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Abstract

An unusual and surprising expansion of the form

pn D �
�n�1

�
6nC 18

5
C

336
3125

n�5
C

1008
3125

n�6
C smaller order terms

�
;

as n!1, is derived for the probability pn that two randomly chosen binary search trees
are identical (in shape, hence in labels of all corresponding nodes). A quantity arising in
the analysis of phylogenetic trees is also proved to have a similar asymptotic expansion.
Our method of proof is new in the literature of discrete probability and the analysis of

1Partially supported by the project DESAFIOS10 TIN2009-14599-C03-01.
2Partially supported by an NSC grant.
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algorithms, and it is based on the logarithmic psi-series expansions for nonlinear differen-
tial equations. Such an approach is very general and applicable to many other problems
involving nonlinear differential equations; many examples are discussed in this article and
several attractive phenomena are discovered.

Key words. Psi-series method, nonlinear differential equations, random trees, recursive struc-
tures, singularity analysis, asymptotic analysis.
AMS Mathematics Subject Classification. 60C05, 05C05, 35C20, 65Q30, 34C30.

1 Introduction
The motivating problem. This paper was originally motivated by the following problem.
Find the asymptotics of the sequence pn defined recursively by

pn D n�2
X

0�j<n

pjpn�1�j .n � 1/; (1)

with the initial condition p0 D 1. The sequence pn is nothing but the probability that two
randomly chosen binary search trees (BSTs) of size n are identical (having exactly the same
shape and hence the same labels for corresponding nodes). It was first studied by Martı́nez
in [33] as an auxiliary function for understanding the typical performance of the equality test of
two random BSTs; see below for more background details. A minor variation of this sequence
was encountered in the analysis of maximum agreement subtrees in [9] under the Yule-Harding
model.

While shape parameters defined on a single random tree have been extensively studied in
the literature for many varieties of trees, properties of statistics defined on a pair or a d -tuple of
random trees received comparatively less attention, partly because of the intrinsic complexity of
the underlying analytic problems. Yet many practical situations (such as tanglegrams) naturally
lead to such a study, a typical example being the so-called “hereditary properties” or “recurrent
properties”, which in turn cover the equality, root occurrence, simplification rules, reduction
rules, “clashes” and others as special cases; see [2, 18, 33, 34, 38] for more details.

Recently, there has been also an increasing interest in statistics defined on two random
combinatorial objects; see [7] and the references therein.

Random BSTs. For completeness, we describe now binary search trees (BSTs). Given a
sequence of distinct items Œx1; : : : ;xn� from some totally ordered domain, we can construct the
corresponding BST as follows. If n D 0, then the tree is empty. If n � 1, then we place x1 at
the root; the remaining items are compared one after another with x1, and recursively inserted
into the left subtree of the root if they are smaller or into the right subtree if larger. The two
subtrees are constructed recursively by the same procedure according to the original order of
the items; see Figure 1 for an example.

By random BSTs, we assume that all n! permutations of n distinct elements are equally
likely, and construct the BST from a random permutation. Then we see that the root assumes
the value j with probability 1=n for j D 1; : : : ; n, which is also the probability that the size
Ln of the left subtree of the root is j � 1.
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Figure 1: Left: the BST constructed from the sequence Œ6; 2; 4; 8; 7; 1; 5; 3; 10; 9�. Right: the
root assumes the value j with equal probability 1=n for j D 1; : : : ; n.

Definition 1 (Equality of two ordered, labeled trees) Two ordered, labeled trees of the same
size (which is the total number of nodes) are said to be equal or identical if either both trees
are empty or they have a common root label and all corresponding ordered subtrees are equal.

The definition above can be easily generalized to the equality of d trees with d � 2.
Now we pick two random BSTs independently; then pn equals the probability that the two

trees are identical. Equivalently, we may pick two random permutations of n elements; then pn

denotes the probability that the BSTs constructed from these two permutations are equal. For
example, the permutations .2; 1; 3/ and .2; 3; 1/ lead to the same BST

2

1 3 .

A simple upper bound. Take n0 � 1 and

� WD min
0�j�n0

�
6n0

n0 C 2
�
j C 1

pj

�1=.jC1/

I

we obtain by induction that

pn �
6n0

n0 C 2
.nC 1/��n�1 (2)

for all n � 0. This gives successively improving bounds for � for increasing values of n0; see
Table 1, where we take only the first four digits after the decimal point without rounding. In
particular, taking n0 D 6 leads to the bound pn �

3
2
.n C 1/3�n. The simple bound (2) and

n0 1 2 3 4 5 6 7 8 9

� 2 2:4494 2:6832 2:8284 2:9277 3 3:0274 3:0488 3:0659

n0 10 20 30 40 50 60 70 80 90

� 3:0794 3:1235 3:1328 3:1362 3:1378 3:1387 3:1393 3:1396 3:1399

Table 1: Numerical values of �.

numerical evidence suggest the possibility that pn � 6n��n�1 for some value � � 3:14 (see
Figure 2), which is indeed the case as we will prove later.
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The nonlinear differential equation. Since the elementary argument that we have used
above is not strong enough to derive more precise asymptotic approximations to pn, we con-
sider instead the generating function P .z/ WD

P
n�0 pnzn, which satisfies the nonlinear ordi-

nary differential equation (abbreviated throughout as ODE)

zP 00.z/C P 0.z/ D P 2.z/; (3)

with the initial conditions P .0/ D P 0.0/ D 1. This nonlinear ODE is of Emden-Fowler
type for which there is no explicit closed form solution; see [36]. In addition to the apparent
singularity determined by the equation, the ODE (3) also has movable singularities that are
determined by the initial conditions. The reader is referred to Hille’s book [28, Chap. 3] for a
detailed discussion on singularities of ODEs.

Frobenius method. Starting from the ODE (3), the next step is often to try the Frobenius
method (see [30]), namely, we assume the solution of P .z/ to be of the form

P .z/ D
X
j�0

cj .1 � z=�/j�˛; (4)

for some ˛ and � > 0, substitute this form into (3), and then determine ˛ and the coefficients
cj inductively one after another. This classical procedure yields ˛ D 2, c0 D 6=�,

c1 D �
12

5�
; c2 D �

7

25�
; c3 D �

14

125�
; c4 D �

63

1250�
; c5 D �

161

9375�
: (5)

But then an inconsistency arises since the coefficient of .1 � z=�/4 of the left-hand side of (3)
is

��1

�
12c6 C

483

3125�

�
whereas the coefficient of .1 � z=�/4 on the right-hand side is

��1

�
12c6 C

77

625�

�
:

We see that the two quantities differ for whatever the value of c6, which also means that c6

cannot be determined by simply matching the coefficients in the usual way. This trial suggests
that the local expansion of P near the singularity � will not be of the form (4) for some ˛ and
� > 0, and means that the classical Frobenius method fails for the nonlinear ODE (3).
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Psi-series method. We consider now a different type of expansion called logarithmic psi-
series expansion (or Painlevé expansion); see [28]. It will turn out that P .z/ admits an asymp-
totic expansion of the form

U.Z/ WD
X
j�0

Zj�2
X

0�`�bj=6c

cj ;`.log Z/`; Z WD 1 �
z

�
; (6)

when z lies near the singularity �. Here and throughout this paper, log Z denotes its principal
branch (which is real for Z > 0). We will simply refer to such an expansion as a psi-series as
no other types of psi-series will arise in this paper. The form (6), first conjectured by Martı́nez
in [34, Ch. 9], is seen to be incompatible with (4). Indeed, z D � is not a pole but instead a
pseudo-pole; see [28]. The first few terms of U.Z/ are given as follows.

�U.Z/ D 6 Z�2
�

12

5
Z�1
�

7

25
�

14

125
Z �

63

1250
Z2
�

161

9375
Z3

C �c6Z4
C �

X
j�7

X
0�`�bj=6c

cj ;`Z
j�2 log` Z;

for Z small, where c6 WD c6;0 and the cj ;`’s are polynomials of the parameter c6� with degree
b.j � 6`/=6c for j � 7. Note specially that U.Z/ is also a function of � and c6.

Asymptotics of pn. From the expansion (6) and suitable analytic continuation to be clarified
later, we deduce our main result for pn.

Theorem 1 The probability pn that two randomly chosen binary search trees of n nodes are
equal satisfies the asymptotic expansion

pn � �
�n�1

0@6nC
18

5
C

X
j�6

n�jC1
X

0�`<bj=6c

Cj ;`.log n/`

1A ; (7)

for explicitly computable constants Cj ;`, where � D 3:14085 75672 02936 95160 : : :

In particular, the first few terms read

pn D �
�n�1

 
6nC

18

5
C

336

3125 n5
C

1008

3125 n6
C

10416

15625 n7

C
91728

78125 n8
C

8234352

4296875 n9
C

12228048

4296875 n10

C
1

n11

�
9483264

5078125
Hn C

5621191632

726171875
C

677376

1625
c6

�
CO

�
log n

n12

�!
;

where Hn WD
P

1�j�n j�1, and we see specially that no terms of the form cn�j with j D

1; : : : ; 4 appear in the expansion. Numerically, the parameter c6 can be determined approxi-
mately as c6 D �0:00150 84982 09405 93425 : : : ; see the numerical discussions on page 16
for details.

As far as we were aware, the asymptotic expansion (7) with missing terms is rare in the
analysis of algorithms and applied probability literature. The expansion also indicates that the
approximation of pn�

nC1 by the first two terms 6nC 18
5

is numerically very precise as can be
seen in Figure 2.
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Features. In addition to the unusual form of (7) and its theoretical value per se, the inter-
est of such a psi-series expansion is multifold. First, since no analytic form for the movable
singularity � is available, the psi-series expansion provides an effective means of obtaining
an approximate numerical value to �; see (25) on page 18 for more details. Second, from a
methodological point of view, the method of proof we use to prove Theorem 1 is of some gen-
erality. Note that the first two terms on the right-hand side of (7) can be easily characterized
by the method of matched coefficients once we assume that P .z/ has the form (6). Third, the
precise approximation we derive has direct consequences in the original motivating problem,
as well as several others in the examples we discuss below. Finally, while psi-series have long
been used in many branches of mathematics and physics (see [28,29]), little attention has been
paid to the corresponding asymptotics of the coefficients, which themselves lead to unusual
behaviors and unexpected phenomena (including asymptotic expansions with several missing
terms), as we will see in the following sections.

A sketch of the method of proof. As indicated above, after checking the failure of the Frobe-
nius method, we construct a suitable psi-series U.Z/ (by matching coefficients) so that U sat-
isfies formally the ODE (3). Then our approach to proving Theorem 1 consists of the following
steps (see Section 2 for details).

1. Analytic continuation of P . We first show
that P .z/ can be analytically continued into
the cut-region fz W jzj � �C"0gnŒ�; �C"0�

for some "0 > 0 (corresponding to the large
circle in Figure 3), with the sole singularity
z D � there.

2. Analytic nature of U . The series in (6)
defining U.Z/ is a priori an asymptotic ex-
pansion, but we will show that for any fi-
nite c6, U.Z/ is absolutely convergent in
some region containing particularly the re-
gion fZ W jZjj1� log Zj1=6 � ıgn Œ�ı0; 0�

(inside the dashed region in Figure 3) and
defines an analytic function there.

�C"
0

jZ jj1� log Z j1=6 D ı

P.z/

U.Z/

�

0

Figure 3: Analyticity of P and U .

3. Equivalence of P and U . The movable singularity � and the free parameter c6

are uniquely determined once the initial conditions of the ODE (3) are given;
the pair .�; c6/ in turn determines U.Z/, which is itself a function of z; � and
c6. The fact that P and U so determined have a common region of analyticity
implies that P can be analytically continued through U , and, particularly, P

has a psi-series expansion (6) near the dominant singularity �.

4. Singularity analysis. We then apply the singularity analysis (see [21]) and
deduce (7).

This procedure is very general and we develop tools for dealing with more general situ-
ations. Note that no analytic forms for � and c6 are available, so we will discuss numerical
procedures to compute their values to high precision (see Section 2.4).
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Outline of this paper. We describe the psi-series method and give the proof of the asymptotic
expansion (7) in the next section. In Section 3 we consider several extensions of our analysis of
the probability of equality of two random BSTs. More specifically, in Subsection 3.1 we obtain
the probability of equality of d > 2 random BSTs. It turns out that the form of the asymptotic
expansion for the probability of equality of d random BSTs differs drastically according to the
parity of d , a result not intuitively obvious at all. Subsection 3.2 considers the case of two
random m-ary search trees and we will see that the number of missing terms in the asymptotic
expansion increases as m grows. Equality of two random fringe-balanced BSTs is considered
in Subsection 3.3 and there, unlike m-ary search trees, the error term beyond the constant term
in the asymptotic expansion does not change with the structural parameter once it exceeds one,
another unexpected result. Asymptotics of some quadratic recurrences of Faltung (convolu-
tion) type will then be considered in Section 4 with a few representative examples taken from
the cost of partial-match queries in random trees, random partition structures and solutions of
Boltzmann equations (from statistical physics). Section 5 contains our conclusions. A table
(Table 3) summarizing all DEs studied in this paper is also given there. Finally, we group the
technical details of some proofs in the Appendices at the end of the paper.

Notations. For each problem studied, � always denotes the dominant singularity of the asso-
ciated nonlinear ODE and Z WD 1 � z=�. The symbols c; c0; cj ; c

0
j ; ci;j ;C;Cj ;C

0
j ;Ci;j ;K;K

0

all denote suitably chosen constants, not necessarily the same at each occurrence. Similarly,
"; "0; "j represent arbitrarily small positive constants.

2 The psi-series method
We discuss in detail the psi-series solution to our nonlinear ODE (3) and the tools needed to
justify it, then we prove Theorem 1, following the procedure sketched in the Introduction.

2.1 Analytic properties of P .z/ and the ARS algorithm
First, the solution P .z/ to the ODE (3) has positive radius of convergence and is analytic at the
apparent fixed singularity z D 0 by definition. By induction as we discussed in the introduction
(Section 1) and Pringsheim’s theorem (since all coefficients pn are positive; see [23, p. 240]
or [28, ~1.8]), we expect that P .z/ has a finite movable singularity at, say z D �, and the
asymptotics of pn will be dictated by the local asymptotic expansion of P .z/ as z � �.

Martı́nez [34, p. 117] proved that the function P .z/, originally defined only inside the disk
jzj < � can be analytically continued to the cut-disk fz W jzj � �C "; z 62 Œ�; �C "�g.

From a theoretical point of view, the movable singularity � for the ODE (3) can be either
of the following types: (i) poles, (ii) branch points (algebraic or logarithmic), (iii) essential
singularity. Simple poles and algebraic points are first excluded because of our previous trial
via the Frobenius method. We then show that P can be analytically continued into a function
defined by a series expansion of the form (6) that converges absolutely in some region covering
the cut-region C" defined by

7



C" WD fz W 0 < jz � �j � "; z 62 Œ�; �C "�g; (8) C"

�0

Figure 4: The region C".

Thus the possibility that � is an essential singularity is further excluded, and � is a logarith-
mic branch point (or called pseudo-pole).

In this paper, we first focus on the determination of the right form of the solution to (3).
More detailed and complete introduction and discussions on the theory related to Painlevé
analysis can be found in [11, 13] and the references therein.

The ARS method (Type checking). A widely used procedure to check the singularity type
(and the local expansion) of nonlinear ODEs is the following procedure, often called the ARS
algorithm due to Ablowitz, Ramani and Segur [1], which bears some resemblance to the Frobe-
nius method.

This method starts from assuming that the solution to the ODE (3) admits the formal Lau-
rent expansion (4) about the cut-disk C" for some positive number ".

¶ Leading order analysis: Assume P .z/ � c0.1 � z=�/�˛ for z near the dominant singu-
larity �. By balancing the dominant terms �P 00.z/ and P .z/2 in (3), we see, as in the
Frobenius method, that ˛ D 2 and the companion constant c0 D 6=�. Thus we can
exclude the possibility of a dominant algebraic singularity.

· Resonance analysis: Starting from the pair .˛; c0/ D .2; 6=�/, if the solution admits
only poles, then by substituting (4) into (3) and by equating coefficients, we see that the
coefficients cj ’s are characterized by the recurrence relation of the form

ˆ.j /cj D .j � 3/2cj�1 C �
X

1�`<j

c`cj�` DW ‰j .�; c0; c1; : : : ; cj�1/; (9)

for j � 1, where ˆ.j / D .j C 1/.j � 6/ and cj D 0 for all j < 0. The roots of ˆ.j /
are called resonance and �1 is always a root of ˆ.j /, reflecting the arbitrariness of the
movable singularity �. Alternatively, a less involved and very commonly used technique
is to substitute the test function

c0.1 � z=�/�˛ C cr .1 � z=�/r�˛ (10)

into the ODE (3) instead. By collecting the coefficients corresponding to the term cr .1�

z=�/r�4, we still get the same ˛; c0 and ˆ.r/. In this case, we see that ˆ has only one
positive resonance 6 that needs to be further examined.

¸ Compatibility: Once we have the system (9) and identify the resonance, the next step
is to consider its solvability. Obviously, (4) is the solution to (3) if and only if all the
coefficients ck’s can be computed recursively by (9). This fact defines the compatibility
of the resonance: if ‰r .�; c0; c1, : : : ; cr�1/ D 0 for any resonance r of ˆ, then the
resonance r is said to be compatible; otherwise, r is incompatible.

From the recurrence (9) it is straightforward to prove that r D 6 is incompatible. The
formal series solution by introducing suitable logarithmic terms starting at the index 6

8



has to be considered instead (see (6)). The movable singularity � to (3) is proved to
be a logarithmic branch point since we will show that the associated series solution is
absolutely convergent in some cut-region.

In cases when all resonances are compatible, the Laurent expansion is the solution we need
by the Frobenius method. The above ARS Algorithm is useful in determining if a nonlinear
ODE admits the Painlevé property, namely, the only movable singularities of the ODE are
poles. In our case, the ODE (3) does not satisfy the Painlevé property.

Our approach vs the ARS algorithm. The method of proof we use does not, however, rely
completely on this method for two reasons. First, it requires the a priori information that �
is not an essential singularity, a property often hard to justify. Second, even if we can prove
that the singularity is not essential, the incompatibility of a resonance (or several) may in some
cases be very difficult to establish due to the variation of an additional parameter as in the cases
of d random BSTs (Subsection 3.1) and m-ary search trees (Subsection 3.2).

On the other hand, the ARS algorithm does provide an effective means of computing the
exact form of the psi-series expansion for all the examples we discuss, notably the characteri-
zation of the resonance. We will thus use the ARS algorithm for two purposes: first, when the
resonance equation has no positive integral resonance or when all resonances are compatible,
then the solution is given by a Laurent expansion; second, when Laurent expansion fails, we
use the ARS algorithm to guess the possible form of the psi-series expansion we are looking
for, and then the proof will follow the same line we use for pn. Of course, there are also cases
for which the ARS algorithm can be easily justified and the singularity is not essential (say, by
the absolute convergence of the psi-series).

2.2 Analytic continuation of P .z/

To prove that any solution to the ODE (3) can be analytically continued outside jzj < �, we
show that any non-real singularity of (3) has a modulus larger than �. Note that (3) can be
written as �

zP 0.z/
�0
D P .z/2: (11)

Proposition 1 ( [34] Lemma 9.1) The solution P .z/ of the ODE (3) can be analytically con-
tinued to a cut-disk fz W jzj � �C "0g n Œ�; �C "0� for some "0 > 0.

Proof. We show that if �
�
e� i is a singularity of (11), where �

�
> 0 and � 6D 0, then �

�
> �.

Although the Proposition was proved in [34], its proof is given in detail since the same argument
will be applied and extended later.

We start from defining three functions : v.x/ D xP 0.x/,$.x/ D
ˇ̌̌
P
�
xe� i

�ˇ̌̌
, and w.x/ Dˇ̌

zP 0 .z/
ˇ̌
zDxe� i , x � 0, with $.0/ D P .0/; w.0/ D v.0/. Then these three functions are

continuous, increasing and satisfy the following relations

v0.x/ D P .x/2;

$.x/ < P .x/; j$ 0.x/j �
w.x/

x
�
v.x/

x
;

w.x/ < v.x/; jw0.x/j � $.x/2 � v0.x/;

9



x2 x1

P.x1/

$.x1/

P.x2/

$.x2/

x2 x1

�.x1/

w.x1/
�.x2/

w.x2/

Figure 5: A continuity argument used to compare the orders of the two functions P .x/ and
$.x/ (left), and those of the two functions �.x/ and w.x/.

for x > 0. Note that both derivatives $ 0 and w0 exist.
By continuity, we choose 0 < x2 < x1 < � such that w.x1/ < v.x2/ < v.x1/ and

$.x1/ < P .x2/ < P .x1/ (see Figure 4). We show first that

P .x2 C t/ > $.x1 C t/ for t 2 J WD Œ0;minf�� � x1; � � x2g�: (12)

It follows from this inequality that �
�
� x1 � � � x2, for, otherwise,

1 > P .x2 C �� � x1/ > $.x1 C �� � x1/ D1;

a contradiction. This implies that that �
�
� �C .x1 � x2/ > �.

We prove (12) by reductio ad absurdum. Assume that (12) is false. Then we can find the
smallest positive number t1 such that

P .x2 C t1/ D $.x1 C t1/; P .x2 C t/ > $.x1 C t/ t 2 Œ0; t1/:

Then P 0.x2 C t1/ � $
0.x1 C t1/ implies that

�.x2 C t1/ D .x2 C t1/P
0.x2 C t1/ < .x1 C t1/$

0.x1 C t1/ � w.x1 C t1/:

This, together with the relation �.x2/ > w.x1/, implies that we can find the minimum t0 2

.0; t1� such that

�.x2 C t0/ D w.x1 C t0/ D w.x1/C

Z t0

0

w0.x1 C s/ ds

< �.x2/C

Z t0

0

$.x1 C s/2 ds

< �.x2/C

Z t0

0

P .x2 C s/2 ds

D �.x2/C

Z t0

0

� 0.x2 C s/ ds D �.x2 C t0/;

which is absurd. We thus proved (12) and the Proposition.

2.3 Analyticity of the psi-series
We next prove that U.Z/, as defined in (6), is analytic in a region covering particularly the
cut-disk C" (defined in (8)) for some positive " > 0. Recall that U.Z/ is also a function of �
(the dominant movable singularity of P .z/) and c6.

10



Proposition 2 For any pair of numbers c6; � 2 C, there is a constant B > 0 so that the
psi-series U.Z/ as given in (6) defines an analytic function in the region

Z WD fZ W �� < j arg Zj � �;BjZjj1 � log Zj1=6 < 1g n Œ�x0; 0�;

where x0 solves the equation Bxj1 � log x C � ij1=6 D 1 with real x.

Z

0�x0

BjZ jj1� log Z j1=6 D 1

Z

Figure 6: Z is the region inside the red curve BjZjj1 � log Zj1=6 D 1 (the dashed-line
represents the circle with radius x0).

We will prove that the psi-series (6) converges absolutely for Z 2 Z . Then the analyticity
of U follows from term by term differentiation. To that purpose, we modify an approach due
to Hille [26] with some new ingredients; see also [15, 25, 27]. This approach is summarized as
follows.

Re-summation. The psi-series (6) is in essence a double series

U.Z/ D
X

j ;`�0

c0j ;`Z
jC6`�2.log Z/`;

and we will group them first in increasing powers of Z, leading to polynomi-
als of log Z as coefficients.

Linear system. Since first-order ODEs are easier to solve in general, we rewrite the
ODE (3) as a first-order system; see (13). Then the coefficients (polynomials
in log Z) appearing in the previous re-summation step satisfy a first-order
nonhomogeneous linear system, which can then be solved in a form suitable
for majorization purposes.

A uniform bound. We then prove by induction a simple uniform bound for the
coefficients (see (19)). The absolute convergence then follows.

This method of proof can be readily extended to cover all types of ODEs we discuss in this
paper, whatever their orders are.

From Propositions 1 and 2, we see that if we equate P .z0/ D U.Z0/, where Z0 D 1 �

z0=�, for z0 in their common region of analyticity, then the solution P .z/ can be analytically
continued to at least the region (see Figure 3 on Page 6)

fz W jzj � �C "0g [

(
z W B

ˇ̌̌̌
1 �

z

�

ˇ̌̌̌ ˇ̌̌̌
1 � log

�
1 �

z

�

�ˇ̌̌̌1=6
< 1

)
n Œ�; .1C x0/��:

We then deduce (7) by the singularity analysis of Flajolet and Odlyzko [21].
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Recurrence of uk . We first rewrite the ODE (3) for P into that for U , which becomes�
.1 �Z/U 0.Z/

�0
D �U.Z/2:

For convenience, let U0 D �U . Then�
.1 �Z/U 00.Z/

�0
D U0.Z/

2:

As in [26], we then convert this ODE into a first-order differential system by introducing an
additional function V0 WD .1 �Z/U 00.Z/ as follows.8<: U 00.Z/ D

V0.Z/

1 �Z
;

V 00.Z/ D U0.Z/
2:

(13)

Write � D log Z, where log Z denotes its principal branch. Let U0.Z/ D
P

k�0 uk.�/Z
k�2

and V0.Z/ D
P

k�0 vk.�/Z
k�3, where uk and vk are polynomials in � of degree at most

bk=6c. Note that .d�/=.dZ/ D Z�1 and u0.�/ D 6. From (13), we derive an infinite system
of equations in k ( Puk WD u0

k
.�/)8̂̂<̂

:̂
Puk C .k � 2/uk D vk C

X
0�j<k

vj ;

Pvk C .k � 3/vk D 12uk C

X
1�j<k

ujuk�j ;
.k � 7/

with the initial values (vk D Puk C .k � 2/uk � Puk�1 � .k � 3/uk�1)

u0 u1 u2 u3 u4 u5 u6

6 �
12
5
�

7
25
�

14
125

�
63

1250
�

161
9375

c6� �
14�

3125

v0 v1 v2 v3 v4 v5 v6

�12 72
5
�

12
5
�

14
125

7
625

154
3125

147
3125
C 4c6� �

56�
3125

(14)

We can further express the above system in terms of matrices as follows. Let

�k WD

�
uk

vk

�
; Ak WD

�
k � 2 �1

�12 k � 3

�
; and gk WD

0BB@
X

0�j<k

vjX
1�j<k

ujuk�j

1CCA :
Then, we obtain the nonhomogeneous linear differential system

P�k C Ak�k D gk ; .k � 7/: (15)

We now derive a better integral form for our estimation purposes. To state the representation,
we introduce the following norm: for any x 2 Cn and any matrix

�
aij

�
n�n

,

kxk D max
1�j�n

fjxj jg; k
�
aij

�
n�n
k D max

1�j�n

(X
i

jaij j

)
; (16)

which is the operator norm corresponding to the chosen norm on Cn.

12



Lemma 1 For k � 7, the nonhomogeneous linear differential system (15) admits a unique
solution satisfying

lim
�!�1

keAk��k.�/k D 0

of the form

�k.�/ D

Z 1
0

P e�xDP�1gk.� � x/ dx; (17)

where D WD
�

k C 1 0

0 k � 6

�
, P D

�
1 1

�3 4

�
and P�1 D

�
4
7
�

1
7

3
7

1
7

�
.

Proof. The fundamental matrix solution associated with the homogeneous part of (15) is e��Ak ,
so we can solve (15) by multiplying it by exAk , using the fact that uk.�/ and vk.�/ are polyno-
mials in � , and then by integrating both sides from �1 to � , yielding

�k.�/ D

Z �

�1

e.x��/Ak gk.x/ dx D

Z 1
0

e�xAk gk.� � x/ dx:

This proves the lemma.

A uniform estimate for k�kk. With the operator norm defined in (16), we then have the
estimates

maxfjuk.�/j; jvk.�/jg D k�k.�/k

D

wwwwZ 1
0

Pe�xDP�1gk.� � x/dx

wwww
� kPkkP�1

k

Z 1
0

e�x.k�6/
kgk.� � x/kdx

� 5

Z 1
0

e�x.k�6/ max

8<: X
0�j<k

ˇ̌
vj .� � x/

ˇ̌
;

X
1�j<k

ˇ̌
uj .� � x/uk�j .� � x/

ˇ̌9=; dx: (18)

For a fixed B > 0, define the region
T D TB in the � -plane

T WD
˚
� W Bj1 � � j1=6e<.�/ < 1;

<.�/ < 0;�� < � � �
	
;

which corresponds to the region in-
side the blue curve in the left figure
of Figure 7, the corresponding re-
gion in the z-plane being shown in
the right figure (see also Figure 6).

�

��

�

0
�

z

0

Figure 7: Region T in both � - and z-planes.

13



Now write � D � C � i, where �� < � � � , so that � 2 T implies that Bj1 � � j > B.
We prove by induction that

k�k.�/k �
C0

.k C 1/2
Bk
j1 � � jk=6; (19)

for k � 0 and � 2 T , where C0 � max fju0j; jv0jg D 12 and the constant B is, for conve-
nience, assumed to be � 2 (and to be specified later). The exact exponent of the polynomial
factor 1=.k C 1/2 here is less important and chosen simply for numerical convenience; it can
be replaced by other powers of k C 1.

First, by induction hypothesis and Bj1 � � j1=6 � 2,X
0�j<k

ˇ̌
vj .�/

ˇ̌
� C0

X
0�j<k

Bj j1 � � jj=6

.j C 1/2

� C0Bk
j1 � � jk=6

X
1�j�k

.Bj1 � � j1=6/�j

.k � j C 1/2

� C0Bk
j1 � � jk=6

X
1�j�k

2�j

.k � j C 1/2

�
C0C1.k/

.k C 1/2
Bk
j1 � � jk=6;

where C1.k/ WD
P

1�j�k
2�j .kC1/2

.k�jC1/2
is a bounded sequence for all k � 0, andX

1�j<k

ˇ̌
uj .�/uk�j .�/

ˇ̌
� C 2

0 Bk
j1 � � jk=6

X
1�j<k

1

.j C 1/2.k � j C 1/2

�
C 2

0 C2.k/

.k C 1/2
Bk
j1 � � jk=6;

where C2.k/ WD
P

1�j<k
.kC1/2

.jC1/2.k�jC1/2
is also bounded for all k. Note that for large k�

C1.k/ � 1;

C2.k/ �
�2

3
� 2 � 1:29:

(20)

Also by a direct partial fraction expansion, we deduce that

C2.k/ �
2.k C 1/2

.k C 2/2

X
2�j�k

1

j 2
C

4.k C 1/2

.k C 2/3
.Hk � 1/

�
�2

3
� 2C

4

k C 2
.Hk � 1/:

Thus, by (18),

k�k.�/k �
5C0 .C0C2.k/ _ C1.k//

.k C 1/2
Bk

Z 1
0

e�x.k�6/
j1 � � C xjk=6dx

�
5C0 .C0C2.k/ _ C1.k//

.k � 6/.k C 1/2
Bk
j1 � � jk=6

Z 1
0

e�x

ˇ̌̌̌
1C

x

.k � 6/.1 � �/

ˇ̌̌̌k=6
dx;
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where x _ y WD maxfx;yg. Since <.�/ < 0 whenever � 2 T , we see thatZ 1
0

e�x

ˇ̌̌̌
1C

x

k.1 � �/

ˇ̌̌̌.kC6/=6

dx �

Z 1
0

e�x
�
1C

x

k

�.kC6/=6

dx

�

Z 1
0

e�
5
6

x
�
1C

x

k

�
dx

D
6

5
C

36

25k
:

On the other hand, since 2j � .j C 1/2 for j � 6, we see that

C1.k/ �
X

1�j�5

�
1

2j
�

1

.j C 1/2

��
k C 1

k � j C 1

�2

C C2.k/C
.k C 1/2

2k

� 5C2.k/ � C0C2.k/;

for all k � 7. Thus, it follows that

k�k.�/k �
6C 2

0 C2.k/

.k � 6/.k C 1/2

�
1C

6

5.k � 6/

�
Bk
j1 � � jk=6

�
C0

.k C 1/2
Bk
j1 � � jk=6;

for k � k0, where k0 is chosen to be the least positive integer � 7 determined (independently
of B) by the equation

6C0C2.k/

�
1C

6

5.k � 6/

�
� k � 6;

for k � k0. Such a k0 does exist since C2.k/ is bounded for all k � 0. Indeed, for all k � 0

C2.k/ �
45321361290953861
29873547265233672

� 1:517:

So for m � k0, we have proved that “(19) holds for all k < m” implies that “(19) holds for
k D m.” The induction proof is complete if we choose a suitable B such that (19) holds for all
0 � k < k0.

For more precise numerical purposes, we can use the following arguments. First, we have
the inequality

X
1�j<k

.k C 1/2

.j C 1/2.k � j C 1/2
D C2.k/ �

k � 6

6C0

�
1C 6

5.k�6/

� ;
and we choose the least positive k such that the inequality is satisfied (see (20)). Numerically,
the exact location, based on this estimate, is very easy to identify. It suffices to find the least
positive integer k0 such that

X
1�j<k0

.k0 C 1/2

.j C 1/2.k0 � j C 1/2
�

k0 � 6

6C0

�
1C 6

5.k0�6/

� < 0:
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Once k0 is determined, we can compute the first k0 terms of uk and vk directly from (15) or
(17). Note that uk and vk are polynomials in � of degree at most bk=6c, and any polynomial
uk.�/ can be expressed as uk.�/ D

P
0�i�bk=6c Ouk;i.1 � �/

i . Then a very crude upper bound
of juk j is given by

juk.�/j �

�
k

6
C 1

� 
max

0�i�bk
6
c

jbuk;ij

!
j1 � � jk=6:

since <.�/ < 0. A similar bound also holds for jvk j. Thus if we define

B WD max
1�k�5

�
.k C 1/2

C0

.juk j _ jvk j/

�1=k

_ max
6�k�k0

�
.k C 1/2

C0

�
k

6
C 1

�
max

0�i�bk=6c

�
jbuk;ij _ jbvk;ij

��1=k

:

Then (19) holds for all 0 � k � k0. Note that such bounds for B are overestimates but
sufficient for our uses. This proves (19) for k � 0.

Numerically, we get the following table when the initial conditions of uj and vj are given
in (14) with � � 3:140857 and c6 � �0:001508.

C0 12 18 24 28 28:8 36:3

k0 109 156 204 235 242 300

B 4:8 3:2 2:4 2:05 2 1:59

A similar argument applies when 1 < B < 2. We then see that B ! 1 when C0 increases
(at the price of increasing k0). Indeed, the value of B is determined by the first few terms of
juk j; jvk j because x1=k ! 1 as k !1 for x > 0.

Absolute convergence of the psi-series. From (19), we obtain

�jU.Z/j D

ˇ̌̌̌
ˇX
k�0

uk.�/e
.k�2/�

ˇ̌̌̌
ˇ

� C0 e�2<.�/
X
k�0

Bk j1 � � jk=6ek<.�/

.k C 1/2
:

By d’Alembert’s ratio test, if
Bj1 � � j1=6e<.�/ < 1;

which is implied by � 2 T , then the series
P

k�0 uk.�/e
k� is absolutely convergent. This

completes the proof of Proposition 2.

2.4 Numerical approximations to � and c6

As mentioned in the Introduction, the function U.Z/ is also a function of � and c6, which are
themselves determined by the ODE (3) satisfied by P and the initial conditions. Thus equating
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P .z0/ D U.Z0/, where Z0 WD 1 � z0=�, for z0 lying in their common region of analyticity
(see Figure 3) provides an analytic continuation of P (through U ).

However, this description does not provide directly an effective numerical procedure for
computing the values of the pair .�; c6/. We thus convert the numerical problem into an initial-
value problem as follows. To fix U in a unique way, we connect P .z/ and U.Z/ by first
choosing a number z0 2 Œ"�; ��"�, and by considering the solution .�; c6/ of the two equations�

U.Z0/ D P .z0/;

U 0.Z0/ D ��P
0.z0/:

(21)

By Proposition 2 and simple upper and lower bounds for �, we see that, as a standard initial-
value problem, the system of equations (21) has a unique solution pair for .�; c6/. This de-
termines uniquely the pair .�; c6/, and accordingly U.Z/, which then provides the asymptotic
solution we have been looking for.

For numerical purposes, we can compute the approximate values of P .z0/ or P 0.z0/ by
their corresponding truncated series expansions using, say the first N terms; for example,
P .z0/ �

P
j<N pjz

j

0 . The number of terms used depends on the degree of numerical preci-
sion we require, and the remainder

P
j�N pjzj can be well estimated by using the asymptotic

expansion (7). More precisely, for large N ,X
j�N

pjz
j

0 D
6.z0=�/

N

� � z0

�
N C

3�C 2z0

5.� � z0/
CO

�
N �4

��
: (22)

Since z0 < �, the right-hand side can be made arbitrarily small by choosing N sufficiently
large so that the error introduced is under control.

Similarly, U.Z/ � UM .Z/ WD ��1
P

k<M uk.log Z/Zk�2 for a sufficiently large M

whose choice can be determined by the desired degree of precision and the upper bound (19).
The errors introduced are thus bounded above by

��1
X

k�M

uk.�0/e
.k�2/�0 D O

�
M �2BM

j1 � �0j
M=6eM<.�0/

�
; (23)

where �0 D log.Z0/.
Note that if z0 is too close to zero, then the remainder (22) for P decreases much faster than

that (23) for U , and if z0 is too close to �, then the converse is true. So the best choice for z0

will be the one at which both remainders are asymptotically of the same order. For practical
use, since pn is easier to compute than uk , we take M D ˇN for some ˇ 2 .0; 1/. Then we
solve the equation �

z0

�

�1=ˇ

D B

ˇ̌̌̌
1 � log

�
1 �

z0

�

�ˇ̌̌̌1=6 �
1 �

z0

�

�
; (24)

(which has a unique real solution for z0=� 2 .0; 1/ by monotonicity) to find a better z0.
On the other hand, to compute uk , we take the first entry of �k in (17) and obtain, by

integration by parts, the recurrence

uk.�/ D uk�1.�/C
1

7

Z 1
0

�
9e�.k�6/x

� 16e�.kC1/x
�

uk�1.� � x/ dx

C
1

7

Z 1
0

�
e�.k�6/x

� e�.kC1/x
� X

1�j<k

uj .� � x/uk�j .� � x/ dx;
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for k � 7. All uk’s are solvable recursively starting from the initial values (14).
We finally solve numerically the pair .�; c6/ from the two equations with � 2 .3; 4/

PN .z0/ D UM .Z0/ and P 0N .z0/ D �
1

�
U 0M .Z0/: (25)

In this way, we obtain the numerical values of � and c6 given in the Introduction (in Theorem 1
and the following paragraph).

Numerical evidence suggests that the series definition for U.Z/ and U 0.Z/ are both con-
vergent for Z D 1, which means that one might even use the two equations

U.1/ D 1; U 0.1/ D ��;

to solve for the pair .�; c6/. But the convergence is much slower than taking z0 according
to (24).

2.5 A quantity arising in phylogenetic trees
The following recurrence

qn D
2

.n � 1/2

X
1�j<n

qjqn�j .n � 2/;

with q1 D 1 was introduced in Bryant et al. [9] in the course of analyzing the size of a maximum
agreement subtree in two randomly chosen trees according to the Yule-Harding model, the
context being similar to the equality of random BSTs. The quantity serves as an effective
bound for the probability that the size of a common maximum agreement subtree exceeds a
certain given value.

It is easy to check that qnC1 D 2npn, where pn is as above (see (1)). Thus, by (7), we obtain
the asymptotic expansion

qn D

��
2

��n
�

3n �
6

5
C

168

3125
n�5
C

336

3125
n�6
CO

�
n�7

��
:

where �=2 D 1:57042 87836 01468 47580 40837 : : : .

3 Probability of equality of random trees
The consideration of the equality of two random BSTs can be easily extended either to more
random BSTs or to other variants of BSTs.

3.1 Equality of d random BSTs
We extend in this subsection the same psi-series analysis to d random BSTs, d � 2. Surpris-
ingly, the resulting forms of the asymptotic expansions depend on the parity of d .
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Recurrence. The random BST model is as introduced above. Let pn D pn.d/ denote the
probability that d random BSTs, each independent of the others, are identical. More precisely,
the probability that d random permutations whose corresponding BSTs are all the same. Then
pn satisfies the recurrence

pn D n�d
X

0�j<n

pjpn�1�j .n � 1/; (26)

with p0 D 1. Let P .z/ WD
P

n�0 pnzn be the generating function of pn. Then P .z/ satisfies
the nonlinear ODE of order d �

z
d
dz

�d

P .z/ D zP .z/2; (27)

with p0 D 1 and the first d � 1 values pn for 1 � n < d computable by the recurrence (26).
Basic analytic properties of P .z/ such as the existence of a finite dominant singularity � > 0

can be derived as the case when d D 2.

Analytic continuation of P .z/. We extend the same continuity argument we used in Sec-
tion 2.2 to prove that if �

�
e� i is a singularity of P .z/, where �

�
> 0 and � 6D 0, then �

�
> �;

this proves that P is analytically continuable to a region outside its disk of convergence.
From the ODE (27), we define the following auxiliary functions: for x � 0,

� �0.x/ WD P .x/, and �j .x/ WD x� 0j�1.x/, 1 � j � d ;

� $.x/ WD jP .xe� i/j;

� wj .x/ WD
ˇ̌̌�

z d
dz

�j
P .z/

ˇ̌
zDxe� i

ˇ̌̌
, 1 � j � d ,

with $.0/ D P .0/, vj .0/ D wj .0/, 1 � j � d . Then � 0
d
.x/ D P .x/2 and we have

the following inequalities: wj .x/ � �j .x/, jw0j .x/j � wjC1.x/=x for 1 � j < d , and
jw0

d
.x/j � $.x/2.
We next show that we can find two points 0 < x2 < x1 < � such that

P .x2/ > $.x1/; �j .x2/ > wj .x1/ .1 � j � d/:

Again we show that P .x2 C t/ > $.x1 C t/ for t 2 J WD Œ0;minf�
�
� x1; � � x2g�; see

Figure 5.
Assume on the contrary that there exists a smallest number t0 2 .0;minf�

�
� x1; � � x2g/

such that

P .x2 C t0/ D $.x1 C t0/ and P .x2 C t/ > $.x1 C t/; t 2 Œ0; t0/: (28)

Then P 0.x2C t0/ � $
0.x1C t0/ implies that .x2C t0/P

0.x2C t0/ � .x1C t0/$
0.x1C t0/ or,

equivalently, �1.x2 C t0/ � w1.x1 C t0/. In view of this and the inequality �1.x2/ > w1.x1/,
we can choose a smallest number t1 2 .0; t0� such that

�1.x2 C t1/ D w1.x1 C t1/ H) � 01.x2 C t1/ � w
0
1.x1 C t1/

H) �2.x2 C t1/ D .x2 C t1/�
0
1.x2 C t1/

� .x1 C t1/w
0
1.x1 C t1/ � w2.x1 C t1/:
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By repeating the same process, we can find a sequence of tj ’s, 0 < td � td�1 � � � � � t1 � t0
such that

�j .x2 C tj / D wj .x1 C tj /; .1 � j � d/;

�jC1.x2 C tj / � wjC1.x1 C tj /; .1 � j < d/:

Finally, we have

�d.x2 C td/ D wd.x1 C td/ D wd.x1/C

Z td

0

w0d.x1 C s/ ds

< �d.x2/C

Z td

0

$.x1 C s/2 ds

< �d.x2/C

Z td

0

P .x2 C s/2„ ƒ‚ …
by (28)

ds

D �d.x2/C

Z td

0

� 0d.x2 C s/ ds D �d.x2 C td/;

a contradiction. Thus P .x2 C t/ > $.x1 C t/ for t 2 J WD Œ0;minf�
�
� x1; � � x2g�, and,

consequently, �
�
� �C x1 � x2 > �.

This completes the proof of the analytic continuation of P outside its disk of convergence.

The ARS Algorithm. As in the case of two random BSTs above, we begin with applying the
ARS Algorithm and check first if there are pseudo-poles and incompatibility.

¶ Leading order analysis: This part is always easy for the problems we study in this paper
and we obtain, by assuming P .z/ � c0.1� z=�/�˛ and by matching coefficients, ˛ D d

and c0 D .2d/!=.2�d!/.

· Resonance analysis: On the other hand, by substituting the form (10) into (27) and by
collecting the coefficient for the term cr .1�z=�/r�2d in the resulting expansion for (27),
we obtain the polynomial characterizing all possible resonances

ˆd.r/ D
.2d � 1 � r/!

.d � 1 � r/!
�
.2d/!

d!
(29)

D

�
.r C 1/ Q̂ d.r/; d is odd;
.r C 1/.r � 3d/ Q̂ d.r/; d is even,

d 2 N;

where Q̂ d is a polynomial of even order and has no real zeros. We see that if d is odd,
then there is no integer-valued resonance other than �1. Thus, the movable singularity
� is a pole of order d . On the other hand, if d is even, then there exists an additional,
unique, positive, integer-valued resonance 3d for each d .

¸ Incompatibility: We need only consider the case when d is even. The incompatibility of
the resonance at r D 3d is easily checked for each specific d D 2; 4; 6; : : : , but a proof
that r D 3d leads to incompatibility for all such d is not obvious.
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The case when d is odd. From the above quick check by the ARS algorithm, we see that the
solution for the ODE (27) admits, by the Frobenius method, the Laurent series expansion

�P .z/ D
.2d/!

2 � d!

0@Z�d
�
.3d � 2/.d � 1/

2.3d � 1/
Z�dC1

C

X
2�j�d

cjZj�d

1AC„.z/;
where „.z/ D „d.z/ is analytic at �.

The case when d is even. Again, by the above procedure of ARS algorithm, we anticipate a
psi-series expansion for P .z/ of the form

�P .z/ D
X
j�0

Zj�d
X

0�`�bj=3dc

cj ;`.log Z/`; (30)

where the cj ;`’s are chosen so that the psi-series satisfies the ODE (27). In particular,

c0;0 D
.2d/!

2 � d!
and c1;0 D �

.3d � 2/.d � 1/.2d/!

4.3d � 1/d!
:

The justification of the psi-series on the right-hand side of (30) follows the same method of
proof as that for two random BSTs; see Appendix A for more details.

In summary, we conclude the following asymptotic estimates, the drastic change of the
error term according to the parity of d unveiling an additional surprise.

Theorem 2 The probability that d � 2 randomly chosen BSTs are all equal satisfies

pn�
nC1
D
.2d � 1/!

.d � 1/!2

0@nd�1
C
.d � 1/.2d � 1/

3d � 1
nd�2

C

X
0�j�d�3

Cjnj

1A
C

(
O..1 � "/n/; if d is odd;

Kn�2d�1
CO

�
n�2d�2

�
; if d is even,

where " > 0, the Cj ’s are constants, � D �d depends on d and K is a constant depending only
on d .

More precise asymptotic expansions can be derived, but we content ourselves with the current
form for simplicity of presentation.

3.2 Equality of two random m-ary search trees
The m-ary search trees are one of the natural extensions of BSTs to branching factors m � 2

beyond binary; see [32] for thorough discussions. Briefly, from a given sequence of numbers,
we can construct an m-ary tree as follows. The first m�1 keys are stored in the root and sorted
in increasing order, each of the remaining n � m C 1 keys are then directed to one of the m

subtrees of the root, corresponding to the m intervals split by the m � 1 sorted keys, and are
constructed recursively by the same procedure.
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In the same vein, the probability qn that two random m-ary search trees (under the same
random permutation model) are identical is characterized by the following recurrence (m � 2)

qn D

�
n

m � 1

��2 X
j1C���CjmDn�mC1

j1;:::;jm�0

qj1
� � � qjm

.n � m � 1/;

with the initial conditions qj D 1, 0 � j � m � 2. The associated generating function Q.z/

then satisfies the following nonlinear ODE�
zm�1Q.m�1/.z/

�.m�1/

D .m � 1/!2Qm.z/; (31)

with the initial conditions Q.z/ D 1C z C � � � C zm�2 C qm�1zm�1 C � � � , where qj , m� 1 �

j � 2m � 3, are determined by the above recurrence. Analytic properties of Q, including
singularity and analytic continuation, can be derived as above and are omitted here.

¶ Leading order analysis: The assumption Q.z/ � c0.1 � z=�/�˛ leads to ˛ D �2 and
�c0 D

�
.2m � 1/!=.m � 1/!2

�1=.m�1/.

· Resonance analysis: Assuming that Q.z/ � c0.1�z=�/�2Ccr .1�z=�/�2Cr , we obtain
the following algebraic equation characterizing all possible resonancesY

2�j<2m

.r � j / �
.2m/!

2
D .r C 1/.r � .2mC 2//�m.r/ D 0;

where �m.r/ is a polynomial of degree 2.m � 2/ and admits complex-conjugate zeros
only. Thus we need to check if the ODE (31) is compatible at the resonance r D 2mC2.

¸ Incompatibility: Similar to the case of d random BSTs, the resonance r D 2m C 2 is
easily checked to be incompatible for each finite values of m D 2; 3; : : : , but it is far
from being obvious to prove directly the incompatibility for all m � 2.

Let �m WD
�
.2m � 1/!=.m � 1/!2

�1=.m�1/
. Instead of proving the incompatibility of r D

2mC 2 for all m � 2 and that � is not an essential singularity, we prove that the ODE (31) has
the psi-series solution

�U.Z/ D
X
j�0

Zj�2
X

0�`�bj=.2mC2/c

cj ;` log` Z;

which converges absolutely in some cut-region C" (defined in (8)); see Appendix A for details.
Then we connect Q.z/ and U.Z/ by the same arguments as those used above for two random
BSTs. In this way, we obtain c0;0 D �m and c1;0 D �m�m=.2mC 1/.

From this expansion, we then derive the following approximation to qn.

Theorem 3 The probability qn D qn.m/ that two random m-ary search trees are equal satisfies
the asymptotic approximation

qn D �m�
�n�1

�
nC

mC 1

2mC 1
CKn�2m�1

CO
�
n�2m�2

��
;

where � D �m and K both depend on m.
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m qn � �m

2 �2�
�n�1
2

�
nC 3

5
C

56
3125

n�5
�

6
3 �3�

�n�1
3

�
nC 4

7
C

6927696
78236585

n�7
� p

30

4 �4�
�n�1
4

�
nC 5

9
C

10419284224
15568564095

n�9
�

3
p

140

5 �5�
�n�1
5

�
nC 6

11
C

1526061507281984000
194179984589469879

n�11
�

4
p

630

6 �6�
�n�1
6

�
nC 7

13
C

132275788517112977050000
942913507718961369877

n�13
�

5
p

2772

Table 2: The asymptotic approximation to the probability that two random m-ary search trees
are equal for m D 2; : : : ; 6. All smaller order terms are omitted.

As for BSTs, the consideration can be extended to choose d � 2 random m-ary search
trees, and the resonance equation is given byY

0�j<d.m�1/

.d � r C j / �
m.dm � 1/!

.d � 1/!
D
�.d � r C d.m � 1//

�.d � r/
�

m.dm � 1/!

.d � 1/!
:

We then deduce that this equation has no positive integral resonance when m is even and d is
odd, and has the positive resonance d.mC 1/ for all other cases with d;m � 2. Our approach
can be applied and we obtain an asymptotic approximation to the probability that d random m-
ary search trees are equal, the error terms beyond the constant term being either exponentially
small when m is even and d is odd or of order � n�dm�1 for all the remaining meaningful
cases.

3.3 Equality of two random fringe-balanced BSTs
Median-of-.2t C 1/ (or fringe-balanced) BSTs represent yet another class of extensions of
BSTs. The idea is, instead of placing the first element in the given sequence at the root, which
may result in a less balanced binary tree, we take a small sample of size 2t C 1 and use the
median of this sample as the root element, which then partitions the remaining elements as in
the construction of BSTs, where t � 0. This simple balancing scheme has turned out to be
useful for small t , notably for the corresponding quicksort algorithm. Note that the original
BST corresponds to t D 0.

For the probability model, assume, as in random BSTs, that we are given a random permu-
tation of n elements; then we construct the corresponding median-of-.2t C 1/ BST, which is
called a random median-of-.2t C 1/ BST.

Let now fn D fn.t/ denote the probability that two randomly chosen permutations lead to
the same median-of-.2t C 1/ BST. Then fn satisfies the recurrence

fn D

X
t�j�n�1�t

�
j

t

�2�n�1�j

t

�2�
n

2tC1

�2 fjfn�1�j .n � 2t C 1/; (32)

with the initial conditions fn D 1 for 0 � n � 2t .
Let F.z/ WD

P
n�0 fnzn denote the generating function of fn. Then F.z/ satisfies the ODE�

z2tC1F .2tC1/.z/
�.2tC1/

D
.2t C 1/!2

t !4

��
ztF .t/

�.t/
.z/

�2

; (33)
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with the initial conditions F .j/.0/ D j !, 0 � j � 2t , and fj , 2tC1 � j � 4tC1, determined
by the recurrence (32). Analytic properties (movable singularity and analytic continuation)
are derived by the same arguments we used for random BSTs; details are less interesting and
omitted here.

¶ Leading order analysis: With the simple form F.z/ � c0.1 � z=�/�˛, we obtain ˛ D 2

and �c0 D .4t C 3/! t !4=.2t C 1/!4 for each t � 0.

· Resonance analysis: Again, assuming that F.z/ � c0.1 � z=�/�2 C cr .1 � z=�/�2Cr ,
we obtain the resonance equation

ˆt.r/ D

0@ Y
2�j�2tC1

.r � j /

1A0@ Y
2tC2�j�4tC3

.r � j / � 2
Y

2tC2�j�4tC3

j

1A ;
which can be factored into the form

.r C 1/.r � 6t � 6/ Q̂ t.r/.r � 2/ � � � .r � 2t � 1/;

where Q̂ t.r/ has only complex conjugate zeros since the factor

.r � 2t � 2/ � � � .r � 4t � 3/ � 2.2t C 2/ � � � .4t C 3/

D .r � 2t � 2/ � � � .r � 4t � 3/ � .2t C 3/ � � � .4t C 4/

never vanishes for r 2 R n f�1; 6t C 6g. Thus we get yet another new pattern for the
least positive integer-valued resonance

r D

�
6; t D 0;

2; t � 1:

¸ Incompatibility: Since t D 0 has already been addressed in Section 2, we focus on t � 1,
which has the constant resonance r D 2. A direct check of the incompatibility is possible
for r D 2 and t � 1; see Appendix B.

The same psi-series method applies and we obtain for t � 1

�F.z/ D
.4t C 3/!t !4

.2t C 1/!4

 
Z�2
�

2.t C 1/2

6t C 5
Z�1
C

�
22 t2 C 35 t C 14

�
.t C 1/2 t

.7 t C 6/ .6 t C 5/2
log Z

!
CO .jZjj log Zj// :

Theorem 4 The probability fn that two random median-of-.2t C 1/ BSTs are equal satisfies
the asymptotic approximation

fn D
.4t C 3/!t !4

.2t C 1/!4
��n�1

 
nC

3C 2t � 2t2

6t C 5
�

�
22 t2 C 35 t C 14

�
.t C 1/2 t

.7 t C 6/ .6 t C 5/2
n�1

!
CO

�
��nn�2

�
;

for t � 1, where � D �t is an effectively computable constant.

Note that the expansion also holds when t D 0 but the O-term becomes O.��nn�5/; see (7).
Also more terms can be computed by the same procedure.
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4 Asymptotics of some quadratic recurrences of Faltung type
In addition to the equality of random trees, the asymptotics of quadratic convolution recurrences
provides another rich source of nonlinear recurrences and differential equations of the same
type as those analyzed in previous sections.

4.1 Partial match queries in random quadtrees
We consider first in this section the cost of partial match queries in random two-dimensional
quadtrees. The expected cost was first analyzed in Flajolet et al. [19] (see also [10]) and the
limit law derived in Neininger and Rüschendorf [37]; see also [8, 14] for recent progresses
along this direction.

Let v WD .
p

17 � 3/=2. Then the cost of a random partial match query in a random two-
dimensional quadtree of n nodes tends (under a purely idealized model where randomness is
preserved for all subtrees), after normalized by nv, to a limit law X whose moments satisfy
(see [37])

E.X m/ D
xm

�.mv C 1/
;

where x1 WD �.2v C 2/=.2�.v C 1/2/ and

xm D
2

v.m � 1/..mC 1/v C 3/

X
1�j<m

�
m

j

�
xjxm�j .m � 2/:

Then the generating function X.z/ WD 1C
P

m�1 xmzm=m! satisfies the differential equa-
tion

v2z2X 00.z/C 2zX 0.z/C 2X.z/ D 2X 2.z/; (34)

with the initial conditions X.0/ D 1 and X 0.0/ D x1.
The psi-series method we use above can be readily applied and we obtain the resonance

r D 6 and

X.z/ D 3v2Z�2
C

6

5
.9v � 5/Z�1

C

X
2�j�7

cjZj�2
C

117.39v C 139/

43750
Z4 log Z

C
468.153v C 545/

109375
Z5 log Z C O

�
jZj6j log Zj

�
;

(35)

where the cj ’s are unimportant constants. By singularity analysis (see [21]), we then conclude
the following asymptotic approximation to xm=m!.

Theorem 5 The m-th moment of X satisfies for large m

E.X m/ D
m!��m

�.mv C 1/

�
3v2mC

9

5
v �

1404.39v C 139/

2185 m5

C
8424.139v C 495/

21875 m6
CO

�
m�7

��
;

where � � 1:37649 44410 57156 25755 : : : .
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We omit all details as they are very similar to the case of the equality of two random BSTs.
An interesting implication of our psi-series analysis is that we can derive an asymptotic

expansion for the moment generating function of X

E
�
eX z

�
D e.z=�/

1=v

 
3

�
z

�

�1=v

C
9

5
�

22464

21875

�
z

�

��5=v

CO.jzj�6=v/

!
; (36)

as jzj ! 1 in the sector j arg.z/j � .v � "/�=2. This is proved by the integral representation

E
�
eX z

�
D

1

2� i

Z
H

ess�1X.z=sv/ ds;

for a suitable Hankel-type contour, and standard analysis; see Appendix C for a proof. Such
an expansion for the moment generating function is unusual in the probability literature and
implies in turn that

� logP.X > t/ � .1 � v/vv=.1�v/.�t/1=.1�v/;

for large t , by an application of a Tauberian argument; see Section 4.12 of Bingham et al. [6].
Note that the transformations z D ��v and X.z/ D 2� OX .�/ bring the ODE (34) to the

standard form of the so-called Emden’s equation

d2

d�2
OX .�/ D ��1 OX 2.�/:

But it is still not exactly solvable; see [28, ~ 12.4] or [36, ~ 2.3].

4.2 Partial match queries in random relaxed k-d trees
In a similar setting, the cost of a random partial match query in a random relaxed k-d trees
(see [16]) tends, after proper normalization, to the limit law Y whose moments satisfy (see [35])

E.Y m/ D
ym

�.mˇ C 1/
;

where ˇ WD .�1C
p

9 � 8s=k/=2 (s out of the k coordinates in the query pattern is specified,
the other k � s being “don’t-cares”), and

ym D
ˇ C 1

.m � 1/..mC 1/ˇ C 1/

X
1�j<m

�
m

j

�
.jˇ C 1/yjym�j .m � 2/;

with

y1 D
2�.2ˇ C 2/

ˇ.ˇ C 1/2.2ˇ C 1/�3.ˇ C 1/
:

It follows that the generating function Y .z/ WD 1C
P

m�1 ymzm=m! satisfies the nonlinear
differential equation

ˇz2Y 00.z/C .ˇ C 1/2zY 0.z/C .ˇ C 1/Y .z/ D .ˇ C 1/Y 2.z/C ˇ.ˇ C 1/zY 0.z/Y .z/;
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with the initial conditions Y .0/ D 1 and Y 0.0/ D y1.
The psi-series method applies with a resonance at r D 2 and we obtain the expansion

Y .z/ D
2

ˇ C 1
Z�1
C
ˇ � 1

ˇ
C c2Z C

2.ˇ � 1/.ˇ C 2/

3ˇ2.ˇ C 1/
Z log Z C c3Z2

C
.ˇ � 1/.ˇ C 2/.ˇ C 3/

3ˇ3.ˇ C 1/
Z2 log Z C c4Z3

CO
�
jZj3j log Zj

�
;

from which we deduce an asymptotic approximation to higher order moments of Y .

Theorem 6 The m-th moment of the limit law Y satisfies

E.Y m/ D
2m!��m

.ˇ C 1/�.mˇ C 1/

�
1C

.ˇ � 1/.ˇ C 2/

3ˇ2m2
�
.ˇ � 1/.ˇ C 2/

ˇ3m3
CO

�
m�4 log m

��
;

as m!1, where � depends on ˇ.

Implications of the expansion for Y .z/ can be derived as those for X .

4.3 Recursive partition structures.
In the context of recursive interval splitting, Gnedin and Yakubovich [24] derived the following
recurrence relation for the m-th moment hm of certain limit law W (satisfying a fixed-point
equation with Dirichlet distribution as prefactors)

hm D
�.d C !/

�.!/2�.m�C d C !/

X
0�j�m

�
m

j

�
�.j�C !/�..m � j /�C !/hj hm�j ; (37)

for m � 2 with h0 D h1 D 1, where �; ! > 0 (� is referred to as the Malthusian exponent)
and d D 2; 3; : : :

The case when d D 2. Consider first the simplest case when d D 2. In this case, the
generating function

h.z/ WD
X
m�0

hm�.m�C !/

m!�.!/
zm; (38)

satisfies the ODE (using the relation .�C !/.�C ! C 1/ D 2!.! C 1/)

vz2h00.z/C zh0.z/C h.z/ D h2.z/;

which is exactly of the type of problems we have been examining in this paper (compare (34)),
where for simplicity

v WD
�2

!.! C 1/
:

For this ODE, we can apply the psi-series method and obtain .Z D 1 � z=�/

h.z/ D 6vZ�2
�

6

5
.6v � 1/Z�1

C

X
2�j�6

cjZj�2
CKZ4 log Z CO

�
jZj5j log Zj

�
;
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where K WD .v � 1/2.v � 6/.6v � 1/.2v C 3/.3v C 2/=.43750v5/: Consequently, we deduce
the asymptotic expansion for the moments of W

hm D
6m!�.!/��m

�.m�C !/

�
vm �

v � 1

5
� 4Km�5

CO
�
m�6

��
;

for large m.

The case when d � 2. From the recurrence (37), the generating function h.y/ (defined as
in (38)) satisfies the ODE

y1�! dd

dyd

�
h.y�/ydC!�1

�
D !dh.y�/2;

where !d D ! � � � .! C d � 1/ denotes the rising factorial; see [24]. The ODE is however
less manageable. We rewrite it as follows. Let z D y� and H.z/ D z�h.z/, where � WD
.d C ! � 1/=�. Note that the Malthusian exponent � satisfies the relation

!d

.�C !/d
D

1

2
:

Then the function H.z/ satisfies the ODE

��.�� � 1/ � � � .�� � d C 1/H.z/ D z��!dH.z/2; (39)

where the differential operator � is defined as � WD z.d=dz/.
The leading order analysis and the resonance analysis give the dominant exponent �d and

the resonance equation is exactly the same as (29) for all d � 2, namely, .d � r/d � .d C 1/d .
It follows that we have the same asymptotic pattern for H as the case of d random BSTs.

The case when d is odd. The movable singularity � is a pole of order d and the solution
H.z/ admits the Laurent expansion

���H.z/ D
.2d/!�d

2 � d!!d

X
0�j�d

cjZj�d
C„1.z/;

where

c0 D 1; c1 D �
d

2
�
.4d � 2/! C .d � 1/.5d � 2/

2.3d � 1/�
; (40)

and „1.z/ is an analytic function at z D �.

The case when d is even. In this case, since the resonance equation (29) possesses the unique
positive integral resonance 3d , we see that z D � is a pseudo-pole and the psi-series solution
to (39) has the form

���H.z/ D
X
j�0

Zj�d
X

0�`�bj=3dc

cj ;`.log Z/`

D
.2d/!�d

2 � d!!d

X
0�j�3d

cjZj�d
CKZ2d log Z CO

�
jZj2dC1

j log Zj
�
;

where, in particular, c0 and c1 are given as in (40), and K is a constant dependent on � and !.
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Expansions for h. It is not difficult to verify that h.z/ and H.z/ have the same dominant
singularity �, dominant exponent �d , and the dominant resonance 3d . Now by the relation
h.z/ D .1 �Z/����� H.z/, we obtain

h.z/ D
.2d/!�d

2 � d!!d
�

8̂̂̂̂
<̂
ˆ̂̂:

X
0�j�d

c0jZj�d
C„2.z/; if d is oddIX

0�j�3d

c0jZj�d
CK0Z2d log Z

CO
�
jZj2dC1j log Zj

� ; if d is even;

where c00 D 1,

c01 D
d

2

�
d C 2! � 1

.3d � 1/�
� 1

�
;

and „2 is analytic at z D �.

Asymptotics of the moments. From the expansions we derived and a similar analysis as for
d random BSTs, we conclude the following asymptotic approximations to the limit law W .

Theorem 7 The m-th moment hm of W satisfies

hm�
m
D

.2d/!�.!/2�dm!

2 � d!.d � 1/!�.! C d/�.m�C !/

X
0�j�d

Cjmd�1�j

C

(
O..1 � "/m/; if d is odd;

C m�2d�1
CO

�
m�2d�2

�
; if d is even,

for large m, where " 2 .0; 1/, �;C and the Cj ’s are constants depending on d; �; !. In
particular, C0 D 1 and

C1 D

�
d

2

�
d C 2! � 1

.3d � 1/�
:

4.4 An Ansatz solution in Boltzmann equations
The following sequence tn arose in the analysis (see [3]) of exact solutions of the Tjon-Wu
representation of Boltzmann equations (which represent the major cornerstone of kinetic theory
in statistical mechanics). Let � be a positive integer. The sequence tn is defined recursively as�

�.� C 1/

� C 2
n.n � 1/ � .nC 1/

�
tn D �

X
0�j�n

tj tn�j .n � 2/; (41)

with t0 D t1 D 1. This recurrence translates into the following ODE for the generating function
T .z/ WD

P
n�0 tnzn

�.� C 1/

� C 2
z2T 00.z/ � zT 0.z/ � T .z/ .1 � T .z// D 0; (42)

with the initial conditions T .0/ D T 0.0/ D 1.
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Straightforward computations as above give �2 as the dominant exponent for the dominant
term of T .z/ and .r C1/.r �6/ as the resonance equation for each � D 1; 2; : : : . Interestingly,
for the resonance r D 6, the two special cases � D 1; 2 do not lead to incompatible system of
equations, in contrast to all higher values of �. This is very different from the cases we have
been dealing with up to now. According to the ARS method, the cases when � D 1; 2 admit the
Painlevé property [11, ~1.2, Definition 1.1] and have solutions in terms of Laurent expansion
with two free parameters; in other words, they are integrable, and we will derive closed-form
solutions for them. The remaining cases when � � 3 have psi-series solutions.

Exactly solvable (integrable) case: � D 1. We start with the case � D 1. Consider the
transformations T .z/ D 1 � �V .�/ and z D ��. Note that, by this transform, the coefficients
Œ�n�V .�/ are positive and the transformed ODE (after multiplying V 0.�/) becomes

1

3
�2 d

d�

�
�V 0.�/2 � V .�/3

�
D 0 or

p
�V 0.�/ D

q
V .�/3 � 1;

with V .0/ D 1. Also V 0.0/ D 3. Then V is solved implicitly as

2
p
� D

Z V .�/

1

dx
p

x3 � 1
: (43)

Let

2
p
�1 D

Z 1
1

dx
p

x3 � 1
� 2:42865 06478 87581 61181 : : : ;

or �1 � 1:47458 59923 71192 48035 : : : . Obviously V .�/ ! 1 as � ! �1. Let � WD
2.
p
�1 �

p
�/. Then (43) can be written as

� D

Z 1
V .�/

dx
p

x3 � 1
:

Since V .�/!1 as � ! �1, we deduce that

� D 2V .�/�1=2
C

1

6
V .�/�7=2

C
3

52
V .�/�13=2

C
5

152
V .�/�19=2

C smaller order terms:

Consequently, by inverting the series (justified by analyticity and standard arguments), we ob-
tain

V .�/ D 4��2
C
�4

112
C

�10

652288
C

�16

5552275456
C smaller order terms:

Finally, let � WD ��1 and let Œzn�f .z/ denote the coefficient of zn in the Taylor expansion
of f . We obtain

tn D Œz
n�T .z/ D .�1/n�1Œ�n�1�V .�/

� 8.�1/n�1Œy2n�2�
�
2
p
�1 � 2y

��2

D 2.�1/n�1.2n � 1/j�j�n;

the errors omitted being exponentially smaller.
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Exactly solvable (integrable) case: � D 2. The case when � D 2 is similar. We now adopt
the transformations T .z/ D 1 � �2L.�/ and z D ��3. Then the ODE (41) becomes

L00.�/ � 6L.�/2 D 0 or
d
d�

�
1

2
L0.�/2 � 2L.�/3

�
D 0;

with the initial values L.0/ D 0 and L0.0/ D 1. Thus, the solution is given by

� D

Z L.�/

0

dx
p

1C 4x3
: (44)

Let �1 denote the dominant singularity of L.�/. Then

�1 D

Z 1
0

dx
p

4x3 C 1
D

21=3

6
Beta

�
1

6
;
1

3

�
≈ 1:76663 87502 85449 95731 : : : :

Thus the dominant singularity of T .z/ when � D 2 is

� D ��3
1 D �

1

108
Beta

�
1

6
;
1

3

�3

≈ �5:51370 15767 10567 75506 : : : :

By (44) and the same procedure as above, we have (� WD �1 � �)

L.�/ D ��2
�
�4

28
C

�10

10192
�

�16

5422144
C

3�22

9868302080
� smaller order terms:

Accordingly,

tn D Œz
n�T .z/ D 3.�1/n�1Œ�3n�2�L.�/

� 3.�1/n�1.3n � 1/j�j�n:

Note that we can use the transforms z D �2 and T .z/ D 1�V .�/�2 to convert the ODE for
� D 1 to a ODE of same type (differing only by a constant) as the case for � D 2. Also both
solutions can be expressed in terms of Weierstrass } functions.

The remaining cases: � � 3. Unlike the preceding two cases, the remaining �’s no longer
lead to ODEs that are solvable by quadrature1. Due to incompatibility, we apply instead the
psi-series method. Because of the negative sign on the right-hand side of (41), we consider the
transform z D �� and T .z/ D 1 � �V .�/. Then

tn D Œz
n�T .z/ D .�1/n�1

�
�n�1

�
V .�/;

and (42) is translated into

�.� C 1/

� C 2
�V 00.�/C

2�2 C � � 2

� C 2
V 0.�/ � V .�/2 D 0:

1An ODE is said to be solvable by quadrature if its solution can be expressed in terms of one or more integra-
tions.
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Let now Z D 1 � �=�, where � > 0 is the dominant singularity of V (having all Taylor
coefficients positive). Then we deduce the psi-series expansion for V

�V .�/ D
6�.� C 1/

.� C 2/Z2
�

6.�2 C 2� C 2/

5.� C 2/Z
C

X
0�j�5

cjZj
CKZ4 log Z CO

�
jZj5j log Zj

�
;

where

K WD �
.� � 1/.� � 2/.� C 3/.� C 4/.2� C 1/.2� C 3/.3� C 2/.3� C 4/

�
�2 C 2� C 2

�2
43750�5.� C 1/5.� C 2/

:

This, together with the approximations we derived for tn in the two cases � D 1; 2, implies the
following asymptotics of tn. Note that K D 0 when � D 1; 2.

Theorem 8 The sequence tn satisfies the asymptotic expansion

.�1/n�1tn D �
�n

 
6�.� C 1/

� C 2
n �

6.�2 C 2� C 2/

5.� C 2/
C

�
O..1 � "/n/; if � D 1; 2I

24Kn�5 CO.n�6/; if � � 3:

!

5 Conclusions
In the literature, the first use of the psi-series dates back to at least Jakob Horn’s work (see [29])
in the late 19th century. Psi-series have been introduced and applied in many diverse subject
areas over the years. Through the concrete examples we studied in this paper (see Table 3 for a
table summary), we see that the psi-series method is a powerful approach for several problems
in applied probability and analysis of algorithms. It is especially useful for handling nonlinear
ODEs (mostly from quadratic convolution recurrences) and leads to some surprising results,
notably asymptotic expansions with missing terms. The procedure we adapted and improved
from Hille’s for proving the absolute convergence of psi-series is of certain generality and can
be applied to other problems of similar nature.

Another feature of the recurrences we studied in this paper is that they are very sensible
to small variations, the example of d random BSTs being typical. Note first that the recur-
rence (26) with d D 0 yields the well-known Catalan numbers and the case d D 1 gives
rise to the trivial sequence pn D 1. The case d D 1 in a more general form was studied by
Wright [40]; see also Cooper [12] for a study of pn for real d � 0.

We now compare the recurrence (26) with the following one by defining p1 D 1 and

pn D n�d
X

1�j�n�1

pjpn�j .n � 2/:

While the case d D 0 still yields the Catalan numbers with their generating function satisfying

P .z/ � z D P 2.z/;

the case d D 1 becomes a nonlinear differential equation of Riccati type

zP 0.z/ � z D P 2.z/; P .0/ D 0;

which can still be explicitly solved P .z/ D z1=2J1.2z1=2/=J0.2z1=2/, where J�.z/’s are Bessel
functions (see [30]). The case d D 2 is again of Emden-Fowler type and can be solved asymp-
totically by psi-series method as well as the remaining cases d � 3.

See [12, 20, 22, 31, 39, 40] and the references therein for some quadratic recurrences of the
above “Faltung” type. More examples can be found in the recent papers [4, 5].
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DE
psi-series

(resonance)
Frobenius Section

zP 00 C P 0 D P2 r D 6 2

.zD/dP D zP2 d even
r D 3d

d odd 3.1

.zm�1Q.m�1//.m�1/ D .m � 1/!2Qm r D 2mC 2 3.2

.zm�1Dm�1/dQ D .m � 1/!dzm�1Qm

.m; d/ 6D

(even,odd)
r D d.mC 1/

.m; d/ D

(even,odd)
3.2

.z2tC1F .2tC1//.2tC1/ D
.2tC1/!2

t !4

��
ztF .t/

�.t/�2
r D 6 .t D 0/

r D 2 .t � 1/
3.3

v2z2X 00 C 2zX 0 C 2X D 2X 2 r D 6 4.1
ˇz2

ˇC1
Y 00 C .ˇ C 1/zY 0 C Y D Y 2 C ˇzY Y 0 r D 2 4.2

�� � � � .�� � d C 1/H D z��!dH 2 d even
r D 3d

d odd 4.3

�.�C1/
�C2

z2T 00 � zT 0 D T .1 � T /
� � 3

r D 6
� D 1; 2 4.4

Table 3: All nonlinear DEs studied in this paper; the resonance is specially marked when the
psi-series method applies.
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[12] R. Cooper, A class of recurrence formulae, J. London Math. Soc. 22 (1947), 31–40.

[13] A. R. Chowdhury and B. Raton, Painlevé Analysis and Its Applications, Chapman &
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ichungen in der Umgebung gewisser singulärer Stellen, J. Reine Angew. Math. 116 (1896),
265–306.

[30] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1926.

[31] D. J. Kleitman, Proportions of irreducible diagrams, Stud. Appl. Math. 49 (1970) 297–
299.

[32] H. M. Mahmoud, Evolution of Random Search Trees, John Wiley & Sons, New York,
1992.

[33] C. Martı́nez, Average-case analysis of equality of binary trees under the BST probabil-
ity model, Fundamentals of Computation Theory (Gosen, 1991), 350–359, LNCS, 529,
Springer, Berlin, 1991.

[34] C. Martı́nez, Statistics Under the BST Model, Ph.D. Thesis, Universitat Politècnica de
Catalunya, 1992; available at www.lsi.upc.es/�conrado/.

[35] C. Martı́nez, A. Panholzer and H. Prodinger, Partial match queries in relaxed multidimen-
sional search trees, Algorithmica 29 (2001), 181–204.

[36] A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential
Equations, CRC Press, Boca Raton, FL, 1995.
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A Proof of the absolute convergence of psi-series
In this Appendix, we group the proof details for the absolute convergence of the psi-series
arising in the three cases: d random BSTs, two random m-ary search trees, and two random
median-of-.2t C 1/ BSTs. We first describe briefly the general proof pattern and then provide
more details for each case.

Our proof begins with rewriting the original ODE in z into a system of linear ODEs in
Z D 1 � z=� of the form

d
dZ

U.Z/ D X .Z;U/; U.Z/ D

0B@ U1.Z/
:::

Us.Z/

1CA ; (A.1)

where s 2 fd; 2.m � 1/; 4t C 2g, X W CsC1 7! Cs, and Uj .Z/ D
P

k�0 u
Œj �

k
.�/Z�˛Ck�jC1

with ˛ the leading order and � D log Z. Then we derive the infinite system of linear ODEs
satisfied by the u

Œj �

k
’s

P�k C Ak�k D gk ; �k D

0B@ u
Œ1�

k
:::

u
Œs�

k

1CA ; (A.2)

where Ak D kIs�s �M and M 2 Cs�s are s � s matrices.
Relying on such an infinite system, we derive an upper bound for all u

Œj �

k
(in particular, for

u
Œ1�

k
) of the form

max
1�j�s

ˇ̌̌
u
Œj �

k
.�/
ˇ̌̌
�

C0

.k C 1/2
Bk
j1 � � jk=c.s/; (A.3)

for � 2 T WD
˚
� W Bj1 � � j1=c.s/e<.�/ < 1;<.�/ < 0;�� < � � �

	
(see Figure 7 on

page 13), where B > 0 is a constant and c.s/ depends on the problem in question. The absolute
convergence can then be justified as in the case of two random BSTs; see Proposition 2.

An additional common and interesting feature this approach brings is that the resonance
equation equals to det.rIs�s �M/. We will explain this in more detail.

The following relations are useful in converting our ODEs in z into those in Z (D D d=dz).

z D �.1 �Z/; zD D �.1 �Z/
d

dZ
; zjDj

D .�1/j .1 �Z/j
dj

dZj
:

Equality of d random BSTs. The linear system (A.1) specializing to (27) is�
U 0j .Z/ D .1 �Z/�1UjC1.Z/; 1 � j < d;

U 0
d
.Z/ D .�1/d�U1.Z/

2:

The associated coefficient matrices Ak and gk in (A.2), k � 3d C 1, are given by

Ak D kId�d �M; M D

0BBBBB@
d 1 0 � � � 0

0 d C 1 1 � � � 0
:::

: : :
: : :

: : :
:::

0 2d � 2 1

.�1/d�1 .2d/!

d!
0 � � � 0 2d � 1

1CCCCCA ;
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and

gk D

0BBB@
P

0�`<k u
Œ2�

`
.�/

:::P
0�`<k u

Œd �

`
.�/

.�1/d�
P

1�`<k u
Œ1�

`
.�/u

Œ1�

k�`
.�/

1CCCA :
Due to the existence of complex-conjugate roots, we can find a d � d matrix P with entries
Pij 2 C such that

PAkP�1
D

0BBBBB@
k C 1 0 � � � � � � 0

0 k � 3d
:::

k � r3

:::
: : : 0

0 � � � � � � 0 rd

1CCCCCA ;

for k 2 N. Here r3; r4; : : : ; rd denote the non-real zeros of the polynomial in (29). By the same
norm and same arguments used for two random BSTs, we derive the inequality

max
1�j�d

ˇ̌̌
u
Œj �

k
.�/
ˇ̌̌
� k�kk � kPkkP�1

k

Z 1
0

e�.k�3d/x
kgk.� � x/k dx:

Again, by the same arguments used to prove (19), we obtain (A.3) with s D d and c.s/ D

3d , where the constant B is determined using the techniques of Section 2.3.

The resonance polynomial equals det.rId�d �M/. Direct calculations give the determinant

det .rId�d �M/ D
.2d � 1 � r/!

.d � 1 � r/!
�
.2d/!

d!
;

which is nothing but the resonance polynomial (29).
The reason that the two polynomials are equal is as follows. The distinction between Lau-

rent expansion and the psi-series expansion depends crucially either on the existence of positive
integer resonance or on whether a relation such as (9) holds for all k. This is equivalent to ask-
ing whether the linear system Ak�k D gk is solvable or not for all k. If the system (A.2)
Ak�k D gk is solvable under the condition det Ak 6D 0 for all k, then by the uniqueness of the
solution of (A.2), the solution vectors �k’s are constant vectors (independent of � ) and in turn,
the series solution U1.Z/ D

P
k�0 u

Œ1�

k
.�/Z�dCk�jC1 is eventually a Laurent series. On the

other hand, if det Ak0
6D 0 fails to hold for some k0, then we have the following two cases.

— The linear system Ak0
� D gk0

has a solution depending on the d � rank .Ak0
/ free

parameters, and all the remaining constant coefficient vectors �k depend on at least these
parameters.

— The linear system is inconsistent. Hence it can no longer provide a solution to (A.2). The
true solution should be solved from (A.2) instead and then all the vector functions �k.�/,
k � k0, depend on � , and the resulting solution U1.Z/ D Z�d

P
k�0 u

Œ1�

k
.�/Zk�jC1 is

indeed a psi-series.

In particular, we see that the characteristic polynomial det.rId�d �M/ equals the polyno-
mial (29) that determines all the possible resonances.
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Equality of two random m-ary search trees. The transformed first-order differential system
in terms of Z for (31) now has the form8̂̂<̂

:̂
U 0j .Z/ D UjC1.Z/; 1 � j � m � 2;

U 0m�1.Z/ D .1 �Z/�.m�1/Um.Z/;

U 0m�1Cj .Z/ D UmCj .Z/; 1 � j � m � 2;

U 02m�2.Z/ D .m � 1/!2�m�1U1.Z/
m:

Then the corresponding infinite system (A.2) has the coefficient matrix Ak D kI2.m�1/�2.m�1/�

M, where

M D

0BBBBB@
2 1 0 � � � � � � 0

0 3 1 0
:::

:::
: : :

: : :
:::

0 � � � 0 2m � 2 1

m.2m � 1/! 0 � � � � � � 0 2m � 1

1CCCCCA ;
and the vector-valued function gk is defined by gk D .gk;1; : : : ;gk;2m�2/

T (the superscript T
denoting the transpose) with gk;j D 0 for j 6D m�1; 2m�2, gk;m�1 D

P
0�j<k

�
m�2Ck�j

k�j

�
u
Œm�
j ,

and gk;2m�2 D �
m�1.m � 1/!2

P
i1Ci2C���CimDk

0�ij<k

u
Œ1�
i1

u
Œ1�
i2
� � �u

Œ1�
im

.

Then similar arguments as those used for (19) lead to the upper bound (A.3) with s D

2.m � 1/ and c.s/ D 2.mC 1/.

Equality of two random median-of-(2t C 1) BSTs. The linear differential system of 4t C 2

equations of (33) is8̂̂<̂
:̂

U 0j .Z/ D UjC1.Z/; 1 � j � 2t;

U 02tC1.Z/ D .1 �Z/�.2tC1/U2tC2.Z/;

U 0j .Z/ D UjC1.Z/; 2t C 2 � j � 4t C 1;

U 04tC2.Z/ D
.2tC1/!2

t !4
�
P

0�i1;i2�t �.i1; i2/.1 �Z/2t�i1�i2U2tC1�i1
.Z/U2tC1�i2

.Z/;

where �.i1; i2/ WD .�1/i1Ci2 t !4=.i1!i2!.t�i1/!
2.t�i2/!

2/. Let Uj .Z/ D
P

k�0 u
Œj �

k
.�/Zk�j�1

for 1 � j � 4tC2, where u
Œj �

0 .�/ D .�1/j�1j !.4tC3/! t !4=.� .2tC1/!4/ for 1 � j � 2tC1.
Then the coefficient matrix Ak D kI.4tC2/�.4tC2/ �M in (A.2), k � 4t C 2, is given by

M D

0BBBBB@
2 1 0 � � � 0

0 3 1 � � � 0
:::
: : :

: : :
: : :

:::

0 4t C 2 1

0 0 � � � 0 2.4tC3/!

.2tC1/!
� � � 0 4t C 3

1CCCCCA ;
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and the vector-valued function gk D .gk;1; : : : ;gk;4tC2/
T by gk;j D 0 if j 6D 2t C 1; 4t C 2,

gk;2tC1 WD
P

0�j<k

�
2tCk�j

k�j

�
u
Œ2tC2�
j , and

gk;4tC2 WD
.2t C 1/!2

t !4
��.0; 0/

X
0�`�k�j

1�j�minfk;2tg

.�1/j
�

2t

j

�
u
Œ2tC1�

k
u
Œ2tC1�

k�j�`

C

X
1�s�minfk;2tg
0�i�minfs;tg

�.i; s � i/
X

0�`�k�j
1�j�minfk�s;2t�sg

.�1/j
�

2t � s

j

�
u
Œ2tC1�i�

k
u
Œ2tC1Ci�s�

k�s�j�`
:

The same method of proof used for (19) yields the upper bound (A.3) with s D 4t C 2 and
c.s/ D 2 when t � 1.

B Proof of the incompatibility of the resonance r D 2 for
random median-of-.2t C 1/ BSTs

Since the resonance r D 2 does not depend on t , the incompatibility of the resonance r D 2

can be directly checked, which we now do. Let U.Z/ WD F.z/, where F satisfies the ODE (33)
and Z D 1 � z=�. Then the ODE (33) can be rewritten as

�
.1 �Z/2tC1U .2tC1/.Z/

�.2tC1/

D Ct;�

��
.1 �Z/tU .t/.Z/

�.t/�2

; (A.4)

where all derivatives are with respect to Z and Ct;� WD .2t C 1/!2�=t !4.
Note that for any s 2 N and a formal Laurent expansion f .Z/ D

P
k�0 ukZk�˛

�
.1 �Z/sf .s/.Z/

�.s/
D

X
k�0

.k � ˛ � s/sZk�2s�˛
X

0�j�s

.�1/j
�

s

j

�
.k � ˛ � j /suk�j ;

where uj WD 0; j < 0 and xs WD x.x � 1/ � � � .x � s C 1/. Substituting this into (A.4) and
s D 2t C 1, we haveX

k�0

.k � ˛ � .2t C 1//2tC1Zk�4t�2˛
X

0�j�2tC1

.�1/j
�

2t C 1

j

�
.k � ˛ � j /2tC1uk�j

D Ct;�

X
k�0

Zk�4t�2�˛
X

0�`�k

�k�k�`;

where �k WD .k � ˛ � t/t
P

0�j�t.�1/j
�

t

j

�
.k � ˛ � j /tuk�j : Equating the dominant term

(with k D 0) leads to the obvious solution ˛ D 2. Consider now the relation

.k � ˛ � .2t C 1//2tC1
X

0�j�2tC1

.�1/j
�

2t C 1

j

�
.k � ˛ � j /2tC1uk�j D Ct;�

X
0�`�k

�k�k�`:
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From this, we get �u0 D .4t C 3/!t !4=.2t C 1/!4, u1 D �2.t C 1/2u0=.6t C 5/, and

0 � u2 D Ct;�.2t/!2
��
.2t C 1/.t C 1/

�
t

2

�
C t2.t C 1/2

�
u2

0 C u2
1 � t.4t C 3/u0u1

�
C .4t C 1/!.2t C 1/2u1 � .4t C 1/!.2t C 1/.2t C 2/

�
2t C 1

2

�
u0

D �
.4t C 2/!.t C 1/

4.6t C 5/2
u0

�
216t4

C 522t3
C 437t2

C 141t C 12
�
6D 0;

since t � 1. This proves the incompatibility of the resonance r D 2 for all t � 1.

C Asymptotics of the moment generating function of partial
match in random quadtrees

We prove (36), starting from Hankel’s integral representation of the Gamma function

1

�.w/
D

1

2� i

Z
H0

ess�w ds .w 2 C/;

where H0 starts at �1, encircles the origin once counter-clockwise and returns to its starting
point. For definiteness, we may take

H0 D fs D xe˙� i
W R0 � x <1g [ fs D R0e� i

W �� � � � �g .R0 > 0/:

This gives

M.z/ WD E.eX z/ D
1

2� i

Z
H0

ess�1X.z=sv/ ds;

where X.z/ satisfies the ODE (34). Note that M is an entire function of order 1=v > 1 and of
type ��1=v.

Let z D jzje'i, jzj > 0 and j'j < v�=2, where v D .
p

17 � 3/=2. The condition on
arg z implies that the dominant singularity s D .z=�/1=v of the integrand lies in the half-plane
<.s/ > 0 (in which es ! 1 with z). On the other hand, if j arg.�z/j < � � v�=2, then one
expects that M.z/ ! 0 with z, but the exact determination of the rate is more delicate. The
situation here is similar to the Mittag-Leffler function

P
j�0 zj=�.aj C 1/; see [17, Ch. 18.1].

The change of variables z=sv 7! s gives

M.z/ D
1

2� iv

Z
H1

ez1=vs�1=v

s�1X.s/ ds;

where H1 is the path described by

H1 D fs D xe.'˙v�/i W 0 � x � R1g [ fs D R1e.'Cv�/i W �� � � � �g:

Here 0 < R1 < �. We then approach in a way similar to the singularity analysis (see [21])
by deforming the contour H1 into H2, where H2 is of the same shape as H1 but with larger
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radius for the circular part jsj D R2 D � C " and avoiding the cut from s D � to1 (in the
style of [21]). Symbolically,

H2 D �� [ fs D xe.'˙v�/i W 0 � x � R2g

[ fs D R2e.'Cv�/i W �� � � � � and j� � '=vj � czg;

where cz WD jzj
�1=v and �� is any contour joining the two points R2e�cz i and R2ecz i and lying

inside the cut region described by other parts of H2.
The remaining analysis is then easy because the main contribution to M.z/ comes from ��

on which we can apply the local expansion (35) of X.z/, the other parts being negligible

M.z/ D
1

2� iv

Z
��

ez1=vs�1=v

s�1X.s/ ds CO
�
e<.z=.�C"//

1=v
�
:

By making first the change of variables �.1 � s/ 7! s, using the expansion (35), and then
another change of variables .z=�/1=vs=v 7! s, we deduce that

M.z/ D
e.z=�/

1=v

2� i

Z
�0

es

 
3

�
z

�

�1=v

s�2
C

9

5
s�1
C

X
2�j�7

�
Ncj .s/C Qcj .s/ log

z

�

��
z

�

��j=v

C
936

21875

�
z

�

��5=v

s4 log s CO
�
jzj�6=v

jsj5j log sj
�!

ds;

where �0 denotes the transformed contour of �� and the c0j ’s are polynomials of s whose exact
values matter less. Extending the contour to infinity and then evaluating the individual terms
by Hankel’s integral representation of the Gamma function, we obtain

M.z/ D e.z=�/
1=v

 
3

�
z

�

�1=v

C
9

5
�

22464

21875

�
z

�

��5=v

CO
�
jzj�6=v

�!
;

where we also used the formula

1

2� i

Z
H0

ess4 log s ds D �
d

dx

1

�.x/

ˇ̌̌̌
ˇ
xD�4

D �24:

This completes the proof of (36).
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