PHASE CHANGES IN RANDOM STRUCTURES AND ALGORITHMS

Hsien-Kuei Hwang Summer School in Applied Probability May 21, 2009

Canada's Capital University

- Binary search trees, Quicksorts, and phase changes
- Method of moments and its refinements
- Oifferential equations with polynomial coefficients
- Profiles of random log-trees

RANDOM BSTs: THE UNDERLYING RECURRENCE

All moments satisfy the recurrence

$$a_n = b_n + rac{2}{n}\sum_{0 \leq j < n} a_j \qquad (n \geq 1).$$

Exact solution by elementary means

Assume $a_0 = 0$.

$$a_n = b_n + 2(n+1) \sum_{1 \le j < n} \frac{b_j}{(j+1)(j+2)}$$
 $(n \ge 1).$

THE DIFFERENTIAL EQUATION

The generating function $f(z) = \sum_{n} a_n z^n$ satisfies the DE

$$f'(z) = g'(z) + \frac{2}{1-z}f(z),$$

where $g(z) = \sum_n b_n z^n$.

Exact solution when f(0) = 0

$$f(z) = (1-z)^{-2} \int_0^z (1-t)^2 g'(t) dt.$$

Everything is easy!!

A GENERAL FORM

A useful differential operator

Let $\theta := (1 - z)\mathbb{D}$. Then the DE

$$f'(z) = g'(z) + \frac{2}{1-z}f(z)$$

can be written as
$$(\theta - 2)f = (1 - z)g'$$
.

DEs of Cauchy-Euler type

Many DEs arising in AofA are of the form

Polynomial(θ)f = g.

THE *θ*-OPERATOR

Properties

Let $\theta := (1 - z)\mathbb{D}$. Then

$$(1-z)^j \mathbb{D}^j = heta(heta+1)\cdots(heta+j-1) =: heta^{ar j} \qquad (j\geq 1).$$

So the DE $(1 - z)^r f^{(r)} = \sum_{0 \le j < r} c_j (1 - z)^j f^{(j)} + g$ can be expressed as

$$\underbrace{\left(\theta^{\bar{r}} - \sum_{0 \le j < r} c_j \theta^{\bar{j}}\right)}_{=:\Lambda(\theta)} f = g.$$

Asymptotics of *f* depends crucially on the zeros of the indicial equation $\Lambda(\theta) = 0$.

A MORE GENERAL FORM

$$\sum_{0\leq j\leq m} \mathsf{Polynomial}_j(\mathbb{D})f = g.$$

Q: Asymptotics of
$$[z^n]f(z)$$
?

Holonomic

A function *f* is holonomic (or *D*-finite or *P*-recursive) if it satisfies a linear homogenous differential equation with polynomial coefficients

$$\sum_{1 \le j \le m} \mathsf{Polynomial}_j(\mathbb{D})f = 0.$$

EXAMPLES OF DEs WITH POLYNOMIAL COEFFICIENTS

$heta := (1-z)\mathbb{D}; \, heta^{\overline{j}} := heta(heta+1)\cdots(heta+j-1)$

- random *m*-ary search trees: $\theta^{\overline{m-1}} \underline{m}!$
- random fringe-balanced BSTs (median-of-(2t + 1) quicksort): $\theta^{2t+1} (2(t+1))!\theta^{\overline{t}}/(t+1)!$
- random generalized *m*-ary search trees (Hennequin's quicksort): $\theta^{\overline{m(t+1)-1}} - (m(t+1))!\theta^{\overline{t}}/(t+1)!$
- random quadtrees: $\theta(z\theta)^{d-1} 2^d$
- random gridtrees (Devroye):

$$\theta^{\overline{m-1}}\left(Z^{m-1}\theta^{\overline{m-1}}\right)^{d-1}-m!^{d}$$

EXAMPLES OF DEs WITH POLYNOMIAL COEFFICIENTS

The $\Lambda(\theta)$

- partial-match queries in random quadtrees: $\theta^{d-1}z^{-1}\theta^s z(z-1) - 2^d z$
- partial-match queries in random *k*-d trees:

$$\left(heta+rac{q_k}{z}
ight)\cdots\left(heta+rac{q_k}{z}
ight)-2^k \qquad (q_j\in\{0,1\}).$$

consecutive records in random permutations

 $(1-z)\mathbb{D}^{r-1}-(r+(1-z)(y-1))\mathbb{D}^{r-2}+(y-1)\sum_{0\leq j\leq r-3}(z+j+1)\mathbb{D}^{j}$

• A huge number of others arise in combinatorics, Calabi-Yau equations, statistical physics, etc.

THE GENERAL ANALYTIC APPROACH

From an ODE-theoretic viewpoint

In general, ODEs of the form

$$\sum_{0 \le j \le m} \mathsf{Polynomial}_j(\mathbb{D}) f = 0,$$

are easy in the sense that dominant singularity, leading order, precise asymptotic behaviors can be readily derived by classical theory (e.g., Frobenius method); in the simplest case, one has

$$f(z) \sim C(\rho - z)^{-\alpha} \qquad (z \sim \rho),$$

then the asymptotics of $[z^n]f(z) = f^{(n)}(0)/n!$ (the coeff-operator) can be derived by singularity analysis.

Hard part: an analytic expression for C?

RANDOM *m*-ARY SEARCH TREES

Space requirement: $P_n(y) := \mathbb{E}(e^{X_n y})$

$$P_n(y) = \frac{e^y}{\binom{n}{m-1}} \sum_{j_1+\cdots+j_m=n-m+1} P_{j_1}(y)\cdots P_{j_m}(y),$$

so the bivariate GF $P(z, y) := \sum_{n} P_{n}(y) z^{n}$ satisfies

$$\frac{\partial^{m-1}}{\partial z^{m-1}} P(z,y) = (m-1)! e^{y} P^{m}(z,y).$$

SPACE REQUIREMENT OF RANDOM *m*-ARY SEARCH TREES

Two explicitly solvable cases

If m = 2 (BSTs), then ($X_n \equiv n$)

$$P(z,y)=\frac{1}{1-e^{y}z}.$$

If m = 3, then

$$z = e^{-y/2} \int_{1}^{P(z,y)} \frac{\mathrm{d}v}{\sqrt{v^4 + e^y - 1}};$$

(expressible as generalized hypergeometric or Weierstrass's \wp functions).

No closed-form solutions are known for $m \ge 4$.

The phase change

Mahmhoud and Pittel (1989), Lew and Mahmoud (1994), Chern and H. (2001): The space requirement X_n exhibits the phase change: if $3 \le m \le 26$, then

$$\frac{X_n - \mu n}{\sigma \sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1);$$

if $m \ge 27$, then the sequence of random variables $(X_n - \mathbb{E}(X_n))/\sqrt{\mathbb{V}(X_n)}$ does not converge to a fixed limit law.

For other results, see H. (2003), Janson (2005), Chauvin and Pouyanne (2005), Fill and Kapur (2004, 2005), Dean and Majumdar (2005).

SPACE REQUIREMENT: MEAN

The recurrence $\mu_n := \mathbb{E}(X_n)$

$$\mu_n = \mathbf{1} + \frac{m}{\binom{n}{m-1}} \sum_{0 \le j < n} \binom{n-1-j}{m-2} \mu_j,$$

The GF $M(z) := \sum_{n} \mu_n z^n$ satisfies

$$M^{(m-1)}(z) - \frac{m!}{(1-z)^{m-1}}M(z) = \frac{(m-1)!}{(1-z)^m}$$
$$\left(\theta^{\overline{m-1}} - m!\right)M(z) = \frac{(m-1)!}{1-z},$$

with the initial conditions M(0) = 0 and $M^{(j)}(0) = j!$, $1 \le j \le m - 2$.

Q: asymptotics of μ_n from properties of M(z)?

EXACT SOLUTION OF THE DE

Two simple lemmas

•
$$f(z) = f(0)(1-z)^{-\rho} + (1-z)^{-\rho} \int_0^z (1-x)^{\rho-1} g(x) dx$$

is the solution to the DE

is the solution to the DE

$$(\vartheta - \rho)f(z) = g(z),$$

with initial value f(0).

•
$$f(z) = c(1-z)^{-\rho} + A \frac{(1-z)^{-s}}{s-\rho}$$
, $s \neq \rho$, is the general solution to the DE

$$(\vartheta - \rho)f(z) = A(1-z)^{-s}$$
 $(A \in \mathbb{C}).$

EXACT SOLUTION OF THE DE

A useful consequence

•
$$f(z) = \frac{A(1-z)^{-s}}{(s-\rho_1)\cdots(s-\rho_k)} + \sum_{1 \le j \le k} c_j(1-z)^{-\rho_j}$$
, where
s and the ρ_j 's are all distinct complex numbers and the c_i 's are constants, solves the DE

$$(\vartheta - \rho_1) \cdots (\vartheta - \rho_k) f(z) = A(1-z)^{-s} \qquad (A \in \mathbb{C}).$$

Zeros of the indicial equation $\theta^{\overline{m-1}} - m! = 0$

• $\theta = 2$ is a zero ($2^{\overline{m-1}} = m!$)

• all other zeros are distinct with real part < 2.

DISTRIBUTION OF THE ZEROS OF $\theta^{m-1} - m! = 0$

DISTRIBUTION OF THE ZEROS OF $\theta^{m-1} - m! = 0$

EXACT SOLUTION OF THE DE

Let the zeros of $\theta^{\overline{m-1}} - m! = 0$ be λ_i with $\lambda_1 = 2$.

Then
$$\left(heta^{\overline{m-1}}-m!
ight)M(z)=(m-1)!(1-z)^{-1}$$
 becomes

$$(\theta-2)(\theta-\lambda_2)\cdots(\theta-\lambda_{m-1})M(z)=(m-1)!(1-z)^{-1}$$

Its solution is of the form

$$M(z) = \sum_{1 \le j \le m-1} A_j (1-z)^{-\lambda_j} - \frac{1}{(m-1)(1-z)}$$

By the initial conditions, we can prove that

$$A_j = \frac{1}{\lambda_j (\lambda_j - 1) \sum_{0 \le \ell \le m-2} \frac{1}{\lambda_j + \ell}} \qquad (1 \le j \le m-2);$$

(see Mahmoud and Pittel, 1989 or Chern and H., 2001)

ASYMPTOTICS OF MEAN

$$A_{1} = \frac{1}{2(H_{m}-1)}, \ H_{m} = \sum_{1 \le j \le m} \frac{1}{j}$$

$$\mu_{n} = \sum_{1 \le j \le m-1} A_{j} \binom{\lambda_{j} + n - 1}{n} - \frac{1}{m-1}$$

$$\sim \frac{n+1}{2(H_{m}-1)} - \frac{1}{m-1} + \frac{A_{2}}{\Gamma(\lambda_{2})} n^{\lambda_{2}-1} + \frac{A_{3}}{\Gamma(\lambda_{3})} n^{\lambda_{3}-1} + \cdots$$

where we used the asymptotic relation

$$[z^n](1-z)^{-\alpha} = \binom{n+\alpha-1}{n} = \frac{n^{\alpha-1}}{\Gamma(\alpha)}(1+o(1)),$$

for each finite $\alpha \in \mathbb{C}$ (Flajolet-Odlyzko).

Random *m*-ary search trees are not space efficient!!

The success of the above approach relies heavily on the simple form $(1 - z)^{-1}$ of the non-homogeneous part.

How to deal with general non-homogenenous part? Needed for higher moments.

THE GENERAL DES: AN ANALYTIC APPROACH

A simple analytic scheme by ODE theory

Consider the DE

$$\sum_{0 \le j \le k} c_j (1-z)^j f^{(j)}(z) = h(z) \qquad (k \ge 1; c_k = 1).$$

Here $h \neq 0$ is *FO-admissible* with $h(z) \sim A(1-z)^{-s}$, as $z \to 1$, where $A, s \in \mathbb{C}$.

Let $\rho \in \mathbb{C}$ be the largest zero (in real part) of the indicial equation $\Lambda(\theta) := \theta^{\overline{k}} + \sum_{0 \le j < k} c_j \theta^{\overline{j}} = 0.$

If ρ is a simple zero and the real parts of all other zeros are $<\Re(\rho),$ then for $z\sim$ 1

$$f(z) \sim \begin{cases} \frac{A}{\Lambda(s)}(1-z)^{-s}, & \text{if } \Re(s) > \Re(\rho); \\ C(1-z)^{-\rho}, & \text{if } \Re(s) < \Re(\rho); \\ C(1-z)^{-\rho} + C'(1-z)^{-s}, & \text{if } s \neq \rho \text{ and } \Re(s) = \Re(\rho); \\ -\frac{A}{\Lambda'(\rho)}(1-z)^{-\rho}\log(1-z), & \text{if } s = \rho. \end{cases}$$

ELEMENTARY VS ANALYTIC

In number-theoretic sense

Elementary \longrightarrow real analysis

Analytic \longrightarrow complex analysis.

Analytic approach

Operationally easier, resulting expressions simpler, but requires stronger analytic conditions

Elementary approach

Operationally less elegant, but gives stronger result

A hybrid general approach

An appropriate development of the elementary approach, assisted by procedures of analytic approach

ASYMPTOTIC TRANSFER RESULTS

The underlying recurrence

Consider

$$a_n = \frac{m}{\binom{n}{m-1}} \sum_{0 \le j < n} \binom{n-1-j}{m-2} a_j + b_n \qquad (n \ge m-1),$$

with the initial conditions $a_n = b_n$ for $0 \le n \le m - 2$. Then ($C := \frac{1}{H_m - 1} \sum_{j \ge 0} \frac{b_j}{(j+1)(j+2)}$)

$$a_n \sim Cn \text{ iff } b_n = o(n) \text{ and } \left| \sum_j b_j j^{-2} \right| < \infty,$$

 $a_n \sim cn^{lpha} \text{ iff } b_n \sim rac{cn^{lpha}}{1 - rac{m!}{(lpha+1)\cdots(lpha+m-1)}} \quad (lpha > 1).$

The DE:
$$\theta^{\overline{m-1}} - \underline{m}! = (\theta - \lambda_1) \cdots (\theta - \lambda_{m-1})$$

 $(\theta - \lambda_1) \cdots (\theta - \lambda_{m-1}) f(z) = (1 - z)^{m-1} g^{(m-1)}(z),$
where $f(z) = \sum_n a_n z^n$ and $g(z) = \sum_n b_n z^n$.

Idea: successive applications of linear operators

$$(heta - \lambda_1) \underbrace{(heta - \lambda_2) \cdots (heta - \lambda_{m-1}) f(z)}_{f_1(z)} = (heta - \lambda_1) f_1(z)$$

So we focus first on DE of the form $(\theta - \rho)f = g$.

$$(\theta - \rho)f = g$$

$$f(z) = f(0)(1-z)^{-\rho} + (1-z)^{-\rho} \int_0^z (1-x)^{\rho-1} g(x) dx \text{ is the solution}$$

to the DE $(\vartheta - \rho)f(z) = g(z)$ with initial value $f(0)$.

An elementary version: $f' = \frac{\rho}{1-z}f + \frac{g}{1-z}$

Let $g(z) = \sum_{n \ge 0} b_n z^n$ and $f(z) = \sum_{n \ge 0} a_n z^n$ be two formal power series. Then the solution to the recurrence

$$a_n = \frac{\rho}{n} \sum_{0 \leq j < n} a_j + \frac{1}{n} \sum_{0 \leq j < n} b_j \qquad (n \geq 1),$$

with *a*⁰ given, satisfies

$$a_n = a_0 \binom{n+\rho-1}{n} + \sum_{0 \le k < n} \frac{b_k}{k+1} \prod_{k+2 \le j \le n} \left(1 + \frac{\rho-1}{j}\right) \qquad (n \ge 0)$$

Formal-power series

Taking coefficient of z^n on both sides

 $f(z) = f(0)(1-z)^{-\rho} + J_{\rho}[g](z),$

where $J_{\rho}[g](z) := (1-z)^{-\rho} \int_0^z (1-x)^{\rho-1} g(x) dx$, we also obtain

$$a_n = a_0 \binom{n+\rho-1}{n} + \sum_{0 \le k < n} \frac{b_k}{k+1} \prod_{k+2 \le j \le n} \left(1 + \frac{\rho-1}{j}\right) \qquad (n \ge 0).$$

We take such a formal-power series point of view for all DEs. Advantages: *expressions neater, manipulation simpler and without having to worry about analytic properties.*

Simple, fundamental tools

Let $\mathbf{Q}_{ au} := \{f(z) : [z^n]f(z) = o(n^{ au})\}$, where $au \in \mathbb{R}$.

- If $f \in \mathbf{Q}_{\tau}$, then $J_{\rho}[Q] \in \mathbf{Q}_{\tau}$ for $\tau > \Re(\rho) 1$.
- If $[z^n]f(z) \sim cn^{\nu} \log^{\beta} n$, where $c \in \mathbb{C}$ and $\Re(\nu) > \Re(\rho) 1$, then

$$[z^n]J_
ho[f](z)\sim rac{c}{v+1-
ho}\,n^v\log^eta n.$$

• If $[z^n]f(z) \sim cn^{\rho-1} \log^{\beta} n$, where $\beta > -1$, then

$$[z^n]J_\rho[f](z)\sim \frac{c}{\beta+1}\,n^{\rho-1}\log^{\beta+1}n.$$

Idea of proof

Use

$$[z^n]I_{\rho}[Q](z) = \sum_{0 \le k < n} \frac{[z^k]Q(z)}{k+1} \prod_{k+2 \le j \le n} \left(1 + \frac{\rho - 1}{j}\right),$$

and

$$\prod_{k+2 \le j \le n} \left(1 + \frac{\rho - 1}{j} \right)$$

= $\exp\left((\rho - 1) \sum_{k+2 \le j \le n} \frac{1}{j} \right) \prod_{k+2 \le j \le n} \left(1 + \frac{\rho - 1}{j} \right) e^{-(\rho - 1)/j}$
= $O\left(n^{\Re(\rho) - 1} (k + 1)^{-\Re(\rho) + 1} \right).$

Now consider
$$(\theta - \lambda_1) f_1 = (1 - z)^{m-1} g^{(m-1)}$$

The solution is

$$f_1(z) = f_1(0)(1-z)^{-\lambda_2} + J_{\lambda_1}[(1-z)^{m-1}g^{(m-1)}](z)$$

where, by initial conditions, $\lambda_1 = 2$, and some identities $f_1(0) = m! \sum_{0 \le j \le m-2} \frac{b_j}{(j+1)(j+2)}$.

Let
$$f_2(z) = (\theta - \lambda_3) \cdots (\theta - \lambda_{m-1}) f(z)$$
.

Applying the same procedure

$$f_2(z) = \frac{f_1(0)}{\lambda_1 - \lambda_2} (1 - z)^{-\lambda_1} + I_{\lambda_2}[I_{\lambda_1}[(1 - z)^{m-1}g^{(m-1)}]](z) + Q_1(z),$$

where $Q_1(z) \in \mathbf{Q}_1$.

Continuing iterating the same procedure

$$f(z) = \frac{f_1(0)(1-z)^{-\lambda_1}}{(\lambda_1 - \lambda_2) \cdots (\lambda_1 - \lambda_{m-1})} + J_{\lambda_{m-1}} \left[\cdots J_{\lambda_1} \left[(1-z)^{m-1} g^{(m-1)} \right] \cdots \right] (z) + Q_2(z),$$

where $Q_2(z) \in \mathbf{Q}_1$.

By induction

$$\begin{aligned} &J_{\lambda_{m-1}}\left[\cdots J_{\lambda_1}\left[(1-z)^{m-1}g^{(m-1)}\right]\cdots\right](z) \\ &= \frac{m!J_2[g](z)}{(2-\lambda_2)\cdots(2-\lambda_{m-1})} - \sum_{0\leq j\leq m-2}\frac{m!b_j}{(j+1)(j+2)}(1-z)^{-\lambda_1} + Q_3(z), \end{aligned}$$

where
$$Q_3(z) \in \mathbf{Q}_1$$
.

The final expression

By using $b_n = o(n)$ and collecting all estimates,

$$f(z) = rac{J_2[g](z)}{H_m - 1} + Q_4(z),$$

where $Q_3(z) \in \mathbf{Q}_1$. Now

$$[z^n]J_2[g](z) = (n+1)\sum_{0 \le j < n} \frac{b_j}{(j+1)(j+2)}$$

This proves that $b_n = o(n)$ and $|\sum_n b_n n^{-2}| < \infty$ imply $a_n \sim Cn$; the necessity part is easy and as in BST case.

The large toll function case

If $b_n \sim cn^{\alpha}$, $\alpha > 1$, then the asymptotics of a_n can be easily "guessed" as follows. Assume $a_n \sim Cn^{\alpha}$. Then

$$\begin{split} \mathbf{a}_n &= \frac{m}{\binom{n}{m-1}} \sum_{0 \leq j < n} \binom{n-1-j}{m-2} \mathbf{a}_j + \mathbf{b}_n \\ &\sim \frac{Cm}{\binom{n}{m-1}} \sum_{j < n} \binom{n-1-j}{m-2} j^{\alpha} + \mathbf{c} n^{\alpha} \\ &\sim Cm! n^{1-m} \sum_{j < n} \frac{(n-1-j)^{m-2}}{(m-2)!} j^{\alpha} + \mathbf{c} n^{\alpha} \\ &\sim C \frac{\Gamma(\alpha+1)m!}{\Gamma(\alpha+m)} n^{\alpha} + \mathbf{c} n^{\alpha} \sim \mathbf{C} n^{\alpha}, \end{split}$$

so that *C* is solved to be $\frac{c}{1-\frac{m!}{(\alpha+1)\cdots(\alpha+m-1)}}$.

The proof follows the same linear-operator procedure and is much simpler.

SPACE REQUIREMENT: RECURRENCE OF CENTRAL MOMENTS

$$P_{n}(y) = \frac{e^{y}}{\binom{n}{m-1}} \sum_{j_{1}+\dots+j_{m}=n-m+1} P_{j_{1}}(y) \cdots P_{j_{m}}(y)$$
Let $\overline{P}_{n}(y) := \mathbb{E}(e^{(X_{n}-\mu_{n})y})$ and $P_{n,k} := \mathbb{E}(X_{n}-\mu_{n})^{k} = \overline{P}_{n}^{(m)}(0)$. Then
$$\overline{P}_{n}(y) = \sum_{j_{1}+\dots+j_{m}=n-m+1} \overline{P}_{j_{1}}(y) \cdots \overline{P}_{j_{m}}(y) e^{\Delta_{n}(\mathbf{j})y},$$
where $\Delta_{n}(\mathbf{j}) := 1 + \mu_{j_{1}} + \dots + \mu_{j_{m}} - \mu_{n}$. It follows that
$$P_{n,k} = \frac{m}{\binom{n}{m-1}} \sum_{j_{1}+\dots+j_{m}=n-m+1} \binom{m-1-j}{m-2} P_{j,k} + Q_{n,k},$$

where

$$Q_{n,k} := \frac{1}{\binom{n}{m-1}} \sum_{\substack{i_0 + \dots + i_m = k \\ i_1, \dots, i_m < k}} \binom{k}{i_0, \dots, i_m} \sum_{j_1 + \dots + j_m = n-m+1} P_{j_1, i_1} \cdots P_{j_m, i_m} \Delta_n(\mathbf{j})^{i_0}.$$

VARIANCE OF THE SPACE REQUIREMENT

Let
$$\alpha = \Re(\lambda_2)$$
.
Since $\mu_n - \frac{n}{H_m - 1} \asymp \max\{1, n^{\alpha - 1}\}$,
 $\Delta_n(\mathbf{j}) = 1 + \mu_{j_1} + \dots + \mu_{j_m} - \mu_n$
 $\asymp \max\{1, n^{\alpha - 1}\}$

Numeric values of α

т	3	4	5	6	7	8	9	10
α	-3	-2.5	-1.5	-0.768	-0.266	0.101	0.366	0.568
т	11	12	13	14	15	16	17	18
α	0.726	0.852	0.955	1.041	1.112	1.173	1.226	1.272
т	19	20	21	22	23	24	25	26
α	1.313	1.349	1.381	1.409	1.435	1.459	1.479	1.499

 $\alpha - 1 > 1/2$ for $m \ge 27$

VARIANCE OF THE SPACE REQUIREMENT

$$V_n := \mathbb{V}(X_n) = P_{n,2}$$
 satisfies

$$V_n = rac{m}{\binom{n}{m-1}} \sum_{j_1 + \dots + j_m = n-m+1} \binom{m-1-j}{m-2} V_j + Q_{n,2},$$

where

$$Q_{n,2} := \frac{1}{\binom{n}{m-1}} \sum_{j_1 + \dots + j_m = n-m+1} \Delta_n(\mathbf{j})^2$$

$$\approx \max\{n^{2\alpha-2}, 1\}.$$

Thus

- for $3 \le m \le 26$: $Q_{n,2} = o(n)$ and $|\sum_n Q_{n,2}n^{-2}| < \infty$, so $V_n \sim \sigma^2 n$;
- for $m \ge 27$: $n^{2\alpha-2} \gg n^{1+\varepsilon}$, so $V_n \asymp n^{2\alpha-2}$.

ASYMPTOTICS OF HIGHER CENTRAL MOMENTS

Asymptotic normality when $3 \le m \le 26$

By induction and the asymptotic transfer,

$$P_{n,2r} = \mathbb{E} (X_n - \mu_n)^{2r} \sim \frac{(2r)!}{2^r r!} \sigma^{2r} n^r,$$

$$P_{n,2r-1} = \mathbb{E} (X_n - \mu_n)^{2r-1} = o(n^{r-1/2}),$$

for $r \ge 1$. This implies by the method of moments the CLT of X_n .

$m \ge$ 27: fluctuations dominate

$$P_{n,k} \sim F_k(\Im(\lambda_2) \log n) n^{k(\alpha-1)}$$
 $(k \ge 2).$

Alternative approaches

Contraction method, martingales, statistical physics.

SECOND PHASE CHANGE: CONVERGENCE RATE

The method of moments can be further refined

$$\sup_{-\infty < x < \infty} \left| \mathbb{P} \left(\frac{X_n - \mu_n}{\sigma_n} < x \right) - \Phi(x) \right|$$
$$= \begin{cases} O(n^{-1/2}), & \text{if } 3 \le m \le 19; \\ O(n^{-3(3/2 - \alpha)}), & \text{if } 20 \le m \le 26. \end{cases}$$

т	α	3(3/2 - α)
20	1.34892881	0.45321354
21	1.38079786	0.35760639
22	1.40936978	0.27189065
23	1.43512896	0.19461309
24	1.45847025	0.12458925
25	1.47971848	0.06084455
26	1.49914326	0.00257020

SECOND PHASE CHANGE: LOCAL LIMIT THEOREM

Moderate deviations LLT

$$\mathbb{P}(X_n = \lfloor \mu_n + x\sigma_n \rfloor) = \frac{e^{-x^2/2}}{\sqrt{2\pi}\sigma_n}$$
$$\times \left(1 + \begin{cases} O\left(\frac{1+|x|^3}{n^{1/2}}\right), & \text{if } 3 \le m \le 19 \\ O\left(\frac{1+|x|^3}{n^{3(3/2-\alpha)}}\right), & \text{if } 20 \le m \le 26 \end{cases} \right)$$

where the first *O*-term holds uniformly for $x = o(n^{1/6})$, the second for $x = o(n^{-\alpha+3/2})$.

THE REFINE METHOD OF MOMENTS: SKETCH

Major steps: Let
$$\bar{\alpha} = \begin{cases} 1/3, & \text{if } 3 \le m \le 19; \\ \alpha - 1, & \text{if } 20 \le m \le 26 \end{cases}$$

Define $\phi_n(y) := \mathbb{E}(e^{(X_n - \mathcal{N}(\mu_n, \sigma_n^2))y}) = P_n(y)e^{-\mu_n y - \sigma_n^2 y^2/2}.$

Prove |φ_n^(k)(0)| ≤ A^kk!n^{kā} using the asymptotic transfer:

if
$$|b_n| \leq cn^{\beta}, \beta > 1$$
, then $|a_n| \leq \frac{Kcn^{\beta}}{1 - \frac{m!}{(\beta+1)\cdots(\beta+m-1)}}$.

- Derive a uniform estimate for $|P_n(it)|$ for $|t| \le \pi$
- Rate and LLT by standard Fourier analysis

Open questions

Is there an analytic approach to getting asymptotic expansion for the DE

$$\frac{\partial^{m-1}}{\partial z^{m-1}} P(z,y) = (m-1)! y P^m(z,y).$$

for $z, y \sim 1$ and $m \geq 4$? A particular solution is $(1 - y^{1/(m-1)}z)^{-1}$.

This would then have important consequences for, say large deviations.

A 2-DIMENSIONAL POINT QUADTREE

RANDOM *d*-DIMENSIONAL QUADTREES

Random quadtrees

If the *n* given points are iid from $[0, 1]^d$, then the resulting tree is called a *random quadtree*.

$$X_n \stackrel{d}{=} X_{J_1}^{(1)} + \cdots + X_{J_{2d}}^{(2^d)} + T_n.$$

The underlying recurrence for moments

All moments of any additive cost measures satisfy the recurrence (Flajolet et al., 1995)

$$a_n = b_n + 2^d \sum_{0 \leq j < n} \pi_{n,j} a_j \qquad (n \geq 1),$$

where $\pi_{n,j} = \binom{n-1}{j} \int_{[0,1]^d} (x_1 \cdots x_d)^j (1 - x_1 \cdots x_d)^{n-1-j} d\mathbf{x}$ is the probability that one subtree is of size *j*.

THE CORRESPONDING DE

$$f(z) = \sum_n a_n z^n$$

Since

$$\pi_{n,j}=\frac{1}{n}\sum_{\substack{j< i_1\leq\ldots\leq i_{d-1}\leq n}}\frac{1}{i_1\cdot\ldots\cdot i_{d-1}},$$

we get the DE

$$\theta(z\theta)^{d-1}(f-g)=2^d f.$$

An extended Cauchy-Euler DE

Rewrite $\theta(z\theta)^{d-1}(f-g) = 2^d f$ as

$$(\theta^d - 2^d)f = \theta(z\theta)^{d-1}g + \sum_{0 \le j < d} (1-z)^j \underbrace{\varpi_j(\theta)}_{\text{polynomial}} f$$

The sum on RHS will be asymptotically smaller than LHS since we are interested in the asymptotics of *f* as $z \sim 1$.

Two different approaches proposed in the literature

• Analytic approach by Flajolet et al. (1995) based on Euler transform and singularity analysis: analytic properties of *g* is needed; very precise expansion can be derived.

$$a_n = b_0 + ((2^d - 1)b_0 + b_1)n + \sum_{2 \le k \le n} \binom{n}{k} (-1)^k \sum_{2 \le j \le k} \frac{b_j^* - b_{j-1}^*}{\prod_{j < \ell \le k} (1 - \frac{2^d}{\ell^d})}$$

where $b_j^* := \sum_{0 \le \ell \le j} {j \choose \ell} (-1)^\ell b_\ell$.

 Elementary DE approach (the extended Cauchy-Euler DE): useful when only asymptotics of b_n are known.

A phase change

Chern, Fuchs, H. (2005): If $1 \le d \le 8$, then the number X_n of leaves is asymptotically normally distributed; if $d \ge 9$, then the random variables $(X_n - \mathbb{E}(X_n))/\sqrt{\mathbb{V}(X_n)}$ do not tend to a fixed limit law.

Asymptotic transfer results used

 $(\beta + 1)^{a} - 2^{a}$

Let $\beta > 1$.

$$a_n \sim Cn \text{ iff } b_n = o(n) \text{ and } \left| \sum_n b_n n^{-2} \right| < \infty$$

 $a_n \sim \frac{c(\beta + 1)^d}{(\beta - 1)^d} n^{\beta} \text{ iff } b_n \sim cn^{\beta}.$

$\begin{aligned} \operatorname{Recall} \left(\theta^{d} - 2^{d}\right) f &= \theta(z\theta)^{d-1}g + \sum_{0 \leq j < d} (1 - z)^{j} \varpi_{j}(\theta) f \\ C &:= \frac{2}{d} \sum_{k \geq 0} V_{k} \sum_{j \geq 0} \frac{j! b_{j}}{(k+2) \cdots (k+j+2)}, \\ \text{where } W_{k} &= 0 \text{ if } k < 0, W_{0} = 1 \text{ and for } k \geq 1 \\ W_{k} &= \sum_{1 \leq \ell < d} \frac{\varpi_{\ell}(k+2)}{\varpi_{0}(k+2)} W_{k-\ell}. \end{aligned}$

Analysis of algorithms: a rich source of DEs

(phenomenally intriguing, mathematically challenging)

50/50