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OUTLINE OF THE LECTURES

@ Binary search trees, Quicksorts, and phase
changes

@ Method of moments and its refinements

© Differential equations with polynomial coefficients

Q Profiles of random log-trees




RANDOM BSTs: THE UNDERLYING RECURR

All moments satisfy the recurrence

2
an:bn+52aj (n>1).

0<j<n

Exact solution by elementary means

Assume g, = 0.

b;

an:bn+2(n+1) Z m

1<j<n

(n=1).




THE DIFFERENTIAL EQUATION

The generating function f(z) = ), a,z" satisfies the DE

where g(z) =), b,z".

Exact solution when f(0) =0

f(z)=(1- z)—2/ (1 — t)?g/(t)dt.
0
Everything is easy!!




A GENERAL FORM

A useful differential operator

Let 0 := (1 — z)D. Then the DE

can be written as [UESAVENGEPI Q.
DEs of Cauchy-Euler type

Many DEs arising in AofA are of the form

Polynomial(¢)f = g.




THE 6-OPERATOR

Properties
Let 0 := (1 — z)D. Then

(1-2YD=00+1)---(0+j—-1)=6¢  (j>1)

So the DE (1 — 2)'f() = 37, ¢(1 — z)/f!) + g can be

expressed as
- > gt | f=g.
o<j<r

—A(6)

Asymptotics of f depends crucially on the zeros of
the indicial equation \(6) = 0.

|0,




A MORE GENERAL FORM

> Polynomial,(D)f = g.

0<j<m

Q: Asymptotics of [z"]|f(2)?

Holonomic

A function f is holonomic (or D-finite or P-recursive)
if it satisfies a linear homogenous differential
equation with polynomial coefficients

> Polynomial,(D)f = 0.

0<j<m




EXAMPLES OF DEs WITH POLYNOMIAL
COEFFICIENTS

0:=(1—-2)D; 0 =00+1)--- (O +j—1)

e random m-ary search trees: 0™ — m!

e random fringe-balanced BSTs (median-of-(2f + 1)
quicksort): 021 — (2(t + 1))16/(t +1)!

e random generalized m-ary search trees
(Hennequin’s quicksort):
oM — (m(t 4+ 1))10!/(t +1)!

e random quadtrees: §(z0)?-1 — 27

e random gridtrees (Devroye):

gm-1 (zm‘19ﬁ> — m\d




EXAMPLES OF DEs WITH POLYNOMIAL
COEFFICIENTS

The A(6)

e partial-match queries in random quadtrees:
091 z71952(z — 1) — 29z
e partial-match queries in random k-d trees:

(0+%) - (o+ L) —2¢  (geo,1h.

@ consecutive records in random permutations

(1=2D " =(r + (1 = 2)(y =)D +(y=1) Y. (z+j+1)D

0</<r-3

@ A huge number of others arise in combinatorics, 3
Calabi-Yau equations, statistical physics, etc.




THE GENERAL ANALYTIC APPROACH

From an ODE-theoretic viewpoint

In general, ODEs of the form

>~ Polynomial,(D)f = 0,

o<j<m

are easy in the sense that dominant singularity,
leading order, precise asymptotic behaviors can be
readily derived by classical theory (e.g., Frobenius
method); in the simplest case, one has

f(z)~Clp—2)"  (z~p),

then the asymptotics of [2"|f(z) = f(W(0)/n! (the
coeff-operator) can be derived by singularity analysis.

Hard part: an analytic expression for C?




RANDOM m-ARY SEARCH TREES

(. J/
~

m branches: Xn g X§11) db oo b Xi;n) T Tn

Space requirement: P,(y) := E(e*)

Pn(y)zfny) S B P,

M—=1/)" jy4---+4jm=n—m-+1

so the bivariate GF P(z,y) .= >, P,(y)z" satisfies

;ZLH:P(Ly):(m—U!eyP’"(z,y). 3




SPACE REQUIREMENT OF RANDOM m-ARY
SEARCH TREES

Two explicitly solvable cases

If m = 2 (BSTs), then (X, = n)

1

P(z,y) =

1-e/z
If m= 3, then
P(z,y)
z=ge/? —dv :
1 Vvt + ey —1

(expressible as generalized hypergeometric or
Weierstrass’s o functions).

No closed-form solutions are known for m > 4. ; g'




SPACE REQUIREMENT

The phase change

Mahmhoud and Pittel (1989), Lew and Mahmoud
(1994), Chern and H. (2001): The space requirement
X, exhibits the phase change: if 3 < m < 26, then

— N(0,1);
L NO.1)

if m > 27, then the sequence of random variables
(Xn — E(X,))//V(X,) does not converge to a fixed
limit law.

For other results, see H. (2003), Janson (2005),
Chauvin and Pouyanne (2005), Fill and Kapur (2004,
2005), Dean and Majumdar (2005).




SPACE REQUIREMENT: MEAN

The recurrence p, := E(X),)

(m—1)!

?

(em— m!) M(z) = 5—

with the initial conditions M(0) = 0 and MY)(0) = j!,
1<j<m-2.

Q: asymptotics of ., from properties of M(z)?




EXACT SOLUTION OF THE DE

Two simple lemmas

.ma:nmu—zrhu1—aﬂ/k1—nw@uxm
is the solution to the DE
(0 = p)f(z) = 9(2),

with initial value f(0).

o —s
o f(z)=c(1—2)"+ A(1 2) ,» S # p, is the general

solution to the DE

W —p)f(z)=A1 —2)° (AcCQ).




EXACT SOLUTION OF THE DE

A useful consequence

A1l —2)° v
e f(z)= + ci(1 — z) ", where
@ = G s ; i(1-2)
s and the p;’s are all distinct complex numbers
and the ¢/’s are constants, solves the DE

(0 —p1)-- (9 — pe)f(z) = A(1 —2)~° (Ae C).

Zeros of the indicial equation ™1 — m! = 0

e ) =2isazero (2™ =m!)
o all other zeros are distinct with real part < 2. @







DISTRIBUTION OF THE ZEROS OF #™-1 — ml =0
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EXACT SOLUTION OF THE DE

Let the zeros of ™" — m! = 0 be \; with A\ = 2.

Then <9m_ m!) M(z) = (m—1)I(1 — z)~! becomes

(0 —2)(0—X2) -+ (0 = Am-1)M(2) = (m—1)I(1 —2)~".

Its solution is of the form

_ 1
M2) = >, Al )Y DA o)

1<j<m—1

By the initial conditions, we can prove that

1
A= (1<j<m-2)
)‘j()‘/ - 1)Zogzgm72 ﬁ

(see Mahmoud and Pittel, 1989 or Chern and H., 2001) 3




ASYMPTOTICS OF MEAN

where we used the asymptotic relation

N e (N+a—1\ !
2101 -2 = ( ) = Tyt + o),

n

for each finite o € C (Flajolet-Odlyzko).

Random m-ary search trees are not space efficient!!




GENERAL DEs?

The success of the above approach relies heavily on

the simple form (1 — z)~! of the non-homogeneous
part.

How to deal with general non-homogenenous part?
Needed for higher moments.




THE GENERAL DEs: AN ANALYTIC APPROACH

A simple analytic scheme by ODE theory
Consider the DE

> gl —2yf(z)=hz) (k=1;c=1).
0<j<k

Here h # 0 is FO-admissible with h(z) ~ A(1 —z) %,as z — 1,
where A, s € C.

Let p € C be the largest zero (in real part) of the indicial equation

If p is a simple zero and the real parts of all other zeros are
< R(p), then for z ~ 1

%(1 —2)75, if R(s) > R(p);
H(z2) ~ C(1—2z2)7, if R(s) < R(p);
Cl—-2z) 7+ C(—2)5 ifs+#pandR(s)=R(p);

(1= 2)*log(1 — 2), ifs=p. J@




ELEMENTARY VS ANALYTIC

In number-theoretic sense
Elementary — real analysis
Analytic — complex analysis.

Analytic approach

Operationally easier, resulting expressions simpler,
but requires stronger analytic conditions

Elementary approach
Operationally less elegant, but gives stronger result

A hybrid general approach

An appropriate development of the elementary
approach, assisted by procedures of analytic
approach




ASYMPTOTIC TRANSFER RESULTS

The underlying recurrence
Consider

wgiy 2 (nle o 0z

=1/ 0<j<n
with the initial conditions a, = b,for0 < n<m - 2.
b,

~ Cniff b, = o(n) and

Z byj~*

cn®
= (a>1).

~ (at1)-(a+m-1) @

an ~ cn“ iff b, ~




THE LINEAR-OPERATOR APPROACH

The DE: 0™ 1 —ml = (6 — \y)--- (0 —
(0 —M)- (0= Am-)f(2) = (1 —2)™ g("”()
where f(z) = > a,z"and g(z) = >, b,z".

Idea: successive applications of linear operators

(8= A1) (0= Xe) (8 — Am_1)(2)
H(2)

=(0—M)f(2)

So we focus first on DE of the form [CEIENe].




THE LINEAR-OPERATOR APPROACH

Z

f(z)=f0)(1 —2)"+(1— z)*ﬂ/ (1 — x)*~"g(x)dx is the solution
to the DE (¥ — p)f(2) = 9(2) withoinitial value f(0).

An elementary version: ' = -2

Letg(z) => -0 bnz"and f(z) = °,., az" be two formal power
series. Then the solution to the recurrence

_ P 1 .
an =" Z a+ Z b (n>1),
0<j<n 0<j<n
with ap given, satisfies

wma("i7) e A I () o2

0<k<n k+2<j<n




THE LINEAR-OPERATOR APPROACH

Formal-power series
Taking coefficient of z” on both sides

f(z) = F(0)(1 — 2)~" + J,[9](2),

where J,[9](z) := (1 — 2)" [; (1 — x)*""g(x)dx, we also
obtain

an—ao<n+,’;1>+zkbk1 11 <1+”j1> (n>0).

0<k<n k+2<j<n

We take such a formal-power series point of view for
all DEs. Advantages: expressions neater,
manipulation simpler and without having to worry
about analytic properties.




THE LINEAR-OPERATOR APPROACH

Simple, fundamental tools
Let Q. := {f(2): [2"|f(z) = o(n")}, where T € R.

o If f € Q,, then J,[Q] € Q; for 7 > R(p) —

e If [z"]f(z) ~ cn”log” n, where ¢ € C and
R(v) > R(p) — 1, then

[2"]J,[fl(2) ~ - n"log” n.

o If [z"]f(z) ~ cn*~"'log” n, where 3 > —1, then

[21111(2) ~ 5 7 log” .




THE LINEAR-OPERATOR APPROACH

Idea of proof

Use

k _
Z1iaE - > B T (14277,

0<k<n k+2<j<n
and

()

kt2<j<n

—ep (-1 Y 1) I <1+P,1> o—(o—1)/i
k+2<j<n / k+2<j<n /

o) (nﬂ‘*(f))*1 (k + 1)*%)“) :




THE LINEAR-OPERATOR APPROACH

Now consider (6 — A\y)fi = (1 — z)™ ' g(m=1)
The solution is

fi(2) = f(0)(1 — 2) 72 + U, [(1 = 2)" g™ V)(2),
where, by initial conditions, \; = 2, and some

. . b;
|dent|t|es f1 (O) = mI Zogjgm—Z m.

Let f(2) = (6 — A3) - - (6 — Am_1)F(2).

Applying the same procedure
f(0)

B(2) =55, 0 - 2)7M 4 by [ [(1 = 2)™ g™ I])(2) + Qi(2),

where Q;(z) € Q.




THE LINEAR-OPERATOR APPROACH

Continuing iterating the same procedure

RO —2)
(z) = (A1 = A2) - (M — Am—1)
+dy, [ odh [(1T=2)" g™ D] ] (2) + Qu(2),

where ;(z) € Qy.

By induction

. {...J)q [(1 _z)m—1g(m—1)] } (2)

_ mlJz[g]( mlb] —\
= (2—)\2) (2 Am— 1 0<]<Zm 2(j+1)(]+2)( ) +Q3(Z)7

where Qs(z) € Q. |O)




THE LINEAR-OPERATOR APPROACH

The final expression
By using b, = o(n) and collecting all estimates,

f(z) = ﬁigﬁ) + Qu(2),

where ;(z) € Q. Now
b;

Z1l0)2) = (n+ 1) > i

0<j<n

This proves that b, = o(n) and |}, b,n?| < oo imply
an ~ Cn; the necessity part is easy and as in BST
case.




THE LINEAR-OPERATOR APPROACH

The large toll function case

If b, ~ cn“, o > 1, then the asymptotics of a, can be easily
“guessed” as follows. Assume a, ~ Cn“. Then

m n—1—j

_(m’11) Z < m_ o >a,-+bn
0<j<n

Cm n—1-j\., N

~ o )Z( - )/ +cn

=1/ j<n

\m—2

-~ |pl—m (n_1 _j)m o (e
Cm'n j§<n T mo2r J“+cn

Ma+1)m!

n* +cn“ ~ Cn®
fa+m | ’

so that Cis solvedtobe ——— %, ——

T
(a+1)---(atm—1)
The proof follows the same linear-operator procedure and is 'Zg)
much simpler.




SPACE REQUIREMENT: RECURRENCE OF
CENTRAL MOMENTS

Pn(y) = (:—r_ry]) Zj1+---+jm:nfm+1 P/1 (y) T le(y)
Let Py(y) := E(eXo—#nY) and Py := E(Xp — pn)* = P (0). Then

Poy)= > P PLe~”,
St Hm=n—m+1
where A(j) := 1+ pj + - + py, — pn- It follows that

m m—1—j
Pn,kzﬁ Z ( m-_>2 )ij,k+on,k>

JitHjm=n—m+1

1 k P o
Qn,k - (mrl1) Z —k <i07 .. ,im) Z Ph i P/f"”’"A”(l)o'

Jit-Fim=n—m+1




VARIANCE OF THE SPACE REQUIREMENT

Let o = %()\2)
Since 11, — 5 =< max{1, n*'},

Ap(l) =1+ i + -+ Wiy — i
= max{1,n*""}

Numeric values of o

m 3 4 5 6 7 8 9 10
o -3 —-25 | —15 | —0.768 | —0.266 | 0.101 | 0.366 | 0.568
m 11 12 13 14 15 16 17 18
o || 0.726 | 0.852 | 0.955 1.041 1.112 1.173 | 1.226 | 1.272
m 19 20 21 22 23 24 25 26
o || 1.313 | 1.349 | 1.381 1.409 1.435 1.459 | 1.479 | 1.499

a—1>1/2form>27




VARIANCE OF THE SPACE REQUIREMENT

2.

(m—1) Ji+-+jm=n—m+1

m—1—j
( m-_2 )Vj+on,27

Qo= S AP

(m—1) Ji-+im=n—m-+1
= max{n**2 1}.

Thus

e for3 < m<26: Q,2=o0(n)and |}, Q,2n"?| < ,
so V, ~ o°n;

e for m> 27: n?*2 > n't¢, so0 V, < n?*2,




ASYMPTOTICS OF HIGHER CENTRAL MOMEN

Asymptotic normality when 3 < m < 26

By induction and the asymptotic transfer,

2r)!
Pnor =E(Xp — /f«n)zr ~ (2fr)! a?n’,
Poar—1 = E (X — pn)* = o(n'~"/?),
for r > 1. This implies by the method of moments the CLT of X.

m > 27: fluctuations dominate

Pok ~ Fi(S(X2)log n)nke=D (k> 2).

Alternative approaches
Contraction method, martingales, statistical physics. 3




SECOND PHASE CHANGE: CONVERGENCE RAIE

The method of moments can be further refined

sup 'IP (M < x) — ®(x)
—00<X< 00 On

[ O(n1/3), if3<m<19;
| O(n3G/2=2)) if 20 < m < 26.
L m | o | 3(8/2—a) |
20 || 1.34892881 | 0.45321354
21 || 1.38079786 | 0.35760639
22 || 1.40936978 | 0.27189065
23 || 1.43512896 | 0.19461309
24 || 1.45847025 | 0.12458925
25 || 1.47971848 | 0.06084455
26 || 1.49914326 | 0.00257020 @




SECOND PHASE CHANGE: LOCAL LIMIT
THEOREM

Moderate deviations LLT

efx2/2
( n L,un nJ) \/EO'n
1 3
o(TEEY itz <m<1o
x |1+ 1 :’L e
O(m), |f20§m§26
where the first O-term holds uniformly for x = o(n'/®),
the second for x = o(n~*3/2),




THE REFINE METHOD OF MOMENTS: SKETC

1/3, if3<m<19;
a—1, if20 < m< 26

Define ¢,(y) := E(en=+lmaily) = P,(y)e-rny=oar/2,

e Prove |¢4(0)| < AKkInk® using the asymptotic
transfer:

Major steps: Let a = {

Ken®

m!

if |by| < cn’, 3> 1, then |a,| <

@ Derive a uniform estimate for |P,(it)| for |{| < =
o Rate and LLT by standard Fourier analysis




SPACE REQUIREMENTS

Open questions

Is there an analytic approach to getting asymptotic
expansion for the DE

m—1
8zm—1

for z,y ~ 1 and m > 4? A particular solution is
(1 _ y1/(mf1)z)f1.

P(z,y) = (m—1)lyP"(z,y).

This would then have important consequences for,
say large deviations.




A 2-DIMENSIONAL POINT QUADTREE

P>

Ps

P

Py

Py

Pe




RANDOM d-DIMENSIONAL QUADTREES

If the n given points are iid from [0, 1]9, then the
resulting tree is called a random quadtree.

d
Xa 2 XD 4 4 X2+ T,

The underlying recurrence for moments

All moments of any additive cost measures satisfy
the recurrence (Flajolet et al., 1995)

an=b,+2% > ma  (n=1),

0<j<n

where Tpj = <n;1>/ (X1'--Xd)j(1 —X1--~Xd)n717jdX is the J
[0,1°
probability that one subtree is of size . 3




THE CORRESPONDING DE

f(z)=>,anz"

Since . .
i = > g

J<h<..<ig—1<n

we get the DE
0(z6)°~"(f — g) = 27f.

An extended Cauchy-Euler DE
Rewrite 0(z6)9~'(f — g) = 29f as

(09 —29f=0(z0)""g+ > (1-2z) w(0) f
0<j<d —
polynomial
The sum on RHS will be asymptotically smaller than LHS since |.
we are interested in the asymptotics of f as z ~ 1. 3




ANALYTIC AND ELEMENTARY APPROACHES

Two different approaches proposed in the literature

e Analytic approach by Flajolet et al. (1995) based
on Euler transform and singularity analysis:
analytic properties of g is needed; very precise
expansion can be derived.

an = bo+((27—1)bo+br)n+ Y (Z)(—U" >

od
2<k<n 2<j<k Hj<€§k(1 - Td)l

where bj* = ZOSZS] (2)(_1 )Zbe'

o Elementary DE approach (the extended
Cauchy-Euler DE): useful when only asymptotics
of b, are known.

br — b7,




NUMBER OF LEAVES IN RANDOM QUAD TREE

A phase change

Chern, Fuchs, H. (2005): If1 < d < 8, then the number
X, of leaves is asymptotically normally distributed; if

d > 9, then the random variables (X, — E(X,))//V(Xn)
do not tend to a fixed limit law.

Asymptotic transfer results used
Let 5 > 1.

anp ~ Cn iff b, = o(n) and < 0

> byn®
n

n? iff b, ~cn®.

c(B+ 1)
G-

n ~




THE LINEARITY CONSTANT C




CONCLUSION

Analysis of algorithms: a rich source of DEs

(phenomenally intriguing, mathematically challenging)






