THE SCIENTIFIC WORKS OF PHILIPPE FLAJOLET

Hsien-Kuei Hwang

Institute of Statistical Science, Academia Sinica June 15, 2011

An outsider's view

A guided tour (by themes)

PHILIPPE FLAJOLET'S WEBPAGE

Philippe Flajolet died suddendly on March 22, 2011. This page will be left untouched.

"Does research. Smokes. Battles administration. Smokes. Wishes he could stop battling administration so that he could have more time to do research. Smokes some more. Gives jobs to starving foreigners. Eats occassionally." --- Eithne Murray

Interests: Analysis of algorithms, analytic combinatorics (and vice versa), computer algebra, asymptotic analysis, special functions, random structures, natural languages.

ANALYSIS OF ALGORITHMS

ANALYTIC COMBINATORICS

Flajolet and Sedgewick, Analytic Combinatorics, 2009

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study

of scientific models in many disciplines, including probability theory, statistical physics, computational biology and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.

ALGORITHMS AND COMBINATORICS

1.2.10. Analysis of an Algorithm

Let us now apply some of the techniques of the preceding sections to the study of a typical algorithm.

Algorithm M (Find the maximum). Given n elements $X[1], X[2], \ldots, X[n]$, we will find m and j such that $m = X[j] = \max_{1 \le i \le n} X[i]$, where j is the largest index that satisfies this relation.

M1. [Initialize.] Set $j \leftarrow n, k \leftarrow n-1, m \leftarrow X[n]$. (During this algorithm we will have $m = X[j] = \max_{k < i \le n} X[i]$.)

n

n-:

- **M2.** [All tested?] If k = 0, the algorithm terminates.
- **M3.** [Compare.] If $X[k] \le m$, go to M5.
- M4. [Change m.] Set $j \leftarrow k, m \leftarrow X[k]$. (This value of m is a new current maximum.)

n-1

M5. [Decrease k.] Decrease k by one and return to M2.

KNUTH, THE ART OF COMPUTER PROGRAMMING I

Analysis of Y

$$Y = \{0, 1, \ldots, n-1\}$$

What's the mean value, assuming random permutations?

Mean $\sim \log n$, **Variance** $\sim \log n$

MAXIMA-FINDING ALGORITHM

 $Y_n :=$ number of records (left-to-right max) in a random permutation of n elements

$$\mathbb{E}(z^{Y_n}) = \frac{z(z+1)\cdots(z+n-1)}{n!} \quad (\text{Stirling \#s 1st kind})$$
$$\mathbb{E}(Y_n) = \sum_{1 \le j \le n} \frac{1}{j} = \log n + \gamma + \cdots$$
$$\mathbb{V}(Y_n) = \sum_{1 \le j \le n} \left(\frac{1}{j} - \frac{1}{j^2}\right) = \log n + \gamma - \frac{\pi^2}{6} + \cdots$$
$$\frac{Y_n - \log n}{\sqrt{\log n}} \to \mathcal{N}(0,1)$$
$$\mathbb{P}\left(Y_n = \left\lfloor \log n + x\sqrt{\log n} \right\rfloor\right) = \frac{e^{-x^2/2}}{\sqrt{2\pi \log n}} \left(1 + O\left(\frac{1}{\sqrt{\log n}}\right)\right)$$

MARCH 5, 2010 (NORTHEAST COAST, TAIWAN)

MARCH 5, 2010 (NORTHEAST COAST, TAIWAN)

MARCH 5, 2010 (NORTHEAST COAST, TAIWAN)

ALEXANDRE DUMAS (1802–1870): FAMOUS NOVELS

Alexandre Dumas Le Comte de Monte-Cristo

OXFORD WORLD'S CLASSICS

Alexandre Dumas La Reine Margot

EVENTS IN THE LIFE OF PHILIPPE

1948-	Born in Lyon	1981	Head of Projet ALGO
		1986-	Prix Scientifique (Union des Assurances de Paris)
1966-	Baccalauréat	1994- 1996-	Prix Michel Montpetit corresponding member (l'Académie des Sciences) Doctorate Honoris Causa (U. Libre Bruxelles) Analysis of Algorithms book Fellow, Academia Europaea
1968- 1970- 1971- 1973-	Ecole polytechnique DEA; Research Assistant at INRIA Thèse 3e cycle, Université Paris 7	2003- 2004-	Full member l'Académie des Sciences Médaille d'argent CNRS
1979-	Docteur ès Science, Université Paris 11 Research Director	2009- 2011	Analytic Combinatorics book published Rest in peace

AMS MATH REVIEWS

AMERICAN MATRICAL SOCIETY MathSciNet Mathematical Reviews on the Web

👌 Flajolet, Philippe

MR Author ID: 67375 Earliest Indexed Publication: 1973 Total Publications: 149 Total Author/Related Publications: 156 Total Citations: 1546

Top 50 Co-authors (by number of collaborations)

Banderier, Cyril Odiment, Julien Coffman, Edward G., Jr. Daudé, Hervé Denise, Alain Devroye, Luc P. Duchon, Philippe Dumas, Philippe Fayolle, Guy Françon, Jean Fusy, Éric Gabaró, Joaquim Gardy, Danièle Gerhald, Stefan Galin, Mordeail J. Gonnet, Gaston H. Gourd'on, Xavier Grabner, Peter J. Hofri, Micha Hurtado, Brenn Jacquet, Philippe A. Krischenhöfer, Peter Laftregue, T. Louchard, Guy Nebel, Markus E. Nicodème, Perer Nikoletseas, Sotris E. Nov, Marc Odlyzko, Andrew M. Panario, Daniel Prodinger, Helmut Puech, Claude Raouit, Jean-Claude Réguler, Mirelle Richmond, L Bruce Robon, John Michael Stabe-Dijahomui, Nasse Salvy, Bruno Schaeffer, Gilles Sedgewick, Robert Soria, Michèle Steyaert, Jean-Marc Sznakowski, Wojek-h Thinnoise, Join Struhy, Robert Franz. Vallée, Brigitte Van Cusen, Bernari van Fossen Conrad, Eric Vuillemin, Jean E. Zimmerman, Paul See All

Publications (by number in area)

Combinatorics Computer science Convex and discrete geometry Difference and functional equations History and biography Information and communication, circuits Integral transforms, operational calculus Logic and foundations Number theory Numerical analysis Probability theory and stochastic processes Special functions Statistical mechanics, structure of matter

Publications (by number of citations)

Combinatorics Computer science convex and discrete geometry Difference and functional equations Information and communication, circuits Integral transforms, operational calculus Logic and foundations Number theory Numerical analysis Probability theory and stochastic processes Special functions

24/91

View Publications View Author/Related Publications Refine Search Co-Authors Collaboration Distance Mathematics Genealogy Project Citations

Home Preferences Help Support Mail Terms of Use

Academia Sinica

MOST CITED PAPERS (AMS MATHSCINET)

Philippe Flajolet is cited 1546 times by 892 authors in the MR Citation Database Publication Citations MR1039294 (90m:05012) Flajolet, Philippe: Odlyzko, Andrew Singularity analysis of generating functions, SIAM J, Discrete 165 Math. 3 (1990), no. 2. 216-240, (Reviewer: E. Rodney Canfield), 05A15 (30E20 40E05 41A60) MR2483235 (2010h:05005) Flajolet, Philippe; Sedgewick, Robert Analytic combinatorics. Cambridge University Press, Cambridge, 105 2009. xiv+810 pp. ISBN: 978-0-521-89806-5, 05-02 (05A15 05A16 60C05 60E10 82-01) MR1337752 (96h:68093) Flajolet, Philippe; Gourdon, Xavier; Dumas, Philippe Mellin transforms and asymptotics: harmonic 77 sums. Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58. (Reviewer: Peter Kirschenhofer), 68Q25 (44A15 68P05) MR0592851 (82f:05002a) Flajolet, P. Combinatorial aspects of continued fractions. Discrete Math. 32 (1980), no. 2, 125-161. 64 (Reviewer: L. Carlitz), 05A10 (05A15 30B70) MR1884885 (2003c:05008) Banderier, Cyril: Bousquet-Mélou, Mireille: Denise, Alain: Flajolet, Philippe: Gardy, Daniéle: 50 Gouyou-Beauchamps, Dominique Generating functions for generating trees. Formal power series and algebraic combinatorics (Barcelona, 1999). Discrete Math. 246 (2002), no. 1-3, 29-55. (Reviewer: Mark Curtis Wilson), 05A15 (05C05) MR1691870 (2000c:05012) Flajolet, Philippe; Noy, Marc Analytic combinatorics of non-crossing configurations. Discrete Math. 39 204 (1999), no. 1-3, 203-229. (Reviewer: Edward A. Bender), 05A16 MR1337755 (96i:39003) Flajolet, Philippe; Sedgewick, Robert Mellin transforms and asymptotics: finite differences and Rice's 38 integrals. Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 101-124. (Reviewer: M. Mendés France), 39A10 (44A15 68P05 68Q25) MR1290534 (96f:05172) Flaiolet, Philippe: Zimmerman, Paul: Van Cutsem, Bernard A calculus for the random generation of 37 labelled combinatorial structures. Theoret, Comput. Sci. 132 (1994), no. 1-2, 1-35, (Reviewer: Norbert Blum), 05C80 (68R05) MR0680517 (84a:68056) Flajolet, Philippe; Odlyzko, Andrew The average height of binary trees and other simple trees. J. 33 Comput. System Sci. 25 (1982), no. 2, 171-213, 68E10 (05C05) MR1251994 (94j:68233) Bergeron, Francois; Flajolet, Philippe; Salvy, Bruno Varieties of increasing trees. CAAP '92 (Rennes, 33 1992), 24-48, Lecture Notes in Comput. Sci., 581, Springer, Berlin, 1992, 68R05 (05C05 05C85 68R10)

AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Author Citations for Philippe Flaiolet

MOST CITED PAPERS (WEB OF SCIENCE)

1	SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS	SIAM JOURNAL ON DISCRETE MATHEMATICS	1990	327
2	PROBABILISTIC COUNTING ALGORITHMS FOR DATABASE APPLICA- TIONS	JOURNAL OF COMPUTER AND SYSTEM SCIENCES	1985	205
3	COMBINATORIAL ASPECTS OF CONTINUED FRACTIONS	DISCRETE MATHEMATICS	1980	138
4	MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS	THEORETICAL COMPUTER SCIENCE	1995	122
5	THE AVERAGE HEIGHT OF BINARY-TREES AND OTHER SIMPLE TREES	JOURNAL OF COMPUTER AND SYSTEM SCIENCES	1982	105
6	A CALCULUS FOR THE RANDOM GENERATION OF LABELED COMBINATORIAL STRUCTURES	THEORETICAL COMPUTER SCIENCE	1994	83
7	Q-ARY COLLISION RESOLUTION ALGORITHMS IN RANDOM-ACCESS SYSTEMS WITH FREE OR BLOCKED CHANNEL ACCESS	IEEE TRANSACTIONS ON INFORMATION THEORY	1985	71
8	DIGITAL SEARCH-TREES REVISITED	SIAM JOURNAL ON COMPUTING	1986	70
9	BIRTHDAY PARADOX, COUPON COLLECTORS, CACHING ALGORITHMS AND SELF-ORGANIZING SEARCH	DISCRETE APPLIED MATHEMATICS	1992	69
10	RANDOM MAPPING STATISTICS	LECTURE NOTES IN COMPUTER SCIENCE	1990	68
11	ON THE PERFORMANCE EVALUATION OF EXTENDIBLE HASHING AND TRIE SEARCHING	ACTA INFORMATICA	1983	67
12	GAUSSIAN LIMITING DISTRIBUTIONS FOR THE NUMBER OF COMPO- NENTS IN COMBINATORIAL STRUCTURES	JOURNAL OF COMBINATORIAL THEORY SERIES A	1990	64
13	PARTIAL MATCH RETRIEVAL OF MULTIDIMENSIONAL DATA	JOURNAL OF THE ACM	1986	63
14	ESTIMATING THE MULTIPLICITIES OF CONFLICTS TO SPEED THEIR RESOLUTION IN MULTIPLE ACCESS CHANNELS	JOURNAL OF THE ACM	1987	60
15	ANALYTIC MODELS AND AMBIGUITY OF CONTEXT-FREE LANGUAGES	THEORETICAL COMPUTER SCIENCE	1987	59
16	MELLIN TRANSFORMS AND ASYMPTOTICS - FINITE-DIFFERENCES AND RICES INTEGRALS	THEORETICAL COMPUTER SCIENCE	1995	59
17	GENERATING FUNCTIONS FOR GENERATING TREES	DISCRETE MATHEMATICS	2002	54
18	ANALYTIC COMBINATORICS OF NON-CROSSING CONFIGURATIONS	DISCRETE MATHEMATICS	1999	46
19	ON THE ANALYSIS OF LINEAR PROBING HASHING	ALGORITHMICA	1998	46
20	MELLIN TRANSFORMS AND ASYMPTOTICS - DIGITAL SUMS	THEORETICAL COMPUTER SCIENCE	1994	45

MOST CITED PAPERS (GOOGLE SCHOLAR)

0....

GO	ogle scholar autor phajoter		search
Citations	Publication	Citations	Publication
727	[BOOK] Analytic combinatorics P Flajek 2009 - books gogle.com ANALYTIC COMBINATORICS Analytic combinatorics aims to enable precise quantitative predictions of the proper- ties of large combinatorial structures. The theory has energed over recent decades as essential both for the analysis of algorithms and for the study of scientific models in Cited by 727 - Related articles - All 10 evrsions	256	Meilin transforms and asymptotics: Harmonic sums P Flajet, X Gourdou, Theoretical computer science, 1995 - Elsevier This survey presents a unified and essentially self-contained approach to the asymptotic analysis of a large class of sums that arise in combinatorial mathematics, discrete probabilistic models, and the average-case analysis of algorithms. It relies on the Meilin transform, a Cited by 256 - Related articles - BL Direct - All 28 versions
622	[BOOK] Singularity analysis of generating functions P Flapien	208	The average height of binary trees and other simple trees P Flajate Journal of Computer and System Sciences, 1982. Elsevier The average height of a binary tree with n internal nodes is shown to be asymptotic to $2\pi n$. This represents the average stack height of the simplest recursive tree traversal algorithm. The method used in this estimation is also applicable to the analysis of Cited by 208 - Related articles - All 12 versions
598	Probabilistic counting algorithms for data base applications P Flajlet Journal of Computer and System Sciences, 1985 - Elsevier This paper introduces a class of probabilistic counting algorithms with which one can estimate the number of distinct elements in a large col- lection of data (typically a large file stored on disk) in a single pass using only a small additional storage (typically less than a hundred Cited by 598 - Related articles - All 28 versions	187	A calculus for the random generation of labelled combinatorial structures P Flajek, P Zimmerman Theoretical Computer Science, 1994 - Else- vier A systematic approach to the random generation of labelled combinatorial objects is presented. It applies to structures that are decomposable, ie, formally specifiable by grammars involving set, sequence, and cycle constructions. A general strategy is developed for Cited by 187 - Related articles - All 3 versions
481	[BOOK] An introduction to the analysis of algorithms P Flajolet - 1996 - portal.acm.org Google, Inc. (search), Subscribe (full Service), Register (Limited Service, Free), Login. Search: The ACM Digital Library The Guide. Feedback. An introduction to the analysis of algorithms. Purchase this Book. Source, Pages: 492. Year of Publication: 1996. ISBN:0-201-40009-X Cited by 481. Related articles - All 3 versions	171	Random mapping statistics P Plajate Advances in cryptology-EUROCCRYPT'99, 1990 - Springer Abstract. Random mappings from a finite set into itself are either a heuristic or an exact model for a variety of applications in random number generation, computational number theory, cryptography, and the analysis of algorithms at large. This paper introduces a general Cited by IT1. Related articles - All IT versions
298	Combinatorial aspects of continued fractions P Flajdet - Discrete Mathematics, 1980 - Elsevier We show that the universal continued fraction of the Stellejas-Jacobi type is equivalent to the characteristic series of labelled paths in the plane. The equivalence holds in the set of series in non-commutative indeterminates. Using it: we derive direct combinatorial arons of of	171	Q-ary collision resolution algorithms in random-access systems with free or blocked channel access PFujaet_Information Theory, IEEE Transactions, 1965 - ieeexplore Abstract-The throughput characteristics of contention-based random-ac- cess systems QAS's) which use Q-ary tree algorithms (where Q 2 2 is the number of groups into which contending users are split) of the Canetrankir-Toshakov Mithainov-Vedenskaya the are analyzed

Cited by 298 - Related articles - All 12 versions

0

.

Cited by 171 - Related articles - All 14 versions

ANNE-WIL HARZING'S PUBLISH OR PERISH

Author impact Journal impact General citations Multi-guery center Web Browser

Author impact analysis - Perform a citation analysis for one or more authors

Author's name: "P	flajolet"	🗹 Biology, Life Sciences, Envi			
Exclude these names:					Business, Administration, Fit
Year of publication betwee	en: 1970	and: 2	2011		Engineering, Computer Scie
					Medicine, Pharmacology, Ve

Res	ults											
Papers: Citations: Years: Cites/year:		454 10241 40 256.03	Cites Cites Pape Auth	s/paper: s/author: ers/author: iors/paper:	22.56 5080.39 222.91 2.50	h-index: g-index: hc-index: hI-index: hI,norm:	52 94 24 21.98 33	AWCR: AW-index: AWCRpA: e-index: hm-index:	818.36 28.61 386.94 69.19 34.83			
Cites Per year Rank Authors Title					Year	Publication	Publisher					
	736	245.33	1	P Flajolet	Analyt	ic combinator	ics			2009		books.google.com
	628	26.17	2	P Flajolet	Singula	arity analysis	of genera	ating functions		1988		Citeseer
	600	22.22	з	P Flajolet	Probal	oilistic countin	g algorith	ms for data ba	se applications	1985	Journal of Computer and Sy	Elsevier
	483	30.19	4	, P Flajolei	t An Int	roduction to t	he Analy	sis of Alforithm	s	1996		Pearson Education India
	299	9.34	5	P Flajolet	Combi	natorial aspe	ts of con	tinued fraction	s	1980	Discrete Mathematics	Elsevier
	258	15.18	6	P Flajolet,	Meilin I	ransforms ar	id asympt	totics: Harmoni	c sums	1995	Theoretical computer science	Elsevier
	208	6.93	7	P Flajolet	The av	The average height of binary trees and other simple trees					Journal of Computer and Sy	Elsevier
	188	10.44	8	P Flajolet,	. A calci	ulus for the ra	indom ge	neration of lab	elled combin	1994	Theoretical Computer Science	Elsevier
	171	6.33	9	, P Flajolei	t Q-ary	collision resol	ution algo	orithms in rando	om-access s	1985	Information Theory, IEEE Tr	ieeexplore.ieee.org
Image: A start and a start	171	7.77	10	P Flajolet	Rando	m mapping st	atistics			1990	Advances in cryptology—EU	Springer
	162	7.36	11	, P Flajolei	t Avera	ge-case analy	sis of alg	orithms and da	ta structures	1990		Citeseer
	136	4.86	12	P Flajolet	Digital	search trees	revisited			1984		hal.inria.fr
	136	6.80	14	P Flajolet,	Birthda	ay paradox, o	oupon co	llectors, cachin	ig algorithms	1992	Discrete Applied Mathematics	Elsevier
	133	4.59	13	P Flajolet	On the	e performance	e evaluati	ion of extendib	le hashing a	1983	Acta informatica	Springer
	127	15.88	16	C Banderie.	Gener	ating function	s for gen	erating trees		2004	Arxiv preprint math/	arxiv.org
	125	13.89	15	, P Flajolei	t Loglog	counting of I	arge carc	linalities		2003	Algorithms-ESA 2003	Springer
	123	7.24	17	P Flajolet	Mellin	ransforms ar	id asympl	totics: Finite dif	ferences an	1995	Theoretical Computer Science	Elsevier
V	118	4.72	19	P Flajolet	Analyt	ic models and	ambiguit	y of context-fr	ee language	1987	Theoretical Computer Science	Elsevier
	111	5.05	18	P Flajolet,	. Autom	atic average-	case ana	lysis of algorith	ims	1990		hal.inria.fr
	110	3.79	22	P Elaiolet	Probat	alistic countin	a			1983	Foundations of Computer Sc	ieeexplore.ieee.org

Physics, Astronomy, Planeta Social Sciences, Arts, Human

FREQUENT WORDS IN TITLES

Rank	Frequency	%	Rank	Frequency	%	Rank	Frequency	%
1. algorithm	54	25.84%	18. distribution	9	4.31%	35. polynomial	6	2.87%
2. analysis	44	21.05%	19. binary	8	3.83%	36. dynamic	6	2.87%
3. tree	42	20.10%	20. number	8	3.83%	37. mathematics	6	2.87%
4. structure	24	11.48%	21. recursive	8	3.83%	38. limit	6	2.87%
5. random	22	10.53%	22. counting	7	3.35%	39. models	5	2.39%
6. analytic	20	9.57%	23. digital	7	3.35%	40. theory	5	2.39%
7. asymptotics	16	7.66%	24. variations	7	3.35%	41. trie	5	2.39%
8. function	15	7.18%	25. process	7	3.35%	42. language	5	2.39%
9. combinatorial	13	6.22%	26. singularity	7	3.35%	43. sequence	5	2.39%
10. combinatorics	12	5.74%	27. finite	6	2.87%	44. files	5	2.39%
11. average-case	11	5.26%	28. mellin	6	2.87%	45. reduction	5	2.39%
12. data	11	5.26%	29. statistics	6	2.87%	46. probabilistic	5	2.39%
13. complexity	11	5.26%	30. calculus	6	2.87%	47. evaluation	5	2.39%
14. continued	10	4.78%	31. sum	6	2.87%	48. airy	4	1.91%
15. fraction	10	4.78%	32. transform	6	2.87%	49. computer	4	1.91%
16. search	10	4.78%	33. problèmes	6	2.87%	50. fichiers	4	1.91%
17. generating	9	4.31%	34. quadtree	6	2.87%	51. gaussian	4	1.91%

FREQUENT WORDS IN THE TWO BOOKS

Rank	AC	AofA	Rank	AC	AofA	Rank	AC	AofA
1	function	number	18	size	theorem	35	defined	size
2	number	trees	19	limit	permutations	36	words	recurrences
3	functions	exercise	20	theory	nodes	37	asymptotics	path
4	trees	analysis	21	figure	average	38	sequence	basic
5	theorem	tree	22	class	search	39	corresponding	proof
6	analysis	algorithms	23	tree	permutation	40	order	terms
7	analytic	chapter	24	probability	algorithm	41	labelled	general
8	set	binary	25	equation	first	42	section	because
9	combinatorial	generating	26	first	properties	43	instance	node
10	asymptotic	length	27	distribution	method	44	numbers	probability
11	generating	random	28	two	figure	45	saddle-point	gives
12	random	recurrence	29	general	consider	46	permutations	sum
13	case	function	30	chapter	numbers	47	large	combinatorial
14	singularity	table	31	simple	two	48	singularities	problem
15	form	functions	32	expansion	distribution	49	convergence	equation
16	coefficients	example	33	method	solution	50	proof	cycle
17	example	asymptotic	34	structures	values	51	series	cost

LE GRAND CHEF

PUBLISHED ITEMS EACH YEAR (WEB OF SCIENCE)

Year

CITATIONS EACH YEAR (WEB OF SCIENCE)

GENEALOGY

COMPLEXITY THEORY AND FORMAL LANGUAGES

1972–1976: Almost all with Jean-Marc Steyaert

- [1] **Complexité** des problèmes de decision relatifs aux algorithmes de tri (ICALP'72)
- [2] Decision problems for multihead finite automata (MFCS'73)
- [4] A class of non recursive sorting algorithms (Journées Math. de la Compilation'73)
- [5] Generalized immune sets (TR-IRIA'73; RAIRO'74 [7])
- [6] On sets having only hard subsets (ICALP'74)
- [8] Complexity classes of languages & operators (TR-IRIA'74)
- [10] Linguistique formelle et linguistique historique (Info. et Philologie'75)
- [11] Classes de complexité et reduction entre problemes (Codici'75; Liguori Pub. 1976 [12])

LIFETIME INTERESTS AND ACHIEVEMENTS

jointly with Jean-Marc Steyaert

Une formalisation de la notion d'algorithme de tri

non-récurrent, Thèse de 3e cycle, U. Paris VII, 1973, 289 pages.

Languages

combinatorial, algebraic, analytic, probabilistic, continued fractions, integral transforms, orthogonal polynomials, singularity analysis, saddle-point method, contour integrals,

Complexity

abstract and concrete, average-case analysis, analysis in distribution, asymptotic enumeration, ...
AMBIGUITY AND TRANSCENDENCE

Criterion C. If l(z) has, in the vicinity of a singularity, an asymptotic equivalent that is not of the form

$$\omega \left(1 - \frac{z}{\alpha}\right)^r$$

with ω and α algebraic and r rational, then l(z) is transcendental.

FROM (LANGUAGES, COMPLEXITY) TO (ANALYSIS OF ALGORITHMS, ANALYTIC COMBINATORICS)

38/91

IV. ANALYSIS OF DYNAMIC DATA STRUCTURES

Histories(data types) \Rightarrow continued fractions & ortho. polys.

 $GF(integrated cost) \Rightarrow \int GF(individual operation cost)$

 Sequences of operations for dynamic data structures (FOCS'79; STOC'79 [19]; ACCCC'80 [21]; Journées Algorithmiques'80 [24]; J. Algo'80 [25]; Questiió'81 [30])

IV. ANALYSIS OF DYNAMIC DATA STRUCTURES

THEOREM 2,LL. The exponential generating function K(z) of integrated costs for linear lists is given by

$$\hat{K}(z) = 2 \int_0^{\frac{1}{2} \frac{du}{2}} C(u) \frac{du}{u((1-u)^2 - 4u \cot^2 z)^{1/2}},$$

where

$$C(x) = \sum_{k \ge 0} (k + 1)(CA_k + Cs_{k+1})x^{k+1}.$$

... the source of intriguing mathematical questions

Variance is also doable

[59] Analysis of simple list structures (Info Sci'86)

A problem of similar nature but different analysis

[56] Evolution of two stacks (MFCS'86)

V. COMBINATORIAL ASPECTS OF CONTINUED FRACTIONS

Theorem 3A. Let $P_{k,l,m}$ be the number of permutations having k minima (hence k+1 maxima), l double rises and m double falls. The generating function

.'

$$P(u, v, w, z) = \sum P_{k,l,m} u^{k} v^{l} w^{m} z^{2k+l+m+1}$$

has the expression:

.

$$P(u, v, w, z) = \frac{1}{1 - 1(v + w)z - \frac{1 \cdot 2uz^2}{1 - 2(v + w)z - \frac{2 \cdot 3uz^2}{\cdots}}}$$

$$\sum_{n,k>0} A_{n+1,k+1} u^{k} z^{n} = \frac{1}{1 - 1(1+u)z - \frac{1 \cdot 2uz^{2}}{1 - 2(1+u) - \frac{2 \cdot 3uz^{2}}{\cdots}}};$$

CONTINUED FRACTIONS IN AOFA & AC

Another lifetime interest

- [32] Classical combinatorial #s: congruences and CFs (DM'82)
- [77] Elliptic fs., CFs & doubled perm. (Euro. JC'89)
- [87] Nonoverlapping partitions, CFs, Bessel functions and a divergent series (Euro. JC'90)
- [144] **CF** algorithms, functional operators, and structure constants (TCS'98)
- [153] Formal theory of birth-and-death processes, lattice path combinatorics, and CFs (AAP'00)
- [186] Fermat cubic, elliptic functions, CFs, and a combinatorial excursion (SLC'06)
- [203] Pseudo-factorials, elliptic functions, and CFs (Ramanujan J'10)

CONTINUED FRACTIONS IN AOFA & AC

I. ENUMERATION OF TREES & AOFAS

The road to perfection is long

I.2. PATTERN MATCHING IN RANDOM TREES & STRINGS

Complexity calculus for tree algorithms

[31] Complexity calculus for tree algorithms (FOCS'81, Math for CS'82 [35], Math Sys Th'87 [67])

Other papers on pattern matching

[135] Patterns in random binary search trees (RSA'97)

[151] Motif statistics (ESA'99, TCS'02 [174])

[164] Hidden pattern statistics (ICALP'01, JACM'06 [191])

THE ROAD TO PERFECTION IS LONG AND WELL REHEARSED

III. NUMBER SYSTEMS & PERIODIC FLUCTUATIONS IN AOFAS

#(1's) in Gray code and analysis of odd-even merging
[27] Gray codes and odd-even merge (SICOMP'80)
$$\frac{1}{n} \sum_{k \ge 1} \frac{\binom{2n}{n-k}}{\binom{2n}{n}} \sum_{j < k} g(j) \sim \frac{1}{8} \log_4 n + \operatorname{Periodic}(\log_4 n)$$

Digital sums and divide-and-conquer recurrences

[105] Exact asymptotics of divide-and-conquer recurrences (ICALP'93)

- [115] Mellin transforms and asymptotics (Mergesort: Acta Info'94; Digital sums: TCS'95 [116])
- [199] Multidimensional divide-and-conquer and weighted digital sums (ANALCO'09)

DIVIDE-AND-CONQUER RECURRENCE

 $a_n = a_{\lfloor n/2 \rfloor} + a_{\lceil n/2 \rceil} + b_n$

Most people's analysis

$$a_n pprox 2a_{n/2} + b_n pprox \sum_{j \ge 0} 2^j b_{n/2^j}.$$

Flajolet's view

$$a_n = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{n^{s+1}D(s)}{s(s+1)(1-2^{-s})} \mathbf{d}s, \qquad D(s) := \sum_{k\geq 1} \frac{\Delta \nabla b_n}{n^s}$$

Variance of top-down (or half-half) mergesort $\sim F(\log_2 n)n$

$$F(x) = \frac{1}{\log 2} \sum_{j \ge 1} \frac{2j(5j^2 + 10j + 1)}{(j+1)(j+2)^2(j+3)^2} \log \frac{2j+1}{2j} + \frac{1}{\log 2} \sum_{k \ne 0} \frac{\Psi(\chi_k)e^{2k\pi ix}}{\chi_k(\chi_k+1)},$$
$$\Psi(s) := -\sum_{j \ge 1} \frac{2j(5j^2 + 10j + 1)}{(j+1)(j+2)^2(j+3)^2} \left(\frac{1}{(2j)^s} - \frac{1}{(2j+1)^s}\right)$$

48/91

III.3. MELLIN TRANSFORMS

Importance of Mellin in describing periodic fluctuations

$$\sum_{k} \alpha_{k} \frac{\Delta^{r} \binom{2n}{n-k}}{\binom{2n}{n}} \sim n^{-r/2} B(x)$$

where $B(x) := \sum_{k} \alpha_{k} H_{r}(kx) e^{-k^{2}x^{2}}$.

$$B^*(s) = \frac{(-1)^r}{2} s(s-1) \cdots (s-r) \Gamma\left(\frac{s-r}{2}\right) \sum_{k>1} \alpha_k k^{-s}$$

Two applications: $\alpha_k = v_2(k)^m$ and $\alpha_k = 2^{v_2(k)}$

[52] Some uses of the Mellin integral transform in AofAs (NATO'85)

 [115] Mellin transforms and asymptotics (Mergesort: Acta Info'94; Digital sums: TCS'94 [116]; Harmonic sums: TCS'95 [120]; Rice integrals: TCS'95 [124])

II. AVERAGE NUMBER OF REGISTERS

[13]

Average number of registers required to evaluate arithmetic expressions (FOCS'77, TCS'79 [20])

 $\mathsf{Reg}(T) := \mathsf{max}\{\mathsf{Reg}(T.\ell), \mathsf{Reg}(T.r)\} + \mathbb{1}_{\mathsf{Reg}(T.\ell) = \mathsf{Reg}(T.r)}\}$

$$R_{p}(z) := \sum_{n} \#(\operatorname{Reg}(T_{n}) = p) z^{n} = \boxed{2i \sin\left(\phi \frac{e^{-2^{p}} \phi}{1 - e^{-2^{p+1}} \phi}\right)}{e^{-i\phi} = \frac{1 - \sqrt{1 - 4z}}{2z} - 1}$$

$$\mathbb{E}(\operatorname{Reg}(T_n)) = \sum_{j>0} v_2(j) \frac{\binom{2n}{n+j+1} - 2\binom{2n}{n+j} + \binom{2n}{n+j-1}}{\binom{2n}{n}\frac{1}{n+1}} \sim \log_4 n + \operatorname{Periodic}(\log_4 n)$$

Unpublished

$$\frac{\#|T|=n; \operatorname{Reg}(T)=p\}}{\frac{1}{n+1}\binom{2n}{n}} \sim \lambda\left(\frac{2p}{\sqrt{n}}\right), \text{ where } \lambda(x) = \sum_{k:odd} e^{-k^2x^2}(4k^2x^2-2)$$

[57] Register allocation for unary-binary trees (SICOMP'86)

BORN TO BE SUPER!

PATTERN OF ANALYSIS, STYLE

HEIGHT OF RANDOM TREES

$\mathsf{H}(\mathit{T}) := \max\{\mathsf{H}(\mathit{T}.\ell), \mathsf{H}(\mathit{T}.r)\} + 1$

- [104] LLT of heights of binary trees & other simple trees (CPC'93)
- [195] Height of random binary unlabelled trees (DMTCS'08, RSA'11 [206])

$$[z^n]Y_h(z) \sim ?, h \approx \sqrt{n}$$

$$Y_h(z) := \sum_n \#(|T| = n, H(T) \le h) z^n$$

$$Y_{h+1}(z) = z\phi(Y_h(z)), \quad Y_0(z) = 0.$$

$$\frac{y_n^{[h]} - y_n^{[h-1]}}{y_n} \sim \begin{cases} 2c\pi^{1/2}n^{-1/2}\beta^4 \sum_{m \ge 1} (m\pi)^2 (2(m\pi\beta)^2 - 3)e^{-(m\pi\beta)^2} \\ 2c/(\beta\sqrt{n}) \sum_{m \ge 1} m^2 (2(m/\beta)^2 - 3)e^{-(m/\beta)^2} \end{cases}$$

 $\beta := 2\sqrt{n}/(ch)$

BINOMIAL SPLITTING PROCESSES

Tree structures

- [34] A recursive partitioning process (WCMSM'82)
- [53] Algebraic methods for trie statistics (Ann DM'85)
- [36] A branching process (ICALP'82 [36])
- [37] extendible hashing and trie searching (Acta Info'83)
- [61] Digital search trees revisited (SICOMP'86)
- [101] Digital trees & difference differential eqs. (RSA'92)
- [140] The analysis of hybrid trie structures (SODA'98)
- [161] Trie structures under dynamical sources (Algorithmica'01)

[187] The ubiquitous digital tree (STACS'06)

[208] Digital trees : from arithmetics to analysis (DMTCS'10)

BINOMIAL SPLITTING PROCESSES

Collision resolution algorithms

[49] A stack algorithm random multiple-access comm. (IEEE-IT'85)

[54] **Collision resolution algorithms** (IEEE-IT'85)

- [55] A functional eq. in a multiaccess broadcast channel (AAP'86)
- [68] Multiplicities of conflicts in multiple access channels (JACM'87)
- [65] Analytic models for tree comm. protocols (FCCN'87, SMF'88 [71], PERFORMANCE'87 [72])

Sorting algorithms

[159] Bucket selection and sorting (Acta Info'00)

[202] #(symbol comparisons) in QuickSort and QuickSelect (ICALP'09)

BINOMIAL SPLITTING PROCESSES

Randomized counting schemes

- [40] Probabilistic counting (CAAP'83, JCSS'85 [50])
- [42] DSTs & exp variate generation (CAAP'83, J.Algo'86 [60])
- [84] Adaptive sampling (Computing'90, Ency.'97 [134])
- [176] LogLog counting of large cardinalities (ESA'03)

[180] Counting by coin tossings (ASIAN'04)

[193] Hyperloglog : a near-optimal cardinality estimation algo. (DMTCS'07)

Estimate #(distinct elements in large files): Idea

Since $0^k 1$ occurs with prob 2^{-k-1} , answer 2^k if see $0^k 1$, k largest. Many variations, fruitful developments and applications

EXTENDIBLE HASHING AND TRIE SEARCHING

The first use of saddle-point method in AofA

$$\pi_n^h = \frac{n!}{2^{hn}} [z^n] \left(\sum_{0 \le j \le b} \frac{z^j}{j!} \right)^2$$

Theorem 1. The probability that a b-trie (equiv. a directory in dynamic/extendible hashing with page capacity b) formed with n keys has height less than or equal to h satisfies $(1 - x)^{h+1}$

$$\pi_n^h = \exp(-\beta 2^{bu(n)} 2^{-b\delta}) \cdot \left(1 + O\left(\frac{(\log n)^{b+1}}{n^{1/b}}\right)\right)$$

where $\beta = 1/(b+1)!$, u(n) is the fractional part of $(1+1/b)\log_2 n$, $\delta = h - \lfloor (1+1/b)\log_2 n \rfloor$ and h is in a "central" region around $(1+1/b)\log_2 n$ defined by

$$\delta > -\log_2 \log n.$$

Furthermore, for fixed b, the $O(\cdot)$ in the error term is uniform in h and n.

TWO SNAPSHOTS

THEOREM 3.A. The average value of parameter R_n satisfies:

 $\overline{R}_n = \log_2(\varphi n) + P(\log_2 n) + o(1),$

where constant $\varphi = 0.77351$... is given by

$$\varphi = 2^{-1/2} e^{\gamma} \frac{2}{3} \prod_{p=1}^{\infty} \left[\frac{(4p+1)(4p+2)}{(4p)(4p+3)} \right]^{(-1)^{\nu(p)}}$$

larger than μ . Then, each parameter $\xi \in \{S, P, Q\}$ has an expectation that satisfies asymptotically

$$\mathbb{E}_{\mathcal{P}(x)}[\xi] = xA^{(\xi)}(\log x) + x\Phi^{(\xi)}(x) + O\left(x^{1-a}\right), \qquad x \to \infty, \tag{39}$$

for some a > 0, where $A^{(\xi)}$ is polynomial given by (38) and $\Phi^{(\xi)}$ satisfies in each case the estimate

$$\Phi^{(\xi)}(x) = O\left(\exp\left(-(\log x)^{1/(2\nu-1)}\right)\right).$$
(40)

MULTIDIMENSIONAL DATA STRUCTURES

Cost of prtial match queries

- [41] Analysis of partial match queries (FOCS'83, JACM'86 [58])
- [75] Analysis of kdt-trees (WADS'89)
- [81] Orthogonal range queries (WADS'89, Info Sci'89 [82])

Quadtrees

- [93] Multidim. search in quadtrees (SODA'91, Algorithmica'93 [106])
- [103] Page usage in a quadtree index (BIT'92)
- [122] Hypergeometrics and the cost structure of quadtrees (RSA'95)
- [117] Search costs in quadtrees and singularity perturbation asymptotics (DCG'94)

PARTIAL MATCH QUERIES, k-d TREES

Linear systems, singularity analysis

THEOREM 1. The average cost, measured by the number of internal nodes traversed, of a partial match query of specification pattern u in a k-d-tree constructed by random insertions from a file of size n satisfies

$$c_{u,n} = \gamma_u n^{1-s/k} \theta(s/k) [1 + o(1)],$$

where γ_{μ} is a strictly positive real constant² and the function $\theta(x)$ is defined as the unique positive real root in the interval [0; 1] of the equation

$$(\theta(x) + 3 - x)^{x}(\theta(x) + 2 - x)^{1 - x} - 2 = 0,$$

so that, for $0 < x < 1.0 < \theta(x) < 0.07$.

The amount of work done in any partial match search with keys specified in an ideal tree of n nodes is there. for $cn^{m/k} + d$ for some small constants c and d. This

Bentley (1975), m = k - t

for the average amount of work done in a partial match search; by construction we have shown this to be an upper bound not only for the average but for all partial match queries.

All of our analysis has been for the case of the perfectly balanced tree; the one in which we might expect to has been conjectured by Rivest [7] to be a lower bound have the fastest searches. However, Rivest [7] has shown that the perfectly balanced trees have the highest average retrieval time. Therefore the results that we have shown are an expected upper bound on the retrieval time required by the algorithm.

QUADTREE RECURRENE

$$a_n = 2^d \sum_{0 \le j < n} \pi_{n,j} a_j + b_n$$

$$\pi_{n,j} = \binom{n-1}{j} \int_{[0,1]^d} (x_1 \cdots x_d)^j (1 - x_1 \cdots x_d)^{n-1-j} \, \mathrm{d}\mathbf{x}.$$

Exact solution

$$a_{n} = b_{0} + n\left((2^{d} - 1)b_{0} + b_{1}\right) \\ + \sum_{2 \le k \le n} \binom{n}{k} (-1)^{k} [k]! \sum_{2 \le j \le k} \frac{b_{j}^{\star} - b_{j-1}^{\star}}{[j]!} \\ [n]! = \prod_{2 \le j \le n} \left(1 - \frac{2^{d}}{j^{d}}\right) \qquad b_{n}^{\star} = \sum_{j} \binom{n}{j} (-1)^{j} b_{j}$$

TWO SNAPSHOTS

Theorem 2. The cost C_n of a random successful search in a standard quadtree of size n-1 has a generating function $\gamma_n(u)$ given by

$$\gamma_n(u^2) \equiv \mathbf{E}\{u^{2C_n}\} = \frac{1}{n} \frac{u^2}{4u^2 - 1} \left[-1 + \sum_{j=0}^n \binom{2u}{j} \binom{2u-1}{j} \binom{2u-1+n-j}{n-j} \right].$$

Theorem 3. The expected internal path length of a quadtree of size n in dimension d is asymptotically

$$f_n = \frac{2}{d} n \log n + \mu_d n + \mathcal{O}(\log n + n^{-1+2\cos(2\pi/d)}),$$

where μ_d depends only on the dimension:

$$\mu_d = \frac{1}{2d} \left(3d - 3 + 4\gamma - 4[\gamma] \right) = \frac{3d - 3 + 4\gamma}{2d} - 2^{d+1} \sum_{m=3}^{\infty} \frac{1}{m(m^d - 2^d)}.$$

SYNERGISTIC BALANCE

TREES, RANDOM MAPPINGS, SEQUENCES

- [51] Search trees and bubble memories (Wiener index) (RAIRO'85)
- [66] Level number sequences for trees (DM'87)
- [89] Common subexpression problem (tree compactification) (ICALP'90)

[96] Varieties of increasing trees (CAAP'92)

[177] And/or trees revisited (CPC'04)

198] Isomorphism and symmetries in random phylogenetic trees (JAP'09)

[74] Deviations from uniformity in random strings (ZW'88, Algo&Comb'89 [76])

[85] Random mapping statistics (EUROCRYPT'89)

LEVEL NUMBER SEQUENCES

Theorem 2. The generating function of the quantities H_n is expressible as:

$$H(q) = \frac{a(q)}{1 - b(q)},\tag{4}$$

where

$$a(q) = \sum_{j \ge 1} (-1)^{j+1} \frac{q^{2^{j+1}-2-j}}{(1-q)(1-q^3)(1-q^7)\cdots(1-q^{2^{j-1}-1})},$$
(5)

$$b(q) = \sum_{j \ge 1} (-1)^{j+1} \frac{q^{2^{j+1}-2-j}}{(1-q)(1-q^3)(1-q^7)\cdots(1-q^{2^{j-1}})}.$$
 (6)

Theorem 1. The number of level number sequences H_n satisfies the asymptotic estimate:

$$H_n \sim K \cdot v^n, \tag{2}$$

where K = 0.254505523565319 and v = 1.794147187541685 is the inverse of the smallest positive root ρ of the transcendental equation:

$$\sum_{j=1}^{\infty} (-1)^{j+1} \frac{\rho^{2^{j+1}-2-j}}{(1-\rho)(1-\rho^3)(1-\rho^7)\cdots(1-\rho^{2^{j-1}})} = 1.$$

RANDOM GRAPHS, WALKS, TRIANGULATIONS, ETC.

SINGULARITY ANALYSIS OF GENERATING FUNCTIONS

SINGULARITY ANALYSIS OF GENERATING FUNCTIONS

THEOREM 1. Assume that, with the sole exception of the singularity z = 1, f(z) is analytic in the domain $\Delta = \Delta(\phi, \eta)$, where $\eta > 0$ and $0 < \phi < (\pi/2)$. Assume further that as z tends to 1 in Δ ,

for some real number α . Then the nth Taylor coefficient of f(z) satisfies

(2.6b)
$$f_n = [z^n] f(z) = O(n^{-\alpha - 1}).$$

Simple ideas, powerful analysis, far-reaching consequences

KING MIDAS

ANALYTIC SCHEMES FOR RANDOM COMBINATORIAL STRUCTURES

ANALYTIC SCHEMES BY SINGULARITY ANALYSIS

Alg-log:
$$f(z, y) \approx \left(1 - \frac{z}{\rho(y)}\right)^{-\alpha} \implies \mathcal{N}(c_1 n, c_2 n)$$

Exp-log: $f(z, y) \approx \left(1 - \frac{z}{\rho}\right)^{-\alpha(y)} \implies \mathcal{N}(c_1 \log n, c_2 \log n)$

Theorem 7. Let $f_n(u)$ be a sequence of polynomials with positive coefficients satisfying the following conditions.

C1. [Fixed regular singularity] The generating function $F(u, z) = \sum_{n} f_{n}(u)z^{n}$ satisfies a linear differential equation of the form

[117]

$$a_0(u, z) \frac{\partial^r F}{\partial z^r} + \frac{a_1(u, z)}{(1-z)} \frac{\partial^{r-1} F}{\partial z^{r-1}} + \dots + \frac{a_r(u, z)}{(1-z)^r} F = 0,$$

where the $a_{j}(u, z)$ are polynomials and $a_{0}(u, z) \neq 0$ for $|z| \leq 1$, $|u| \leq 1$. C2. [Nonconfluence] The indicial equation

$$a_0(1, 1)\alpha(\alpha - 1)\cdots(\alpha + r - 1) + \cdots + a_r(1, 1) = 0$$

has a root $\sigma > 0$ which is simple and such that all other roots $\alpha \neq \sigma$ satisfy $\Re(\alpha) < \sigma$.

C3. [Dominant growth] $f_n(1) \sim C \cdot b^{\sigma-1}$ for some C > 0.

Then the coefficients of the polynomial $f_n(u)$ are asymptotically normal.

AUTOMATIC ANALYSIS OF ALGORITHMS

[63] Mathematical tools for automatic program analysis (RR603, INRIA'87)

[79] Lambda Upsilon Omega (AAECC'88, RR'89 [80], TCS'91 [94])

Operational vs conceptual

in a review: "mathematical methods are perhaps too often viewed here in a utilitarian perspective as "tools" rather than as theories having their own internal logic"

in an interview with MathMedia (to be published soon)

So notion of complexity is not only something utilitarian, ..., but I think it is also conceptual, obviously certain property or deeply hidden in objects and still that's something we don't understand a lot philosophically and you need to do a lot in order to dig it out ...
UNIVERSALITY OF AIRY PHENOMENA

ing hashing

Area under random walks

Random maps

connected graphs random trees

Inversions in trees

1st cycle in evolving graphs

. . .

GOOD AT CONNECTING DIFFERENT STRUCTURES

RANDOM GENERATION OF COMBINATORIAL STRUCTURES AND SIMULATIONS

URN MODELS

THEOREM 1. Consider the urn specified by matrix $\binom{-a}{b+x} \binom{a+s}{-b}$, with initial conditions (a_0, b_0) and $t_0 := a_0 + b_0$, assuming it to be tenable. The probability generating function at time n of the urn's composition is

$$p_n(u) = \frac{\Gamma(n+1)\Gamma(t_0/s)}{s^n \Gamma(n+t_0/s)} [z^n] H(z, u),$$

where the bivariate generating function H(z, u) is given by

$$H(z, u) = \delta(u)^{t_0} \psi(z\delta(u)^s + I(u)),$$

with

$$\delta(u) := (1 - u^h)^{1/h}, \qquad I(u) := \int_0^u \frac{t^{a-1}}{\delta(t)^{a+b}} dt, \qquad h := a + b + s,$$

and the function ψ is defined implicitly by

$$\psi(I(u)) = \frac{u^{a_0}}{\delta(u)^{t_0}}$$

76/91

NUMERICAL AND SYMBOLIC COMPUTATIONS

[107] Une famille de polynômes (Gazette Math.'93)

[109] A finite \sum of \prod s of binomial coefficients (SIAM Review'93) [121] Ramanujan's Q-function (JCAM'95)

$$\frac{21}{2} \le \frac{4}{135 \left(\sum_{0 \le j < n} \frac{n^j}{j!} - \frac{n!e^n}{2 \cdot n!} - \frac{1}{3} \right)} - n \le \frac{8}{45}$$

[123] Computer algebra libs for combinatorial structures (JSC'95)

[143] Euler sums & \int representations (Experimental Math.98)

[197] On differences of zeta values (JCAM'08)

[185] Fast computation of special resultants (JSC'06)

[184] Non-holonomic character of log, powers, and *n*th prime (EJC'05)

[207] Lindelöf representations and (non-)holonomic sequences (EJC'10)

EULER SUMS AND INTEGRAL REPRESENTATIONS

$$\begin{aligned} \text{(a)} \quad & \sum_{n\geq 1} \frac{H_n}{n^2} = 2\zeta(3), \qquad \sum_{n\geq 1} \frac{H_n}{n^3} = \frac{5}{4}\zeta(4), \qquad \sum_{n\geq 1} \frac{H_n}{n^4} = 3\zeta(5) - \zeta(2)\zeta(3) \\ \text{(b)} \quad & \sum_{n\geq 1} \frac{H_n^{(2)}}{n^4} = \zeta(3)^2 - \frac{1}{3}\zeta(6) \\ \text{(c)} \quad & \sum_{n\geq 1} \frac{H_n^{(2)}}{n^5} = 5\zeta(2)\zeta(5) + 2\zeta(3)\zeta(4) - 10\zeta(7) \\ \text{(d)} \quad & \sum_{n\geq 1} \frac{(H_n)^2}{n^5} = 6\zeta(7) - \zeta(2)\zeta(5) - \frac{5}{2}\zeta(3)\zeta(4) \\ \text{(e)} \quad & \sum_{n\geq 1} \frac{(H_n)^3}{n^4} = \frac{231}{16}\zeta(7) - \frac{51}{4}\zeta(3)\zeta(4) + 2\zeta(2)\zeta(5) \\ \text{(f)} \quad & \sum_{n\geq 1} \frac{(H_n)^4}{(n+1)^3} = \frac{185}{8}\zeta(7) - \frac{43}{2}\zeta(3)\zeta(4) + 5\zeta(2)\zeta(5) \\ \text{(g)} \quad & \sum_{n\geq 1} \frac{(H_n)^3}{n^5} - \frac{11}{4}\sum_{n\geq 1} \frac{H_n^{(2)}}{n^6} = \frac{469}{32}\zeta(8) - 16\zeta(3)\zeta(5) + \frac{3}{2}\zeta(2)\zeta(3)^2. \end{aligned}$$

(COMPUTATIONAL) NUMBER THEORY

IN ADDITION TO PROBABILISTIC PROPERTIES

IN ADDITION TO ASYMPTOTICS

COMBINATORICS AND GENERATING FUNCTIONS

[92]	Polya festoons (RR, INRIA 1991)
[95]	The cycle construction (SIDMA'91)
[73]	Probabilistic languages and random allocations (ICALP'88)
[100]	Birthday paradox, coupon collectors, caching algorithms, and self-organizing search (DAM'92)
[150]	Stirling numbers for complex argument (SIDMA'99)
[205]	Combinatorial models of creation-annihilation (TR arXiv:1010 0354, Arxiv'10)
	Information theory
[156]	Analytic variations on the redundancy rate of renewal processes (IEEE Conf'2000; 2002 [173])
[158]	Data compression via binary decision diagrams (IEEE IT'00)

PROCEEDINGS EDITED

- [9] Informatique et Philologie (IRIA, 1975)
- [108] Average Case Analysis of Algorithms (Dagstuhl Seminar Rep. 68, 1993)
- [128] Average Case Analysis of Algorithms (Dagstuhl Seminar Rep. 119, 1996)
- [139] Average-Case Analysis of Algorithms (RSA'97)
- [169] Mathematics and Computer Science II (Birkhäuser Verlag, Basel, 2002, 560 pages)
- [178] Mathematics and Computer Science III (Birkhäuser Verlag, 2004, 554 pages.)

SURVEY, EXPOSITION, ESSAY, LECTURE NOTES

- [17] Deux problèmes d'analyse (Delange-Pisot-Poitou'79)
- [44] Algorithmique (Encyclopedia Universalis 1984; Dictionnaire des mathématiques 1998)
- [47] Elements of a general theory of comb. stru. (FCT'85)
- [69] Math. methods in the AofAs and data structures (Trends in TCS'88)
- [70] L'analyse d'algorithmes ou le risque calculé (Award lecture'86)
- [91] Analysis of algorithms and data structures (Handbook TCS'90; 94p)
- [97] Analytic analysis of algorithms (ICALP'92)
- [98] La calculabilité et ses limites (La Science au Present'92)
- [99] Introduction à l'analyse d'algorithmes (Singularité'92)

SURVEY, EXPOSITION, ESSAY, LECTURE NOTES

- [133] Review of Micha Hofri's book "Analysis of Algorithms" (SIAM Review'97)
- 136] SIGSAM Challenges: Symbolic asymptotics in practice (SIGSAM Bull.'97)
- [138] Analysis of algorithms (RSA'97)
- [190] Scientific works of Rainer Kemp (1949-2004) (TCS'06)
- 192] Analytic combinatorics—a calculus of discrete structures (SODA'07)
- [162] $\mathbf{D} \cdot \mathbf{E} \cdot \mathbf{K} = (100)_8$ (RSA'01)
- [171] Singular combinatorics (ICM'02)
- [175] Hachage, arbres, chemins, et graphes (Gaz. Math.'03)

867!

ANALYSIS OF ALGORITHMS: OLD DAYS

ANALYSIS OF ALGORITHMS: NOW

STANDING ON THE SHOULDERS OF GIANTS

We lost

an irreplaceable leader a great scientist a good friend

Luc Devroye

March 22, 2011. I do not care about the world today. Philippe Flajolet died this afternoon. My heart is in the gutter. Why is it that the nicest, smartest, most generous guys have to go first? On my Facebook, I wrote: March 22, 2011—a day I will never forget. The world can go to hell. My friend, my brother, Philippe Flajolet just died. He was the guy I always wanted to be but never will be. Infinitely smart, generous, funny, radical, unconventional, creative, wonderful, wonderful, ... Thank you Philippe.

REPOSE EN PAIX

WE MISS YOU

