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OUTLINE OF THE LECTURES

1 Binary search trees, Quicksorts, and phase
changes

2 Method of moments and its refinements

3 Differential equations with polynomial coefficients

4 Profiles of random log-trees
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LECTURE II: METHOD OF MOMENTS FOR
RECURSIVELY DEFINED RANDOM VARIABLES
AND ITS REFINEMENTS

Part I: Method of moments
The moment of order α of X is E(Xα) =

∑
j jαP(X = j).
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MOMENT

Moment was first used in a statistics sense by Karl
Pearson in October 1893 in Nature: “Now the centre
of gravity of the observation curve is found at once,
also its area and its first four moments by easy
calculation” (OED2).

Karl Pearson (1957–1936)
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METHOD OF MOMENTS

The method of moments (or the method of
mathematical expectation) dates back to work by
Pafnuty Lvovich Chebyshev (1821–1894) in his
version of the classical central limit theorems.
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METHOD OF MOMENTS

Frechet-Shohat 1931
If E(X m

n )→ µm <∞, as n→∞ and for m = 1,2, . . . , and
the sequence {µm} determines uniquely a
distribution, then

Xn
d−→ X ,

where E(X m) = µm.

Carleman’s condition
If ∑

k

µ
−1/(2k)
2k =∞,

=⇒ unique determination of the distribution.

A special case:
∑

k µkxk/k ! is entire.
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A TOY EXAMPLE

Xn ∼ Binomial(n; p)

P(Xn = k) =

(
n
k

)
pk (1− p)n−k

E(eXns) = (1 + p(es − 1))n.

E(Xn) = pn

E(e(Xn−pn)s) = en log(1+p(es−1))−pns

= exp

n
∑
j≥2

κj
sj

j!

 .

In particular, κ2 = p(1− p) and κ3 = −p(1− p)(1− 2p).
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A TOY EXAMPLE

Thus taking coefficients of sm

E(Xn − pn)m = m!
∑

2j2+···+mjm=m
j2,...,jm≥0

1
j2!

(nκ2

2!

)j2
· · · 1

jm!

(nκm

m!

)jm
.

If m = 2r , then

E(Xn − pn)2r ∼ (2r)!

r !2r (κ2n)r

If m = 2r + 1, then

E(Xn − pn)2r+1 ∼ (2r + 1)!

3(r − 1)!2r κ
r−1
2 κ3nr
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A TOY EXAMPLE

Thus (κ2 = p(1− p)) for r = 1,2, . . .

E

(
Xn − pn√
p(1− p)n

)2r

∼ (2r)!

r !2r

E

(
Xn − pn√
p(1− p)n

)2r−1

= o(1).

Since
∑

k≥0
(2k)!
k!2k · z2k

(2k)!
= ez2/2 is entire

we conclude, by the moment convergence theorem,
that

Xn − pn√
p(1− p)n

d−→ N (0,1),

with convergence of all moments.
9/55



BINOMIAL =⇒ NORMAL (CLT)

p = 1
3 ,

1
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3
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BINOMIAL =⇒ NORMAL (LLT)
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METHOD OF MOMENTS

Features
Brute force (?)
Less probability (less modern, more classical)
More transparent
Stronger than weak convergence

Use it as the last weapon

New features
When applied to random recursive structures:

All moments satisfy the same recurrence
Asymptotic transfers
Refinements⇒ convergence rate and LLT
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RECURSIVE RANDOM VARIABLES

Recursion is ubiquitous in Computer Algorithms and
in Combinatorial Structures.
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COMBINATORIAL STRUCTURES

Famous numbers
• Binomial (successes in n trials)(

n
k

)
=

(
n − 1

k

)
+

(
n − 1
k − 1

)

• Stirling first (cycles in permutations)

s(n, k) = (n − 1)s(n − 1, k) + s(n − 1, k − 1)

• Stirling second (blocks in set partitions)

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1)

• Eulerian (runs in permutations)

A(n, k) = (k + 1)A(n − 1, k) + (n − k)A(n − 1, k − 1)

• Eulerian second (leaves in plane-ordered recursive trees)

a(n, k) = ka(n − 1, k) + (2n − k)a(n − 1, k − 1)
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RECURSIVE RANDOM VARIABLES

Examples
• Quicksort (binary search trees)

Pn(y) =
Qn(y)

n

∑
0≤k<n

Pk (y)Pn−1−k (y)

Xn
d
= XUniform[0,n−1] + Xn−1−Uniform[0,n−1] + Yn

• Mergesort

Pn(y) = Pα(n)(y)Pn−α(n)(y)Qn(y)

Xn
d
= Xα(n) + Xn−α(n) + Yn

– top-down: α(n) = bn/2c

– bottom-up: α(n) = 2dlog2 n/2e

– queue-: α(n) = 2blog2 2n/3c
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RECURSIVE RANDOM VARIABLES

Examples
• Digital trees

Pn+b(y) = Qn(y)
∑

0≤k≤n

(
n
k

)
pk (1− p)n−k Pk (y)Pn−k (y)

b = 0 =⇒ tries
b ≥ 1 =⇒ bucket digital search trees

• Analysis of a trading algorithm (Frieze-Pittel)

Pn(y) = y
∑

0≤j<n

n!(n − j)
nn−j+1j!

Pj (y)
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RECURSIVE RANDOM VARIABLES

Examples
• Maxima in right triangle

Pn(y) = y
∑

j+k+`=n−1

(
n − 1
j , k , `

)
(2j + `)!(2k + `)!

(2n − 1)!
2`︸ ︷︷ ︸

πj,k,`(n)

Pj (y)Pk (y)

• Generalized quicksort (Hennequin)

Pn(y) = Qn(y)
∑

j1+···+jm=n−m+1

(j1
t

)
· · ·
(jm

t

)( n
m(t+1)−1

)Pj1 (y) · · ·Pjm (y)

m ≥ 2, t = 0 =⇒ m− ary search tree
m = 2, t ≥ 0 =⇒ median of (2t + 1) quicksort
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TYPICAL APPROACHES FOR RECURSIVE RVs

Q: Mean, variance, limit law?
Complex-analytic method (Bender, Canfield,
Richmond, Flajolet, Drmota, . . . )
Contraction method (Rösler, Rüschendorf,
Neininger)
Inductive approximation method (Mahmoud,
Pittel)
Urn models (Mahmoud, Smythe, Janson)
Branching processes (Devroye, Rösler)
Sum of RVs, Stein’s method (Janson, Devroye,
. . . )
Method of moments (classical; Flajolet, Fill, H.,
. . . )
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NUMBER OF LEAVES IN RANDOM BSTs

Xn
d
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + δn,1

6

2 8

1 4 7 10

3 5 9
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NUMBER OF LEAVES IN RANDOM BSTs

Xn
d
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + δn,1

Let Pn(y) := E(eXny ). Then P0(y) = 1 and

Pn(y) =
eδn,1y

n

∑
0≤j<n

Pj(y)Pn−1−j(y) (n ≥ 1).

In particular, P1(y) = P2(y) = ey , P3(y) = ey (2+ey )
3 .

The mean µn := E(Xn) satisfies µ0 = 0 and

µn = δn,1 +
2
n

∑
0≤j<n

µj (n ≥ 1).
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THE UNDERLYING RECURRENCE

All moments satisfy the recurrence

an = bn +
2
n

∑
0≤j<n

aj (n ≥ 1).

The exact solution
Since nan − (n − 1)an−1 = 2an−1 + nbn − (n − 1)bn−1, we
obtain (assuming a0 = 0)

an =
n + 1

n
an−1 + b̄n,

where b̄n := nbn − (n − 1)bn−1.
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SOLUTION TO THE UNDERLYING RECURRENCE

Iterating an = n+1
n an−1 + b̄n

an =
n + 1

n

(
n

n − 1
an−2 + b̄n−1

)
+ b̄n

=
n + 1
n − 1

an−2 +
n + 1

n
b̄n−1 + b̄n

= · · · (using a0 = 0)

= (n + 1)
∑

1≤j≤n

b̄j

j + 1
.

Using b̄n := nbn − (n − 1)bn−1, we obtain for n ≥ 1

an = bn + 2(n + 1)
∑

1≤j<n

bj

(j + 1)(j + 2)
.

Ex: solve the case when a0 6= 0
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APPLICATIONS OF THE EXACT SOLUTION

Taking bn = δn,1

µn =
n + 1

3
(n ≥ 2).

So about one third of the nodes are leaves on
average.

Other node types

Ex: Similarly, there are (n + 1)/3 nodes on average
with only one child ( or ), and (n − 2)/3 nodes
with two children ( ).
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ASYMPTOTIC TRANSFER RESULTS

From the asymptotics of bn to those of an

By an = bn + 2(n + 1)
∑

1≤j<n
bj

(j+1)(j+2)
we obtain

– Small “toll functions”: C := 2
∑

j≥1
bj

(j+1)(j+2)

an ∼ Cn iff bn = o(n) and

∣∣∣∣∣∣
∑

j

bj j−2

∣∣∣∣∣∣ <∞;

– Linear “toll functions”: If bn ∼ cn, then

an ∼ 2cn log n;

– Large “toll functions”: Let α > 1. Then

an ∼ cnα iff bn ∼ c
α + 1
α− 1

nα.
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RECURRENCE OF CENTRAL MOMENTS OF Xn

Consider Pn(y) := E(e(Xn−µn)y ).

Pn(y) =
1
n

∑
0≤j<n

P j(y)Pn−1−j(y)e∆n,j y ,

where ∆n,j := δn,1 − µn + µj + µn−1−j satisfies

∆n,j ∈ {−1
3 ,0,

1
3 ,

2
3},

for n ≥ 1 and 0 ≤ j < n.

Only boundedness is needed.
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RECURRENCE OF CENTRAL MOMENTS OF Xn

By Pn(y) = 1
n

∑
0≤j<n P j(y)Pn−1−j(y)e∆n,j y

Let Pn,m := P
(m)

n (0) = E(Xn − µn)m. Then
Pn,0 = 1,Pn,1 = 0 and for m ≥ 2

Pn,m =
2
n

∑
0≤j<n

Pj,m + Qn,m,

where

Qn,m :=
∑

h+k+`=m
h,k<m

(
m

h, k , `

)
1
n

∑
0≤j<n

Pj,hPn−1−j,k ∆`
n,j .
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VARIANCE OF Xn

Recurrence now has the form: Vn := Pn,2 = V(Xn)

Vn =
2
n

∑
0≤j<n

Vj + Qn,2,

where Qn,2 := 1
n

∑
0≤j<n ∆2

n,j = O(1), so that Vn ∼ σ2n .

More precisely

Qn,2 =


0, if n ≤ 2;
2
3 , if n = 3;
4
9 , if n ≥ 4.

.

implying that Vn = 2
45(n + 1) for n ≥ 4 and V3 = 2

9 .
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WHAT ABOUT THE LIMIT LAW?

Histograms of Xn: look like normal curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

30/55



ASYMPTOTICS OF CENTRAL MOMENTS OF Xn

Focus: proving asymptotic normality
By induction, we prove for r ≥ 1

Pn,2r = E (Xn − µn)2r ∼ (2r)!

2r r !
σ2r nr ,

Pn,2r−1 = E (Xn − µn)2r−1 = o(nr−1/2).

These will imply that (σ =
√

2/45)

Xn − µn

σ
√

n
d−→ N (0,1).

r = 1 OK; it remains r ≥ 1
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ASYMPTOTICS OF CENTRAL MOMENTS OF Xn

By induction, the order of each term

Qn,m :=
∑

h+k+`=m
h,k≤m

(
m

h, k , `

)
1
n

∑
0≤j<n

Pj,h︸︷︷︸
||

O(jh/2)

Pn−1−j,k︸ ︷︷ ︸
||

O(n−1−j)k/2

∆`
n,j︸︷︷︸
||

O(1)

The dominant part of Qn,m

Qn,m :=
∑

h+k=m
1≤h,k<m

(
m
h

)
1
n

∑
0≤j<n

Pj,hPn−1−j,k

+ O


∑

h+k+`=m
h,k<m
1≤`≤m

(
m

h, k , `

)
1
n

∑
0≤j<n

jh/2(n − 1− j)k/2
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ASYMPTOTICS OF CENTRAL MOMENTS OF Xn

Asymptotics of the convoluted sum

1
n

∑
0≤j<n

ja(n − 1− j)b = O
(∫ n

0
xa(n − x)bdx

)
= O

(
na+b) (a,b > −1).

Qn,m :=
∑

h+k=m
1≤h,k<m

(
m
h

)
1
n

∑
0≤j<n

Pj,hPn−1−j,k + O
(
n(m−1)/2) .

If m = 2`− 1, then either h or k is odd

Qn,2`−1 = o
(
n`−1/2) =⇒ Pn,2`−1 = o(n`−1/2).
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ASYMPTOTICS OF EVEN CENTRAL MOMENTS

m = 2`: dominant terms are those with both h and k even

Qn,2` ∼
∑

1≤h<`

(
2`
2h

)
1
n

∑
0≤j<n

Pj,2hPn−1−j,2`−2h

∼
∑

1≤h<`

(
2`
2h

)
(2h)!(2`− 2h)!

h!2h(`− h)!2`−h ·
σ2`

n

∑
0≤j<n

jh(n − 1− j)`−h

∼ (2`)!σ2`

2``!

∑
1≤<`

(
`

h

)
1
n

∫ n

0
xh(n − x)`−hdx

=
(2`)!σ2`

2``!

∑
1≤<`

(
`

h

)
· h!(`− h)!

(`+ 1)!
n`

=
`− 1
`+ 1

· (2`)!σ2`

2``!
n`.

1

n

∫ n

0
xh(n − x)`−hdx

x 7→nt
= n`

∫ 1

0
th(1− t)`−hdt

= n` h!(`− h)!

(` + 1)!
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ASYMPTOTICS OF EVEN CENTRAL MOMENTS

By the transfer: an ∼ cnα iff bn ∼ c α+1
α−1 nα

Pn,2` ∼
(2`)!σ2`

2``!
n`

This completes the proof of the CLT.

Features
Completely elementary, no advanced probability,
no complex analysis
Straightforward and rather mechanical in some
sense
All asymptotics reduced to “asymptotic transfer”
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ADVANTAGES OF THE METHOD OF PROOF (I)

Despite messy details
• The same proof extends easily to

Xn
d
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + Tn

with
Tn = O(n1/2(log n)−1/2−ε),

and
Tn ∼ cn1/2(log n)β,

for which Xn is asymptotically normally distributed

Xn − E(Xn)√
V(Xn)

d−→ N (0,1).
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ADVANTAGES OF THE METHOD OF PROOF (I)

Xn
d
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + Tn

• Also extendable to Tn ∼ cnα(log n)β with α > 1/2 for
which Xn is asymptotically non-normal

Xn − ξn

Tn

d−→ Yα,

where ξn =

 Cn, if 1/2 < α < 1;
E(Xn), if α = 1;
0, if α > 1,

and

(U = uniform(0,1))

Yα
d
=

 UαYα + (1− U)αY ∗α + 1, if α > 1/2, α 6= 1;
UY + (1− U)Y ∗ + 2U log U + 2(1− U) log(1− U) + 1,

if α = 1,
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EXAMPLE: TOTAL PATH LENGTH OF BSTs

Tn = n − 1: Essentially the major cost used by Quicksort
Received much attention in the last 15 years, but
many problems remain open.

Characterization of X? (Fill and Janson,
2000–2002)
Optimal Berry-Esseen bound? (Neininger and
Rüschendorf, 2002)
Local limit theorem?
Large deviations?
A purely analytic approach to this problem?
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ADVANTAGES OF THE METHOD OF PROOF (I)

Phase change

From normal to non-normal: n1/2 is the threshold

Alternative approaches
contraction method (under more general settings)
(H. & Neininger)
decomposition into subtree-functionals and
Stein’s method (Devroye)
special cases doable by PDE + analytic (Flajolet
et al.)
special cases doable by urn models (Mahmoud,
Janson)
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EXAMPLE: LEAVES IN RANDOM BSTs

Xn
D
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + δn,1

Let F (z, y) :=
∑

n,m P(Xn = m)ymzn. Then F (0, y) = 1
and

∂

∂z
F (z, y) = F 2(z, y) + y − 1,

(a Riccati DE). The exact solution (Flajolet et al.,
1997)

F (z, y) =
1−

√
1− y tanh(

√
1− y z)

1− 1√
1−y

tanh(
√

1− y z)
.

For y ∼ 1, the dominant singularity lies at the zero

z = 1
2
√

1−y
log 1+

√
1−y

1−
√

1−y
of the denominator. Then we

get CLT and LLT for Xn.
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ADVANTAGES OF THE METHOD OF PROOF (II)

Further refinements of the method possible

Consider φn(y) := E(eXny )e−µny−σ2
ny2/2, which

satisfies a recurrence of the same type.
Show that

|φ(k)
n (0)| ≤ Akk !nkβ

for all k ≥ 0.
Derive a uniform estimate for the characteristic
function.
CLT with error bound: Berry-Esseen smoothing
inequality:

sup
x
|P(X ∗n < x)− Φ(x)| = O

(
T−1 +

∫ T

−T

∣∣∣∣∣ϕn(y)− e−y2/2

y

∣∣∣∣∣dy

)
.
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ADVANTAGES OF THE METHOD OF PROOF (II)

Xn
d
= Xuniform[0,n−1] + X ∗n−1−uniform[0,n−1] + cnβ

If β < 1/2, then

sup
−∞<x<∞

∣∣∣∣∣P
(

Xn − E(Xn)√
Var(Zn)

< x

)
− Φ(x)

∣∣∣∣∣
=

 O(n−1/2), if β < 1/3;
O(n−1/2 log n), if β = 1/3;
O(n−3(1/2−β)), if 1/3 < β < 1/2.
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ADVANTAGES OF THE METHOD OF PROOF (III)

The moments-transfer approach applicable to more
general recurrences

phase changes in random m-ary search trees,
generalized quicksort, quadtrees, . . .
maxima in triangles
digital tree structures: tries, digital search trees,
conflict resolution algorithms, . . .
bivariate shape parameters in random log-trees
recursive heuristics for random graphs

Hard part
The development of asymptotic transfer results
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METHOD OF MOMENTS FOR RECURSIVE RVs

Recurrence of MGF

Asymptotics of Mean and/or Variance

Proper Scaling

Recurrence of Scaled MGF

Guess Limit Law

Asymptotics of Higher Moments

Limit Law
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MAIN STEPS

1 Recurrence of MGF Pn = Πn[P0, . . . ,Pn−1];

2 Recurrence of mean

an = c
∑

j

πn,jaj + bn;

3 Asymptotic transfers: if bn ∼ Knα, then an ∼? if bn = O(nα),
then an = O(?); etc.

4 Mean ∼? Variance ∼?

5 φn := e−any Pn = Πn[φ0, . . . , φn−1,∆];

6 Recurrence for higher central moments: φn,k := φ
(k)
n (0)

satisfies
φn,k = c

∑
j

πn,jφj,k + ψn,k .

7 Induction and limit law.
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METHOD OF MOMENTS IN ANALYSIS OF
ALGORITHMS

Some examples
Height in binary trees (Flajolet and Odlyzko)
Path length in binary trees (Takács)
Log-product of subtree sizes in binary search
trees (Fill)
Cost of linear probing hashing (Flajolet et al.)
Tries (Schachinger)
Maximum degree in triangulations (Gao and
Wormald)
Random trees, urn models (Kuba, Panholzer)
Random graphs (Janson, Rucinski, et al.)
etc.
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