
to be arranged in a hierarchical order in a linear dimension, with
higher species consuming lower ones in a probabilistic manner
(Cohen et al., 1990). The interpretation of this hierarchical ordering
of species is open to debate, but in general, species attributes such as
body size and metabolic rate are potential candidates (Cohen et al.,
1993; Woodward et al., 2005). This simple model paves the way
for other more complicated ones like the niche model (Williams
and Martinez, 2000) where each species is assumed to have a diet
range that allows for feeding cycles and cannibalism. Furthermore,
the following nested hierarchy model considers a more complex
rule of trophic interaction that spans more than a single dimension
ank model for assembling food webs. Ecol. Model. (2012),

(i.e. body size, phylogenetic constraints and adaptations) in order
to fit the real data better than its predecessors (Cattin et al., 2004).

Those mainstream food web  models have at least two  things in
common. First, there is a prior assumption of species being ordered
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Fig. 1. A pictorial representation of the base model. At time t = 0, there is a
collection of unoccupied resources, a species pool and an empty food web. At
t  = 1, the black species is selected to occupy a resource simply by chance, and it
now has a trophic level of 0 + 1 = 1, and the resource it occupies now has a label
value of 1. The present food web  only has the black species. At t = 2, a new species
(grey species) then enters the system and utilises the resource represented by
the black species, and the grey species has a trophic level of 1 + 1 = 2, and the
resource it now occupies has a label value of 2. The food web  now consists of
blackspecies and grey species with a trophic link between them. At t = 3, a new
species (dotted) is selected to utilise the resource previously occupied by the grey
 PRESS
elling xxx (2012) xxx– xxx

in one or multiple linear dimensions. Second, they share at least
two parameters: one is the number of species in a food web  and the
other, although only implicitly assumed, is the number of trophic
links (although food web models such as the cascade model and
the niche model do not explicitly predefine the number of trophic
links, but they are constrained by fixed connectance values). Here,
we ask if there is a more fundamental model for food webs that
does not require the prior assumption of species being ordered in a
hierarchical order along a linear dimension, as well as not to fix the
number of trophic links as a priori. If a layman is asked of how an
ecosystem works, then the most probable answer might be some-
thing along these lines: plants convert sun light to produce food
for herbivores, which then in turn become the food for carnivores,
and those carnivores then become the food of other top predators.
In this paper, we construct a simple model for food webs based
on this simple principle. The paper is organised as follows. First, we
describe the simplest version of our model (i.e. the base model), and
explore its structural properties. Second, we then fit the base model
to a small empirical food web. Third, we propose ways of modify-
ing our base model such that it can portray the basic characteristics
of the empirical food web  better. Fourth, we  then assess the per-
formance of our modified model in fitting several larger datasets
and compare our results with those derived from other food web
models. Finally, we discuss the implication of our models and their
results as well as some notes on future directions.

2. Models and results

2.1. Base model

Our model is of very simple nature. It assumes that an ecosystem
has R unoccupied resources (taking on integer values) and a pool of
S species waiting to enter an “empty food web”. A resource here is
of abstract nature, but it can be thought of as a unit of abiotic entity
such as space, land, energy or nutrients. We  define Vi as the label
value of resource i (see below) and set all label values to zero to
indicate all resources are unoccupied initially. The purpose of label
value of a resource is to indicate what species are eligible to occupy
and utilise it (see below). Next we define Wj as the trophic level of
species j. Here we adopt the concept of trophic level as in Begon
et al. (2006): species at trophic level 1 are primary producers (or
basal species); those at trophic level 2 are primary consumers; and
species at trophic level 3 are secondary consumers, and so on. A
species that is yet to appear in the food web has its trophic level
undetermined; and a species’ trophic level is determined when it
first enters the food web  (see below) and remains fixed throughout
the entire growth of the food web.

The model is constructed with the following rules. At time t, one
species is sampled from the species pool at random (with replace-
ment). One of the followings can happen:

(1) If the selected species is a new species (i.e. not present in the
food web  before time t), then it can utilise one resource picked
tank model for assembling food webs. Ecol. Model. (2012),

at random from the set of all resources. If resource i is picked,
then the trophic level of this new species equals to Vi + 1; and
resource i, now being occupied by this new species, has a new
label value equal to the trophic level of this new species.

species. The dotted species has a trophic level of 2 + 1 = 3, and the resource it now
occupies has a label value of 3. Now the food web consists of black, grey and dotted
species with the dotted species consuming grey species, and the grey species con-
suming black species. Note that there is no trophic link between black species and
dotted species because the resource the dotted species utilises was in the form of
grey species. At t = 4, the grey species is selected again by random chance, but this
time, it can only use resources that have label values lower than its trophic level (i.e.
the top-left, top-right and bottom-right resources), and simply by chance it utilises
the top-left one. The food web remains unchanged even though the grey species is
allowed to enter the system again.

dx.doi.org/10.1016/j.ecolmodel.2012.03.036
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2) If the selected species j is an existing species, then it is allowed
to pick a random resource i that has a label value lower than
its trophic level (i.e. Wj > Vi). The label value of this particular
resource now takes a new value equal to the trophic level of its
new owner.

3) If the selected species j is an existing species and if the label
value of every resource at time t is greater than or equal to Wj,
then nothing will happen.

In any cases, a trophic interaction from species i to species j
ccurs if species j utilises a resource whose most recent owner
s species i (i.e. j consumes i). The occupation and utilisation of a
esource here is analogous to a species consumes another species,
nd itself then becomes a resource for other species at higher
rophic levels.

These rules do not necessarily result in a new trophic link being
dded to the food web at each time step (note that we  distinguish
rophic links from trophic interaction by referring the former as a
irected link between two nodes in a food web). A new trophic link
rom species i to species j is added to the food web  if and only if:
1) there was no such a trophic link previously; and (2) species j
ccupies a resource that was previously occupied by species i. The
odel will not produce a new trophic link if one of the followings

ccurs: (1) there are no suitable resources for the selected species;
2) the selected species (regardless it is a new one or an existing
ne) utilises a previously unoccupied resource; and (3) the selected
pecies j is an existing species and it utilises a resource that was
reviously occupied by species i, and there is already a trophic link
rom species i to species j via other resource(s). The simulation of a
ood web is then terminated when all species are present and when
ll resources are being occupied by species at the highest trophic
evel (as no more new trophic links will be added to the food web).
ig. 1 gives a pictorial representation of the base model.

The base model has two parameters: one is the number of
pecies (S) and the other is the number of resources (R). Note that
he number of trophic links here is not a prefixed parameter but is a
onsequence of the model outcome. We  next investigate how two
undamental food web properties, namely the number of trophic
inks (L) and the number of trophic levels (T), vary when changing

 and S. For each parameter combination of R and S, we simulated
he model 1000 times, and determined the mean number of trophic
inks and the mean number of trophic levels. For a fixed number
f species, the number of trophic links increases initially towards

 peak, and then declines to zero when the number of resources
pproaches infinity (Fig. 2a). For larger species numbers, the cur-
ature is more profound and the number of trophic links peaks at
arger values of R (Fig. 2a).

As we can observe from Fig. 2a, for a given number of species,
here is always a maximum number of trophic links attainable
y the model. Theoretically speaking, the number of all possible
rophic links is (S2 − S)/2 for a directed graph. When the maximum
umber of trophic links produced by the model and its theoretical
aximum (i.e. (S2 − S)/2) are plotted against the number of species,
e can observe that they do not match with each other; in fact,

he maximum predicted by the model is far less than its theoret-
cal counterpart (Fig. 3a). To see this more clearly, we  can divide
he model maximum by the theoretical maximum, thus obtaining
he connectance of a model food web, and then plot this against
he corresponding number of species; and our result shows that
onnectance decreases non-linearly with species number (Fig. 3b).
hus, although intuition suggests that increasing species number
hould increase the number of trophic links, but this does not result
Please cite this article in press as: Liu, W.-C., et al., A fish t
http://dx.doi.org/10.1016/j.ecolmodel.2012.03.036

n an increase in food web connectance.
As for the number of trophic levels (Fig. 2b), we found that the

aximum value is always S − 1 regardless of species number; and
his occurs when the number of resources is 1. When the number
 PRESS
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of  resources increases, the number of trophic levels decreases non-
linearly to zero.

2.2. Testing the base model with data

Next we fit our base model to a simple food web  data. The
food web data used here describes the Kuosheng Bay ecosystem
in North-East Taiwan (Lin et al., 2004). We  use the version modi-
fied by Jordán et al. (2009) where there are 15 trophic groups and 36
trophic links (Fig. 4), and in this particular case there are 8 trophic
levels. Since we are given 15 species, we only need to systemati-
cally vary the number of resources (R) and see how the numbers of
trophic links and trophic levels change. Again, for each parameter
combination, we simulated the model 1000 times, and calculated
the mean numbers of trophic links and trophic levels. Fig. 5 shows
that the maximum number of trophic links attainable by the model
is around 27 and this occurs when R = 61. The model clearly under-
estimates the observed number of trophic links. But what is even
worse is that, with R = 61, the model also underestimates the num-
ber of trophic levels. There is a simple explanation for why  the base
model fails to produce more trophic links and trophic levels. Here
we assume that at time t each species has the same probability of
being selected to utilise resources. Imagine at the beginning when
all resource are unoccupied (i.e. label value zero), many species will
enter the food web  to become basal species. This then leads to fewer
new species at higher trophic levels resulting in a lower number of
trophic levels. Since there are fewer species at higher trophic levels,
the number of trophic links naturally will be low. Thus, in the light
of the reason given above, we should incorporate some rule such
that not all species can be selected to utilise resources with equal
probability.

2.3. Base model with Matthew effect

One simple modification of our base model is inspired by net-
work science and sociology. Real networks are dominated by a few
hubs that have disproportionately large numbers of connections,
and preferential attachment is thought to be a possible mecha-
nism responsible for this phenomenon (Barabási and Albert, 1999).
This in essence is the “rich get richer” effect, or better known as
the “Matthew Effect” in sociology, as first mentioned by Merton
(1968) (after being inspired by the Gospel of Matthew). Similar
phenomenon has also been discovered in the analysis of ecolog-
ical networks where well-connected species (e.g. the generalist
predators) tend to be the targets of interaction with new species
due to their larger population size or longer active foraging time
frames (Olesen et al., 2008; Bascompte and Stouffer, 2009). Thus,
after being inspired by all those mentioned above, we incorporate
the Matthew effect into our base model as follows. At time t, we
assume the probability of species i being picked is proportional to
the number of resources it has acquired:

Pr(i) ∝ Q x
i , (1)

where Qi is the number of resources acquired by species i and x is
a parameter measuring the strength of Matthew effect. When x = 0,
our base model is recovered; and when x becomes large, species
with more resources tend to be picked for utilising other resources.

For a fixed number of species, increasing x does not result in a
greater maximum number of trophic links; but it seems to delay
the rate at which the number of trophic links decays to zero when
the number of resources approaches infinity (Fig. 6a). Increasing
x also results in a higher number of trophic levels, which decays
ank model for assembling food webs. Ecol. Model. (2012),

slowly to zero as the number of resources becomes large (Fig. 6b).
As for finding the best parameter values for the Kuosheng Bay

food web, we searched through the R–x parameter space sys-
tematically. For each parameter combination, we performed 1000

dx.doi.org/10.1016/j.ecolmodel.2012.03.036
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Fig. 2. Simulation results for (a) the number of trophic links and (b) the number of trophic levels produced by the base model when the number of resources (R) varies from
1  to 1000. In both figures, from the top, the plots are for species number, S = 50, 40, 30, 20 and 10 respectively. Each data point is the average of 1000 model simulations with
a  specific set of parameter values.
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ig. 3. Simulation results for (a) the maximum number of trophic links attainable a
f  species (S) varies from 1 to 50. Here, model simulations were carried out with R =
inks,  (S2 − S)/2, given a particular value of S.

imulations and counted how many times we observed 36 trophic
inks and 8 trophic levels. We  then converted this into the proba-
Please cite this article in press as: Liu, W.-C., et al., A fish 
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ility of observing the empirical data. Fig. 7 shows the probability
f our model producing the observed data in the R–x parame-
er space, and the best fit parameter combination here is when

 = 51, x = 2. We  simulated our modified model with the best fit
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8

ig. 4. A graphical representation of the Kuosheng Bay food web  in North-East Taiwan.
pecies to consumer species. In this system, there are 15 species, 36 trophic links and 8 tr
 the corresponding connectance as predicted by the base model when the number
esources. In (a), the broken link shows the theoretical maximum number of trophic

parameter values 1000 times in order to construct a model dis-
tribution for the numbers of trophic links and trophic levels; and
tank model for assembling food webs. Ecol. Model. (2012),

the observed data still falls outside the 95% confidence region of
the model distribution (Fig. 8a and b). Thus, our base model with
Matthew effect cannot reproduce the observed data with meaning-
ful statistical significance.
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 Here nodes are species and directed edges are trophic links connecting resource
ophic levels.
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aximum number of trophic links produced is 27, and this occurs when R = 61,
nd  corresponds to 2 trophic levels. Each data point is the average of 1000 model
imulations with a specific set of parameter values.

.4. Base model with utilisation effect

We  propose another modification to our base model. In the origi-
al model, we assume that resources are equally likely to be utilised
y a species if the trophic level of this particular species is higher
han the resources’ label values. But it has been argued that food
uality, in terms of protein and energy required for metabolism
nd growth of consumers, often increases with the trophic posi-
ion of resources along the food chain (Bowen et al., 1995; Diehl,
003). Thus, it might not be far-fetched to assume that resources at
igher trophic levels tend to be more preferred than those at lower

evels. We  modify the base model by incorporating this utilisation
ffect as follows. At time t, again we pick a species at random, and
hen identify what resources are eligible for it to utilise. Next we
ssume that the probability of an eligible resource i being picked is
roportional to its label value:

r(i) ∝ Vy
i

, (2)

here Vi is the label value of resource i, and y is a parameter mea-
uring the strength of utilisation effect. When y = 0, our base model
s recovered; and when y becomes larger, resources of higher label
alues are more likely to be utilised than those with lower label
alues.

The effect of increasing y is to increase the number of trophic
inks as well as the number of trophic levels (Fig. 9). Unlike the
revious modification with Matthew effect, the maximum number
Please cite this article in press as: Liu, W.-C., et al., A fish t
http://dx.doi.org/10.1016/j.ecolmodel.2012.03.036

f trophic links attainable also increases with larger values of y;
owever, utilisation effect seems not to prolong the decline in the
umber of trophic links and trophic levels as much as the case with
atthew effect (compare Fig. 9 with Fig. 6).
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ach  data point is the average of 1000 model simulations with a specific set of parameter
darker colour correspond to those parameter combinations with which the model
is  more likely to produce the observed data. Here, the best parameter values are
R  = 51, x = 2.

Again, we  searched through the R–y parameter space (Fig. 10),
and identified the best parameter values with which the model
has the highest probability of producing outcomes similar to the
Kuosheng Bay food web (i.e. 36 trophic links and 8 trophic levels).
We found the best parameter combination is when R = 31, y = 3;
and model simulation with those parameter values shows that the
number of trophic links as well as the number of trophic levels
observed in the Kuosheng Bay food web are both within the 95%
confidence region of the model distribution (Fig. 11).

2.5. Food web structural properties comparison

Next, we take one step further to explore whether this modi-
fied food web model (i.e. base model with utilisation effect) can
produce other structural properties similar to the Kuosheng Bay
food web. We determined the following properties: (1) the num-
ber of food chains; (2) mean food chain length; (3) the variation in
food chain length; (4) the variation in in-degree (i.e. the number
of diet items of a species); (5) out-degree (i.e. number of predators
of a species); (6) the proportion of omnivore species (i.e. the frac-
tion of species which have prey from different trophic levels); (7)
ank model for assembling food webs. Ecol. Model. (2012),

the number of intra-guild predations (i.e. a structural motif con-
sisting of three species where i consumes both j and k, and j also
consumes k); and (8) mean maximum trophic similarity of a food
web as defined in Williams and Martinez (2000).  We adopted the
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ig. 9. Results for (a) the number of trophic links and (b) the number of trophic le
f  resources (R) varies from 1 to 200. In both figures, from the top, the plots are for 

pecies, and each data point is the average of 1000 model simulations with a specifi

ethodology proposed by Williams and Martinez (2000) to exam-
ne the fit between the model output and the data: (1) first we
imulated the base model with utilisation effect by using the best-
t parameter values 1000 times and then obtained the simulated
istribution of a particular food web property; (2) for each food
eb property, we determined the model mean and its standard
eviation; (3) for each food web property, we calculated the differ-
nce between the empirical value and the model mean, and then
ormalised this error by dividing it by the standard deviation of
he model distribution; (4) since approximately 95% of simulated
alues of a food web property are within 2 model standard devi-
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tions of the model mean, a normalised error between 2 and −2
hus indicates a good fit between the model and the data (on the
ther hands, normalised errors greater than 2 or less than −2 are
aid to be statistically significant and indicate poor fit between the

able 1
ummary of various food web properties of the Kuosheng Bay food web, as well as their 

N.E.)  obtained by fitting the base model with utilisation effect using R = 31, y = 3.

Data 

Number of trophic links 36 

Number of trophic Levels 8 

Number of food chains 59 

Mean  food chain length 4.64 

Variance of food chain length 1.52 

Variance of in-degree 3.57 

Variance of out-degree 4.11 

Proportion of omnivore species 0.53 

Number of intraguild predations 28 

Mean  trophic similarity 0.50 
oduced by simulating the base model with utilisation effect (y) when the number
, 1 and 0 respectively. In both (a) and (b), all simulations were carried out with 15

of parameter values.

model and the data). To our surprise, the above structural prop-
erties derived from the Kuosheng Bay food web can be captured
by the model reasonably well as most of the normalised errors are
between 2 and −2 (Table 1). However, there is one exception as the
model can never produce an out-degree distribution as diverse as
the one observed in the real data.

2.6. Further assessment of the base model with utilisation effect

The Kuosheng Bay food web is relatively small in size when
tank model for assembling food webs. Ecol. Model. (2012),

compared to other more well-known food webs. In this section,
we examine the performance of our base model with utilisation
effect in fitting larger food webs and compare the result with those
derived from other well-established models.

model means, standard deviations (S.D.) and the corresponding normalised errors

Model mean Model S.D. N.E.

37.84 4.09 −0.53
8.07 2.82 −0.15

217 163.38 −1.01
5 1.38 −0.39
2.17 1.34 −0.59
5.53 1.22 −1.51
1.74 0.50 4.71
0.49 0.12 0.19

28.58 9.40 −0.12
0.41 0.06 1.69

dx.doi.org/10.1016/j.ecolmodel.2012.03.036
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Fig. 10. Probability of producing the observed numbers of trophic links and trophic
levels as in the Kuosheng Bay food web  for various parameter combinations in the R
(number of resources)–y (strength of utilisation effect) parameter space. Grids with
darker colour correspond to those parameter combinations with which the model
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s  more likely to produce the observed data. Here, the best parameter values are
 = 31, y = 3.

We  borrowed directly the work from Williams and Martinez
2000) in which they fitted the cascade model and the niche model
o seven food web datasets, those are: Skipwith Pond, Little Rock
ake, Bridge Brook Lake, Chesapeake Bay, Ythan Estuary, Coachella
alley and St Martin Island. Twelve food web properties were mea-
ured in order to test the prediction power of food web models in
hat particular study, they are: the proportions of top (T), inter-

ediate (I) and bottom (B) species; the standard deviations of
ormalised prey counts (GenSD) and predator counts (VulSD) of
pecies; mean maximum trophic similarity of a food web (MaxSim);
he mean (ChnLg)  and standard deviation (ChnSD) of food chain
engths, and the log of the number of food chains (ChnNo) (a food
hain here is defined as a path from a species to a basal species, and
n this section we adopt this definition for the ease of comparison
nd consistency); and finally the proportion of omnivore species
Omniv). We  have to note that Williams and Martinez (2000) also
uantified the proportion of cannibal species and the proportion of
pecies involved in longer feedback loops in their study; but these
Please cite this article in press as: Liu, W.-C., et al., A fish t
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wo properties were omitted in our study here due to the fact that
imulated food webs from our model are all acyclic digraphs (i.e.
raphs with no self-loops and feedback loops).
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ig. 11. Distribution of (a) the number of trophic links and (b) the number of trophic leve
ith  the best set of parameter values (i.e. R = 31, x = 3).
 PRESS
elling xxx (2012) xxx– xxx 7

For each of those seven food webs, we  searched systematically
through the R–y parameter space and identified the best parameter
values with which our model is most likely to produce the observed
number of trophic links and trophic levels (best parameter values
are summarised in Table 2). We then simulated the base model
with utilisation effect by using the best-fit parameter values 1000
times; and for each of the above mentioned food web properties,
we again calculated its normalised error to assess the performance
of our model (Table 3).

In total, there are 66 normalised errors, and their mean and
standard deviation are 2.04 and 5.59 respectively. As derived from
Williams and Martinez (2000),  the mean and standard deviation
of the corresponding normalised errors for the cascade model are
−3.04 and 14.10 respectively while their counterparts for the niche
model are 0.11 and 1.91 respectively. Furthermore, 22 out of those
66 normalised errors for our model are greater than 2 standard
deviations of their model means, and the corresponding numbers
for the cascade model and the niche model are 47 and 15 respec-
tively. Thus, all these results suggest that the performance of our
model is better than the cascade model but worse than the niche
model. A close inspection of Table 3 suggests that our model per-
forms badly in predicting the proportion of top species (T) and the
variation in normalised predator counts (VulSD).

3. Discussion

In this paper, we have constructed a model for food web  by
adopting a very simple rule: a species encounters and utilises a
suitable resource by random chance, and this species then sub-
sequently becomes a resource for other species where trophic
interaction then occurs. The assembly process of a simulated food
web roughly goes as follows. At the beginning all resources are
unoccupied, and as new species enter the system, they deprive
those unoccupied resources to become basal species. The num-
ber of unoccupied resources then declines while the number of
resources at first trophic level increases (in the disguise of those
basal species). As a consequence of this, future new species are more
likely to encounter occupied resources, and resources at higher
trophic levels (in the disguise of those newly introduced species)
start to bloom. In general, the food web grows as new species grad-
ank model for assembling food webs. Ecol. Model. (2012),

all sorts of trophic interactions. A natural consequence of this is
that a new species is less likely to occupy resources or consume
species that have trophic levels much lower than its own; and its
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ls obtained when the base model with utilisation effect was simulated 1000 times
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Table 2
Summary of estimated parameter values after fitting the base model with utilisation effect to various food web datasets in Williams and Martinez (2000).

Parameter values Skipwith Pond Little Rock Lake Bridge Brook Lake Chesapeake Bay Ythan Estuary Coachella Valley St Martin Island

d
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T
M
m
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W

R 440 975 120 

y 4 2.9 3 

iet range should constitute those species occupying trophic levels
mmediate below (or a few levels below).

The base model takes on two parameters, the number of species
nd the number of resources. Unlike other food web  models in
he literature, our model does not require species being ordered
ierarchically in some dimensions as a priori, nor does it require a
re-defined number of trophic links. For a fixed number of species,
ur model can predict the number of trophic links and its maximum
imit; and it further demonstrates that there is a natural negative
elationship between the number of species and food web con-
ectance. This finding may  also shed some lights on an old debate
n whether food web connectance increases with the number of
pecies. Traditionally, both from theoretical and empirical grounds,
ood web connectance should have a negative relationship with
he number of species. A theoretical study by May  (1972) demon-
trates that an ecosystem is only stable if the product of species
umber and connectance is less than the inverse of the average

nteraction strength between species pairs; thus, as species number
ncreases, connectance should decline in order to fulfil the stability
ondition of May’s theoretical model (Begon et al., 2006). Briand
1983) compiled several food web data from the literature and
ound that connectance decreases non-linearly with the number of
pecies. Our base model here does demonstrate the negative and
on-linear relationship between connectance and species number

n a manner similar to Briand’s (1983) empirical findings. How-
ver, in contrast to May’s theoretical work, our analysis here does
ot have to go into the complicated issue of system stability in
Please cite this article in press as: Liu, W.-C., et al., A fish 
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rder to demonstrate this relationship. Naturally and simply, as
ur base model has demonstrated, the decline in connectance with
ncreasing species number could simply be the end result of chance
ncounter between species and resources that sets a limit on the

able 3
odel means for various food web properties after the base model with utilisation effect w
odel  mean is followed by two numbers in parenthesis: first is the standard deviation o

reater than 2 or smaller than −2 are in bold, indicating poor fit between the model and t
illiams and Martinez (2000).

Food web  Property Skipwith Pond Little Rock Lake Bridge Brook Lake 

T 0.05 0.02 0.05 

(0.02, −0.36) (0.01, −0.50) (0.02, −2.24) 

I 0.47  0.42 0.57 

(0.18, 2.57) (0.09, 4.77) (0.12, 0.92) 

B 0.48  0.57 0.38 

(0.50, −0.88) (0.50, −0.88) (0.49, −0.12) 

GenSD 1.12  1.35 1.04 

(0.31, −0.65) (0.17, 0.40) (0.16, 0.30) 

VulSD 0.46  0.40 0.46 

(0.04, 1.83) (0.03, 6.87) (0.05, 3.21) 

MaxSim 0.81  0.42 0.48 

(0.09, −0.55) (0.03, 10.29) (0.05, 5.18) 

ChnLg 5.05  7.89 5.39 

(2.58, 0.45) (4.32, NA) (2.05, −0.66) 

ChnSD 1.38  1.61 1.50 

(0.52, 0.10) (1.25, NA) (0.50, −1.14) 

ChnNo 4.21  7.18 3.85 

(1.20, −0.41) (2.07, NA) (0.72, −1.39) 

Omniv 0.40  0.29 0.47 

(0.21, 0.96) (0.12, NA) (0.15, −0.46) 
40 225 500 180
1 2 4 2.5

amount of trophic interactions observable. Having said all this,
there are also studies demonstrating that the relationship between
connectance and species number is anything but negative (Warren,
1989; Winemiller, 1990; but see Gilbert, 2009; Poulin, 2010). One
hypothesis for this is based on the behavioural and morphologi-
cal characteristics of species (Begon et al., 2006). The hypothesis
assumes that each species has its own diet range and is able to
consume all species that fall within this range. Naturally, if species
richness increases, then the number of species within a particular
species’ diet range will also increase; and this will result in more
trophic interactions and thus will keep connectance constant at
least. In contrast, if a species only feeds on a fixed number of species,
then connectance is bound to fall as species richness increases. At
present, each species in our model does not have a diet range; and
this might be a reason for why our model cannot account for the
non-negative relationship between connectance and the number
of species, and therefore limits the generality of our model.

One other finding from our base model is that the number
of trophic levels always declines with ever-increasing number of
resources. Empirical studies have shown that food chains tend to
shorten along the gradient of resource enrichment after reach-
ing the maximum at intermediate resource availability (Diehl and
Feissel, 2001). A possible simple mechanism is that intra-guild
predators would encounter and consume proportionally more
basal resources than their intra-guild preys when the amount of
available basal resources increases (Post, 2002; Post and Takimoto,
2007). Although we did not explicit monitor the change of food
tank model for assembling food webs. Ecol. Model. (2012),

chain length, which is determined by the trophic position of the top
predators in our model, but similar mechanism may  apply to our
simulation results here as well. What our model fails to capture is
the positive relationship between food chain length and resource

as  fitted to each of those food web datasets in Williams and Martinez (2000). Each
f the model distribution and the second is the normalised error. Normalised errors
he data. NA stands for not applicable as the empirical properties were not given in

Chesapeake Bay Ythan Estuary Coachella Valley St Martin Island

0.05 0.02 0.04 0.03
(0.03, 8.70) (0.01, 32.5) (0.01, −3.10) (0.02, 7.14)

0.47 0.50 0.55 0.49
(0.07, 0.73) (0.06, 0.73) (0.15, 2.31) (0.11, 1.88)

0.48 0.48 0.41 0.48
(0.50, −0.63) (0.50, −0.78) (0.49, −0.63) (0.50, −0.67)

1.29 1.35 1.00 1.23
(0.14, −3.60) (0.09, −2.30) (0.23, −1.18) (0.16, −1.29)

0.55 0.53 0.45 0.46
(0.07, 8.63) (0.04, 23.52) (0.03, 5.55) (0.04, 8.87)

0.42 0.34 0.73 0.42
(0.06, 1.31) (0.02, 7.89) (0.08, −0.12) (0.04, 2.77)

2.98 5.97 6.88 5.38
(0.70, 1.44) (2.09, −0.03) (2.76, −0.07) (2.06, −0.09)

0.93 1.27 1.69 1.34
(0.20, 1.35) (0.40, 0.47) (0.52, −0.46) (0.44, −0.08)

2.55 5.14 5.24 4.42
(0.29, −0.60) (0.88, −1.26) (1.24, −0.75) (0.84, −1.07)

0.24 0.33 0.48 0.36
(0.08, 3.47) (0.07, 2.98) (0.19, 1.49) (0.13, 1.91)

dx.doi.org/10.1016/j.ecolmodel.2012.03.036
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umber at very low resource availability (Post, 2002). A possible
xplanation for this discrepancy is that we did not consider the loss
f resources that comes along with trophic interaction in the food
eb assembling process. Further refinements of the model should

ncorporate an additional parameter for the transfer efficiency of
esources across different trophic levels (Pauly and Christensen,
995), and one should investigate how this can improve our model.

In this paper, we also confronted our base model with a small
mpirical food web and found that the model underestimated the
umber of trophic links and the number of trophic levels. We
roposed two modifications to the base model that have some eco-

ogical/biological relevance to nature, and they might shed some
ights on how real ecosystems (at least for our small Kuosheng Bay
ood web) might grow over time. First modification assumes that
pecies with more resources are likely to acquire more resources
i.e. Matthew effect). With this mechanism, resources at one trophic
evel will be taken up quickly by a few species; and this results in an
ncrease in the number of trophic levels (as new species will have
o look elsewhere but lower trophic levels for food), but not nec-
ssarily results in a higher number of trophic links. However, our
ase model with Matthew effect fits the real data poorly, and this
uggests that the assembly process of the Kuosheng Bay ecosystem
s unlikely to follow this route. Next, we then proposed a second

odification to our base model where resources at higher trophic
evels are more likely to be taken up than lower ones (i.e. utilisation
ffect). This mechanism dictates the assembly process of a food web
n a manner such that resources at one trophic level do not have to
e deprived completely before the appearance of species at higher
rophic levels. In the base model, the majority of basal species have
o appear before the emergence of herbivores, so as the majority of
erbivores have to appear before the appearance of carnivores and
o on. But with this second modification, species at higher trophic
evels can appear even before lower trophic levels are being pop-
lated by lower species. With this mechanism in place, our model
an now fit the real data better and this suggests that the Kuosheng
ay food web might be assembled in this way.

Due to the small size of the Kuosheng Bay food web, the fit
etween our base model with utilisation effect and the empirical
ata might be simply due to chance alone. Thus, we further assessed
he performance of our model by fitting it to seven much larger food
ebs and compared the result with those derived from other food
eb models. Although our model can fit those empirical data rea-

onably well, but it falls short in predicting the proportion of top
redators. We  suspect that this discrepancy between the model and
he data may  be due to the stopping rule of our model. Remember
hat our model requires all resources being occupied by species
t the highest trophic level in the end of food web  simulation.
nder such a rule, all top predators are those species at the highest

rophic level and this might be an unwanted artefact that renders
he model predicting poorly the proportion of top predators. One
ay to remedy this, and at the same time making our model more

eneral, is to incorporate the loss of resources into future models.
ith such a mechanism in place, not all resources will be passed

n to those species at the highest tropic level. This certainly will
roduce several top predators at various trophic levels and thus
ill make the proportion of top predators more variable. Another

hortcoming of our model is that the model out-degree variation
s consistently lower than those observed in the data. This implies
hat prey species in our model have more equal chance of being
onsumed than those observed in the empirical data. One way of
ntroducing more heterogeneity in the risk of predation is by com-
ining Matthew effect and utilisation effect in the same modelling
Please cite this article in press as: Liu, W.-C., et al., A fish t
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ramework. With Matthew effect in place, some species will have
ore resources than the majority others; and this will render them

eing consumed by many species at higher trophic levels result-
ng in an increase in out-degree variation. Having said this, we
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are yet to come up with a natural way  of simultaneously incor-
porating both effects in our base model, and this will be an open
problem for future investigation. In comparison with other food
web models, we found that our base model with utilisation effect
performs better than the cascade model, but it still lags behind the
niche model. Basing on the mean normalised error, the fit between
data and the niche model is considerably better than ours. We  have
to note that two out of 66 normalised errors from our model are
extremely large and omitting them results in a much smaller mean
normalised error. If we consider only the number of significant nor-
malised errors (i.e. those greater than 2 or less than −2), then the
gulf between the performances of our model and the niche model
becomes smaller (22 out of 66 compared to 15 out of 66).

To sum up, in this paper we  have proposed a fundamental frame-
work for food web modelling that takes a different approach from
the mainstream led by cascade-related models. We  believe this
model is of a more fundamental nature than the existing ones
as it regards the hierarchical ordering of species and the number
of trophic links as two outcomes generated by the fundamental
processes embedded in the model. However, our work is far from
complete. Surely, the next logical step is to modify our base model
in order to reflect more realistic biology, and the fit between our
model and the data can only get better. On the other hand, we
believe an equally challenging research direction here is not to
make the model more realistic, but is to look for a model which is
even more fundament than what we have proposed here. Finally,
last but not the least, we feel the process assumed in our model
resembles how one sets up a fish tank from scratch. As most aquar-
ium keepers are aware, to build a moderately self-sustained fish
tank, one should start with culturing microbes and algae in the
water; this is then followed by adding some algae feeding crus-
taceans or snails before putting in any carnivorous fish in the tank.
And to this end, we thus have justified the name of our model as
shown in the title of this paper.
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